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Abstract 

Starch catabolism leading to high glucose level in blood is highly problematic in chronic metabolic 

diseases, such as type II diabetes and obesity. α-Amylase catalyses the hydrolysis of starch, increasing  

blood sugar concentration. Its inhibition represents a promising therapeutic approach to control 

hyperglycaemia. However, only few drug-like molecule inhibitors without sugar moieties have been 

discovered so far, and little information on the enzymatic mechanism is available. This work aims at the 

discovery of novel small α-amylase binders using a systematic in silico methodology. 3D-pharmacophore-

based high throughput  virtual screening of small compounds libraries was performed to identify 

compounds with high α-amylase affinity. Twenty-seven compounds were selected and biologically tested, 

revealing IC50 values in the micromolar range and ligand efficiency higher than the one of the bound form 

of acarbose, which is used as a reference for α-amylase inhibition.  
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1. Introduction  

Metabolic diseases like obesity and type II diabetes are characterized by high levels of blood glucose.
1
 

One of the most attractive targets for the development of novel therapeutic agents and controlling the 

glucose level in the blood is α-amylase.
2, 3

 α-Amylases (1,4-α-D-glucan-4-glucanohydrolase, EC 3.2.1.1) 

are endoamylases broadly distributed throughout the microbial, plant and animal kingdoms ,
4, 5

 which 

catalyze hydrolysis of starch and glycogen.
6
 In humans, α-amylase is expressed as two isoforms, secreted 

from salivary glands and pancreas, respectively.  These enzymes play a role in digestion of 

polysaccharides like starch, the main source of glucose in human diet .
7-9

 Human salivary α-amylase 

(HSA) initiates the hydrolysis of α-(1,4) glycosidic bonds in the dietary starch into smaller 

oligosaccharides.
10

 Further digestion of carbohydrates takes place in the gut under control of human 

pancreatic α-amylase (HPA).
11

 Hence, hydrolysis of polymeric starch by HSA and HPA produces maltose, 

maltotriose and other oligomers, which are then degraded into glucose by α-glucosidase.
12

 

Therefore, α-amylase inhibitors can control the breakdown of dietary  starch into smaller oligomers ,
13

 with 

the purpose of delaying glucose absorption to a rate the body can handle and hence decreasing the post -

prandial hyperglycemia.
2, 14, 15

 α-Amylase inhibition was recently observed with natural products extracted 

from Hungarian sour cherries.
16

 But peptide-based compounds were the first reported highly potent α-

amylase inhibitors.
17-19

 Carbohydrate-based inhibitors have been studied intensively as α -amylase 

inhibitors, showing a similar range of potency as the peptide-based inhibitors.
7
 Acarbose, a natural 

metabolite of Streptomyces sp., has been used in the treatment of type II diabetes and was shown to 

inhibit α-amylase and α-glucosidase but with undesirable gastrointestinal disturbances .
20

 These side 

effects arise as a consequence of maltose fermentation which accumulates due to α -glucosidase 

inhibition. Therefore, a non-carbohydrate-based α-amylase inhibitor is expected to be better agent to 

restrain postprandial hyperglycemia since it would not lead to abdominal accumulation of maltose.
21

 

In humans, α-amylases secreted from pancreas and saliva are two very closely related isoforms with 97 % 

sequence identity (92 % in the catalytic domains).
22-24

 The active site is located at a large V-shaped cavity 

in the catalytic domain to accommodate the natural substrate, starch.
25

 Subsites in this binding cleft are 

denoted with the numbers from -4 to +3, according to Davies et al.
7, 26, 27

 The cleavage of the natural 

substrate takes place between subsites -1 and +1, where catalytic residues Asp197, Glu233 and Asp300 

play a central role in the hydrolysis mechanism.
12

  

In this work, we aim at identifying novel  small non-sugar drug-like molecules binding to α-amylase and 

inhibiting its activity. To reach this objective, a structure-based approach was developed using 3D-

pharmacophore models and virtual screening.
28

 

