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Several techniques have been developed to study protein association or interactions, such as 

co-immunoprecipitation, co-localization, fluorescence resonance transfer energy (FRET) or 

yeast-two-hybrid system (1). Nevertheless, each of the aforementioned techniques has its 

advantages and disadvantages. Patient-derived tissue samples are unique, in a sense they 

cannot be modified by exogenous expression or overexpression of genetically modified proteins 

and they typically have high background fluorescence intensity (1,2). To circumvent all these 

impediments, a Swedish research group developed Proximity Ligation Assay (PLA), a proteomic 

tool which allows the visualization of protein interactions and their post-translational modifications 

with high sensitivity with the help of amplified DNA (3,4). The technique was initially established 

as a tool to detect cytokines (5,6) and was further adapted to study protein post-translational 

modification in situ (2,3,7). 

The PLA method uses two antibodies conjugated with oligonucleotides (proximity probes), 

each antibody being specific for a protein of interest or a cellular structure (3). Two connector 

oligonucleotides are added to the reaction mixture leading to the formation of circular DNA 

followed by joining the free ends of DNA by the addition of DNA ligase. In the next step, Rolling 

Circle Amplification (RCA) will generate a single-stranded DNA product which is connected to one 

of the proximity probes and it contains several concatenated copies of the connector 

oligonucleotides. Detection of the amplified DNA is carried out by hybridization with a short, 

fluorescently conjugated oligonucleotide (detection oligonucleotides) complementary to a short 

segment of the connector oligonucleotide appearing as a bright spot having a high signal-to-noise 

ratio in fluorescent microscopy (2,3,6). Interpretation of the results of PLA are based on the 

assumption that a PLA signal is detectable if the proximity probes are located at a distance of 
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tens of nanometers (7,8). However, PLA was also considered a “molecular ruler” suitable for 

measuring distances between two epitopes in the range of 10-30 nm (3). Nevertheless, for the 

quantitative measurements in the range of 2-10 nm, Förster resonance energy transfer (FRET) 

should be considered as a more reliable tool (9-13) and at the same time, the saturation features 

of PLA should be taken into account (14). It is known that photobleaching or autofluorescence of 

tissue samples can represent drawbacks for FRET, so researchers should take these facts into 

account when selecting the optimal method to answer their scientific questions (1). Nevertheless, 

a couple of measurement techniques can minimize the autofluorescence effects on FRET. The 

accuracy of FRET measurements can be improved by cell-by-cell correction for autofluorescence 

(15) and by the use of FRET in combination with another technique: total internal reflection 

fluorescence microscopy (16). 

The development of new instruments, faster computers and different software tools led to the 

adaptation of PLA to a statistically more robust technique, flow cytometry (2,8). When the post-

translational modifications of PDGF receptor were analyzed by fluorescence microscopy, the 

number of quantified cells varied in the range of 100 – 130 cells/sample (4). Statistical 

improvements became visible when dimerization of EGFR or HER2 was studied by PLA applied 

to flow cytometry allowing the measurement of thousands of cells per second (8). Furthermore, 

the technique was developed to allow simultaneous detection of mRNA molecules and protein 

complexes or post-translational modifications at the single cell level (17). 

The paper by Burns et al. recently published in Cytometry Part A introduced a new version of 

PLA, Subcellular Localization Assay (SLA), which allows the identification of the subcellular 

localization of the proteins of interest using microscopy and a high throughput method, flow 

cytometry (18). The technique requires two proximity probes: (i) an antibody recognizing a tag, 

which must be an abundant molecule characteristic of an organelle or part of an organelle (e.g. 

damaged DNA in the nucleus); (ii) another antibody against the protein of interest. The flow 

cytometric version of SLA not only offers high-throughput detection by measuring more than 

10000 cells/ second, but it is also within reach in many research laboratories or hospitals as 

opposed to the restricted availability and low-throughput capability of imaging cytometers. 

Additionally, simultaneous measurement of subcellular localization by SLA and another 

parameter detectable by fluorescence labeling is also possible. However, the widespread 

application of SLA may be hindered by the complexity of the protocol for preparing the proximity 

probes and for performing SLA (18). 

SLA was used to study protein localization in two main subcellular compartments, nuclear and 

mitochondrial. The most developed part of the paper was the application of SLA in the nuclear 
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compartment for studying the nuclear import of transcription factors in cell populations or in 

different cell subsets as a function of time and for the localization of the tumor suppressor protein 

breast cancer 1 (BRCA1) to damaged DNA. Nuclear import of the transcription factors: nuclear 

factor kappa-light-chain-enhancer of activated B cells (NF-κB) and nuclear factor of activated T-

cells (NF-AT) was studied in different cell lines and in peripheral blood mononuclear cells by SLA. 

In these experiments an antibody against the transcription factors and another antibody against 

double-stranded DNA served as proximity probes. SLA not only revealed the nuclear translocation 

of NF-κB and NF-AT as a function of time, but it also allowed the authors to analyze these events 

in different cell subpopulations (18). 

Besides the research applications of SLA, the technique can have clinical use as shown by 

its ability to detect the interaction between the tumor suppressor protein, BRCA1  and the marker 

for DNA double strand breaks, gamma-H2A histone family, member X (yH2AX) after DNA 

damage. Double strand breaks represent a marker for the evaluation of the DNA repair 

mechanisms after cancer therapy (19). Lymphocytes, skin or tumor biopsies can be collected 

from patients before and after therapy and investigated for the number of yH2AX foci (20). In their 

experiments the authors showed that the BRCA1-yH2AX interaction was increased in S and G2/M 

phases as compared to G1 phase in both control and irradiated samples. Measurement of the 

nuclear co-localization of BRCA1 and histone yH2AX by confocal microscopy confirmed the SLA 

results. Since SLA is a high throughput method the authors suggested that this technique can 

complement the classical microscopy counting method (18). 

Taken together, the authors presented a new technique based on the principles of proximity 

ligation assay which is able to quantify the localization of a protein of interest to different 

subcellular compartments. Besides the multiple research applications ranging from the detection 

of nuclear localization of transcription factors to the investigation of the kinetics in multiple cell 

populations simultaneously in a high-throughput and multiplexed manner, the technique has a 

high potential to be useful in clinical practice. 
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