2. Results and Discussion 

2.1 Development and Validation of the 3D-Pharmacophore Model 

First, all inhibitors co-crystallized with α-amylase available from the Protein Data Bank (PDB) 
29, 30

 were 

collected in order to build a pharmacophore model that compiles all essential features required for an 
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optimal ligand-enzyme interaction in the catalytic pocket. Due to their different binding areas further away 

from the enzymatic active site, peptide-based inhibitors were excluded from this preliminary  analysis.
25, 31

 

Assuming the cleavage site of α-amylase (at subsites -1 and +1) is a central domain for substrate binding, 

particular attention was paid to interactions observed between the enzyme and the investigated ligands in 

this region. The study of carbohydrate-based inhibitor binding modes shows that one water molecule 

(HOH-746) is highly conserved among available crystal structures in the PDB. This molecule often 

stabilizes co-crystallized ligands in the enzyme by bridging H-bonds between enzyme and inhibitor. 

Superposing the studied crystal structures (Supplementary data, Fig. S1) revealed that HOH-746 is 

located nearly at the same position in all investigated macromolecules. This interaction was included in 

our 3D pharmacophore model to retain this particular environment of the pocket , surrounded by residues 

Glu233 and Lys200 (Figure 1).  

The reliability of the developed model (i.e. ability to discriminate between inhibitors and non-inhibitors) 

was assessed and improved using a dataset  of 19 active compounds and 55 known inactive compounds 

assembled from the literature and the Chembl database (see supplementary data, Tables S1 and S2).
32

 

Multi-conformational screening of these compounds was carried out and the signal -noise ratio was 

determined using a Receiver Operating Characteristics (ROC) curve.
33

 Iterative development and 

validation steps yielded a 3D-pharmacophore model with good early enrichment factor value (EF1% = 3.9). 

This model exhibited an excellent sensitivity in retrieving 63 % (12 out of 19) of the active compounds 

while being highly restrictive, i.e. excluding 98 % (54 out of 55) of inactive compounds.  

 

Figure 1. Acarviostatin II03 inhibitor (Ki ~ 14 nM, PDB: 3OLE)
7
 aligned with the developed 3D 

pharmacophore that contains the following chemical features: 3 H-bond donors (green), 1 H-bond 
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acceptor (red), 1 positive ionizable interaction (blue star), 1 hydrophobic contact (yellow sphere), and 25 
exclusion volumes (not shown for clarity).  
 

The chemical features of the final model mainly represent ligand-enzyme interactions detected at the 

center of the catalytic cavity, where the catalytic triad Asp197-Glu233-Asp300 is located. This model 

consists of one positive ionizable interaction (PI) with the carboxylic groups of the catalytic triad, one 

hydrophobic contact (HYD) with Ile235 and, deeper in the active site, Leu162, one H-bond acceptor (HBA) 

with the water molecule HOH746, and four H-bond donors (HBD) (Figure 1). Among all HBD, two were set 

as essential features: The one involving the oxygen OE2 from the side chain of Glu233 and the second 

with the oxygen of the water molecule. Regarding the optional HBD, one involves  the nitrogen atom NE2 

of His299 and, the second, the carbonyl oxygen OE1 of Glu233. Exclusion volumes were defined as 

forbidden areas to represent the steric constraints of the pocket.  

A further validation was conducted for the developed model by screenin g drugs and biological compounds 

available from the databases Derwent World Drug Index 2005 (WDI, www.thomsonreuters.com), 

MDDR2009 (www.symyx.com), and DrugBank.
34

 This validation step was carried out for three reasons: (i) 

to investigate the ability of the model to retrieve commercial hits either with the same or different biological 

activity, (ii) to examine the efficiency of the model by ranking the 12 previously retrieved active 

compounds when screened altogether with drug databases (iii) to give a first impression on the 

restrictiveness of the model by specifying the total number of the retrieved hits from these three 

databases. Among the twelve biologically known actives previously retrieved during the first validation, 

eleven compounds were ranked within the first 100 molecules, according to their pharmacophore fit score 

calculated with LigandScout 3.1.
35

 About 17 % of the compounds retrieved and ranked within these first 

100 belonged to the trestatin family, such as acarbose, and contained an acarviosine scaffold. This means 

that the developed model can retrieve active compounds and prioritize α -amylase inhibitors over non 

inhibitors. This model was considered suitably restrictive as the overall amount of recovered hits from 

WDI, MDDR and DrugBank was about ~ 1.4 % (1,969 out of 141,233 compounds). The main values from 

this validation step are summarized in Table 1.  

 

Table 1 :  Results of the computational validation of the final model by screening drugs and biological 
compounds databases 

EF1%: early enrichment factor  

Database Database size 
Retrieved hits from 

EF1% 
Database Known actives 

WDI2005 64,255 1,141 (1.77%) 12 58.0 

MDDR2009 72,383 752 (1.03%) 12 63.2 

DrugBank 4,595 76 (1.65%) 12 58.1 

Total 141,233 1,969 (1.39%)   
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2.2 Virtual Screening 

After validation of the 3D pharmacophore, the model was used for virtual screening of 1,762,189 drug-like 

compounds from commercial libraries (Analyticon, Asinex, Life chemicals, Chembridge, Specs, Bionet, 

and Prestwick). The 3D model picked 5,748 hits, which is 0.32 % of the full library. Retrieved hits were 

ranked using the pharmacophore fit and the first 3,000 compounds were retained. Subsequently, 2D 

descriptors were used (i.e. HBD ≤ 2 -5, HBA ≤ 10, Mol. Wt. ≤ 700 and ClogP ≤ 5) to exclude non drug-like 

compounds and select 2,292 molecules for further processing. In order to reduce the amount of inhibitors 

to handle prior to biological experiments, two different strategies were applied: virtual docking and 

structural clustering. On one hand, software GOLD 5.1
36

 was used to dock all selected virtual hits into the 

α-amylase active site (PDB code 3OLE).
7
 With LigandScout, poses were minimized inside the enzymatic 

pocket (using the MMFF94 force field)
37

 and prioritized based on their ability to geometrically fulfill the 

features compiled in the 3D-pharmacophore. Careful visual inspection was undertaken for each 

compound conformation with the highest fit scores and the 30 most promising structures were selected for 

the next step. On the other hand, all 2,292 virtual hits were subjected to structural clustering with the 

software Jklustor 5.8.0.
38

 The 17 candidates with the highest structural diversity were selected for further 

investigation. Based on their availability at the vendors, 9 virtual hits were purchased for biological testing 

(Figure 2).  

 

 
Figure 2. Virtual screening workflow (left ) and selected molecules (right)  
 

Kinetic assay was carried out using 2-chloro-4-nitrophenyl-4-O-β-D-galactopyranosylmaltoside 

(GalG2CNP) as a substrate for HAS.
39

 The released chromogenic product chloronitrophenol (CNP) was 



  

6 

 

continuously monitored at 400 nm with respect to time. Using this method, the inhibitory effect of 

compounds 2 - 9 was evaluated (1 was discarded due to its low solubility). In this assay, compounds 2, 3, 

and 4 revealed promising inhibition potencies against HSA with IC50 ≤ 300 µM (Table 2). Compounds 2 

and 3 demonstrate competitive inhibition with IC50 values of 138 µM and 200 µM, respectively. These 

inhibitors are characterized by three ring-backbones. Compound 2 possesses N,4-diphenylthiazole-2-

amine scaffold. While compound 4 retains a dinitro-piperidine fragment substituted with hydroxyphenyl 

rings, compound 3 is composed of t ri-p-cresol rings. Although less potent than the reference inhibitor 

acarbose (IC50 = 0.5 µM), these compounds bear a promising ligand efficiency (LE) due to their smaller 

size. Defined as the ratio between potency and their number of heavy atoms (HA), LE can be determined 

using the equation LE = (1.37/HA) × pIC50.
40-42

 The active compounds identified by virtual screening own 

higher LE compared to the bound acarbose (Table 2). These small molecules are therefore considered 

promising compounds that can be used as a structural query to lead the development of novel potent α-

amylase inhibitors. 

 
Table 2  Biological results and ligand efficiency values for the tested compounds  
  

Compound Mol.wt  HA 
GalG2CNP, HSA 

IC50 (µM) Ligand Eff iciency 

Bound acarbose* 948.92 65 0.5 0.13 

1 489.56 35 NT - 

2 300.33 21 140 0.25 

3 348.43 26 200 0.19 

4 447.43 32 300 0.15 

5 413.44 31 ND - 

6 294.36 21 1000 0.19 

7 296.32 22 ND - 

8 382.44 27 330 0.18 

9 355.38 26 850 0.16 

HA stands for number of heavy atoms, ND stands for inactive at 200 µM and NT means not tested due to insolubility. 

* Bound acarbose (pseudo hexasaccharide) in the active site of HSA (PDB: 1MFV)
43

 was used for LE calculations. All 

experiments were repeated three times and the obtained IC50 did not vary more than 5 % 

 

Re-docking of the active compounds in the binding site of α -amylase was conducted to rationalize their 

structure-activity relationships (SAR) using their potential binding modes and comparing them to the co-

crystallized inhibitor acarviostatin 0II3 (K i ~ 14 nM, PDB code of enzyme 3OLE).
7
 The ideal 

accommodation in subsites -1 and +1 of compound 2 can explain the inhibitory effect of this small 

molecule. Indeed, the three ring-backbone of this inhibitor fully occupies subsites -2, -1, and +1, and 

partially +2. This interaction with the catalytic core of the cavity is similar to the one of acarviosine, the 
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subunit of acarviostatin 0II3 and acarbose holding a valienamine and a 4,6-dideoxyglucose fragments. 

This essential scaffold of acarbose and other trestatin family inhibitors interacts with the central subsites -

1 and +1. Our study shows that the hydroxyl group of resorcinol in compound 2 can form two H-bonds 

with His305 and the catalytic residue Asp300, in subsite -1. The side chain of Glu233, another catalytic 

residue in subsite +1, can form a H-bond with the amino group linking to the thiazole and phenolic rings of 

compound 2. An additional H-bond can be formed between the phenolic hydroxyl group and Tyr151 near 

subsite +2. Interestingly, in the proposed binding mode of compound 2, the thiazole moiety occupies 

subsite -1, just like valienamine, and stabilizes the inhibitor via hydrophobic contact with the side chain of 

Tyr62. Lipophilic residues Leu165, Trp58 near subsite -2, on one hand, and Ile235 and Leu162 near 

subsite +1, on the other hand, can form hydrophobic contacts with the aromatic resorcinol and phenolic 

rings, respectively. These interactions can explain the good stabilization of compound 2 in the catalytic 

core of α-amylase (Figure 3).  

 
Figure 3. Plausible binding modes for compounds 2 (left) and 3 (right) as thick black sticks in 3D 
superposed to the co-crystallized acarviostatin II03 as thin lines (above) and in 2D (below). Color codes: 
Yellow spheres for hydrophobic contacts; green and red arrows for H-bond donors and acceptors, 

respectively.  
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Similarly, our docking study shows that compound 3 also occupies the catalytic core (subsites -1 and +1) 

and protrudes to the nearby subsites. Superposit ion with acarviostatin II03 highlights a similar binding 

mode. The predicted conformation of 3 suggests that two H-bonds can be formed between the catalytic 

residues Asp300 and Glu233 and the hydroxyl groups of two p-cresol rings. Methyl group of the central p-

cresol fragment of 3 can point to subsite -3 and form hydrophobic contact with the side chain of Thr163, 

stabilizing the inhibitor in the pocket. The other two p-cresol rings can form hydrophobic contacts in 

subsite -2 with Leu165 and Trp59, subsite +1 with Leu162 and Ile235, and near subsite +2 with Tyr151. 

Although compound 3 is spanning from subsites -2 to +2, its inhibitory potency (IC50 = 200 µM) was lower 

compared to compound 2 (IC50 = 138 µM). This can be due to (i) the fewer amount of H-bonds that could 

be detected compared to the binding mode of 2, and (ii) the thiazole ring of 2 that is better accommodated 

than the p-cresol of 3, and could play an important role in stabilization of the ligand in subsite -1 (Figure 

3).  

Compound 4 shows a weaker inhibitory potency (IC50 ~ 300 µM) even though the docking study shows it 

can occupy subsites -3 to +2. In our model, the catalytic residue Asp300 forms a positive ionizable 

interaction with the amino group of the piperidine moiety, contributing to the stabilization of this ligand in 

the cavity. This inhibitor is stabilized inside the pocket by forming hydrophobic contact s with lipophilic 

residues Thr163, Tyr62, Leu165, Leu162,  and Ile235. Nevertheless, the presence of the nitro groups 

seems to affect its binding and the lack of adequate interaction with the catalytic residues can play a 

crucial role in the weaker inhibitory potency of 4.  

2.3 Similarity Search 

Compound 2 represents the most active competitive inhibitor with the highest ligand efficiency  identified in 

this virtual screening. Interestingly, 2 is also an allosteric inhibitor of the fructose 1,6-bisphosphatase (IC50 

= 11 μM)
44

, an enzyme involved in gluconeogenesis. Thus, this chemical scaffold has the potential  to act 

as dual inhibitor and to decrease glucose levels in blood. Therefore, this molecule was considered as a 

promising scaffold for the design of non-carbohydrate anti-diabetic molecule, and used as template to 

search for similar molecules with improved α-amylase inhibition.  
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Figure 4. Overview of the similarity search approaches using compound 2 as query. 
 

For the selection of chemical analogues, 2D and 3D similarity approaches were considered in parallel,  

(Figure 4). The first similarity search was conducted using the software ROCS 3.1.2 
45

 performing a high 

throughput 3D alignment of our library of 1,762,189 commercially available molecules. The 100 molecules 

with the best alignments (similarity with the lead query in terms of shape and chemical features) were 

selected and docked into the α -amylase active site (PDB: 3OLE).
7
 A pharmacophore model of compound 

2 was used to prioritize the compounds able to create similar interactions with the enzyme. This step 

resulted in the selection of four compounds (22 - 25,  

 

 

 
 
Table 3). The second approach was a 2D similarity search. This was performed with (i) an in -house 

collection of molecules, from which 12 compounds were selected, and (ii) on the other side with the 

Chembridge library, from which 2 compounds were purchased (molecules 10 - 21 & 26 - 27,  

 

 

 
 
Table 3). 

Overall, 18 analogues of 2 were selected for further biological evaluation. IC50 values ranging from 40 µM 

to 4 mM were measured ( 
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Table 3). Interestingly, minor structural changes were shown to have a strong impact on the inhibitory 

potency of these compounds (Figure 5). For instance, p-dimethylamino (14, IC50 ~ 100 µM) or m-acetyl 

(15, IC50 ~ 100 µM) substitutions in ring A increase the inhibition by about 1.4-folds compared to 

compound 2 (IC50 = 138 µM). In contrast, the presence of the p- or m-carboxyl group (10 - 12, IC50 range: 

423 - 680 µM) diminishes the potency up to 5-folds while the p-sulfamoyl group (13, IC50 = 165 µM) shows 

an inhibitory potency in the same range as compound 2. 

 

 

 
 
 

 
Table 3 : Inhibitory potency (IC50) of analogues of compound 2 

Inhibitor Structure 
IC50 

(µM)  

 
Inhibitor Structure 

IC50 

(µM)  

10 

 

680 19 

 

62 

11 

 

642 20 

 

260 

12 

 

423 21 

 

700 

13 

 

165 22 

 

492 

14 

 

100 23 

 

735 

15 

 

100 24 

 

1043 

16 

 

4000 25 

 

1274 
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Inhibitor Structure 
IC50 

(µM)  

 
Inhibitor Structure 

IC50 

(µM)  

17 

 

4000 26 

 

40 

18 

 

50 27 

 

270 

 

Interestingly, a dramatic decrease in activity is observed when ring B is substituted with a  pyrazole ring or 

in the absence of the NH-bond between ring A and ring B (16 & 17, IC50 ~ 4 mM). If a p-methoxy group is 

flanking ring A, a 3-fold improvement in inhibition is observed (compound 26, IC50 = 40 µM). Comparing 

substitutions in ring C between 2 and compounds 22 – 27 shows that the hydroxyl-group in ortho-position 

is important for activity, since those that lack this substituent displays weaker inhibitory potencies. 

Substitutions in the 5-benzylidenethiazolidin-4-one scaffold of 18 - 21 exert different effects on α -amylase 

activity. The m-carboxyphenyl group of 19 (IC50 = 62 µM) decreases the potency compared to the m-

nitrobenzyl group in 18 (IC50 = 50 µM). However, 18 and 19 show more than 2-fold increase in potency 

compared to 2. Substitution in the previously mentioned scaffold with a m-carboxyphenylamino moiety 

(20, IC50 = 260 µM) or 4-acetylpiperazinyl ring combined with no NH-bond between rings A and B (21, IC50 

~ 700 µM) results in a 5- and 14-folds decrease in α-amylase inhibition, respectively.  

Because of their small size, all analogues 10 - 27 have a higher LE than the positive control (LE = 0.13). 

The best inhibitor in the series 26 even displays an efficiency of 0.30 ( 

 

 

 
 
 
Table 4). 
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Figure 5.  Overview of the structure-activity relationships for analogues of compound 2 
 

To rationalize the structure-activity relationships (SARs) of this chemical series, the binding conformations 

inside the α-amylase cavity were investigated by docking each molecule in the enzyme active site. All 

compounds were docked into the catalytic active site (PDB entry 3OLE)
7
 using GOLD 5.1.

36, 46
 Plausible 

binding conformations were prioritized based on their ability to fulfill the pharmacophore features extracted 

from the bound conformation of 2, and therefore to create similar interactions with the same residues in 

the catalytic center (Figure 6). More details about the predicted poses are given in supplementary 

information, Fig. S3 and S4. 

Since compounds 10 – 15 and 22 - 27 share the N,4-diphenylthiazole-2-amine scaffold with 2, they can 

form similar interactions. However, the presence of the strongly electron withdrawing carboxyl group of 10 

– 12, near to the carboxylic amino acid Glu240 in subsite +2, can explain the weaker activity of these 

compounds. Compound 12, flanked by a carboxyl group in meta-position, shows better inhibitory potency 

than 10 and 11 with para-carboxyl groups located further away from Glu240. Interestingly, compared to 2, 

compounds 13 – 15 (IC50 100 – 165 µM) and 26 (IC50 = 40 µM) have bulkier groups flanking ring A and 

hence exert better potency. 

The SARs of compounds sharing a 5-benzylidenethiazolidin-4-one scaffold (18 – 21) suggest that the H-

bond between the 4-carbonyl oxygen of thiazolidin-4-one of 18 and Arg195 in subsite -1 is important for α-

amylase inhibition, as 19 - 21 do not interact with this residue. Moreover, the chlorine substituent of 18 

can form a hydrophobic contact with Ile235 in subsite +1 that stabilizes the ligand binding.  
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Figure 6. Predicted binding poses of compound 2 analogues. Left: superposition of compounds 2, 11, 12, 

14, 15, 22 – 27, right: compound 18. Yellow spheres represent hydrophobic contacts, red and green 
arrows show H-bond acceptors and donors, and yellow and blue dots represent hydrophobic and lipophilic 
surfaces of the receptor binding pocket.  
 

 

Investigation of the docking poses of 16 and 17 reveals that the pyrazole ring is located near to the 

charged subsite -1 (including Asp197, Glu233 and Asp300) and can form favorable interactions with this 

region of the protein. However, a substitution by a methyl group (16), or a carboxyl group (17) can 

destabilize both ligands, which explains a weaker inhibition potency for such compounds.  

 

 
 
 

 
 
 

Table 4: Evaluation of identified inhibitors that showing IC50 ≤ 300 µM  

Inhibitor 
IC50 

(µM) 

activity 

ratio 

inhibition 

type 
HA LE 

LE 

ratio 

2 138 NA competitive 21 0.25 NA 

3 200 NA competitive 26 0.19 NA 

4 300 NA ND 32 0.15 NA 

13 165 0.83 ND 24 0.22 0.88 

14 100 1.38 competitive 23 0.24 0.96 

15 100 1.38 Mixed 23 0.24 0.96 

18 50 2.76 competitive 26 0.23 0.92 

19 62 2.22 ND 22 0.24 0.96 

20 260 0.53 ND 27 0.18 0.72 

26 40 3.45 ND 20 0.30 1.2 

27 270 0.51 ND 21 0.23 0.92 
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NA: not applicable; ND: not determined; HA: heavy atoms; LE: ligand efficiency; Activity ratio = IC50 of compound 2 / 

IC50 of the analogue compound; LE ratio = LE of the analogue / LE of compound 2. 
 

3. Conclusions 

Using a stepwise and rational structure-based 3D-pharmacophore approach, nine small molecules from a 

library of about one million commercial compounds were selected for biological testing. Three out of eight 

tested compounds revealed promising inhibitory potency (IC50 ≤ 300 µM) and ligand efficiency (LE ≥ 0.15) 

for further optimization. Using molecular docking, binding modes of the most active compounds were 

elucidated. It was shown that suitable orientations in the active site and occupancy of the productive 

subsites (-1, +1) were key parameters for an optimal inhibition.  

Compounds 2 and 3 represent the most promising ligands identified in the pharmacophore -based virtual 

screening and are among the first small drug-like molecules reported as α-amylase inhibitors so far. While 

this project was in development, two other groups reported potent small molecules for α-amylase inhibition 

47-49
. Interestingly, one of these compounds, a phloroglucinol derivative DDBT,

47
 is a natural product with a 

very analogous scaffold to compound 3. This similarity confirms the rational of our strategy and the 

strength of our computer-aided methodology. 

In a recent perspective study, Zhu et al.
50

 report that a LE value of 0.3 for a drug-like compound 

(molecular weight < 500 or including 35 heavy atoms maximum) corresponds to about 10 nM activity, 

which is practically unrealistic for initial hit identification. Similarly, the authors state that LE values of 0.32, 

0.25, and 0.19 are recommended for compounds with HA ≤ 18, HA = 19 - 25, and HA = 26 - 35, 

respectively. As stated in  

 

 

 
 
 
Table 4, all inhibitors identified in this work display LE values higher than the one of the bound acarbose 

and, in agreement with LE values suggested by Zhu et al. in 2013.
50

 Inhibitors 2 (HA = 21), 3 (HA = 26), 

and 26 (HA = 20) have LE values of 0.25, 0.19 and, 0.30 and hence are interesting for further chemical 

optimization.  

In an evaluation of the quality of the analogues of compound 2, LE ratios and activity improvement were 

compared (Table 4). Only compound 26 display a LE ratio with a value of 1.2-fold better than the primary 

lead query 2. Other ligands showed improved potencies with IC50 values 100 µM, 100 µM, 50 µM, 62 µM, 

and 40 µM for 14, 15, 18, 19 and 26 respectively, while preserving their efficiency (LE ratio around 1). 

Thus, searching for analogues of 2 led to the identification of compounds with good activity ratio (  
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Table 4). Among them, compound 26 display a 3-fold activity improvement compared to 2.  

 

Thus, using the available structural information, a pharmacophore-based virtual screening of commercial 

compounds was carried out, leading to the identification of small molecules and fragments with drug-like 

properties. Then, a second optimization step was conducted by searching for analogues of the best 

inhibitor, from which the SARs were analyzed with the support of molecular docking studies. All inhibitors 

discovered in this work are reported here for the first  time as α-amylase inhibitors. Consequently, the 

structural simplicity of the identified chemical structures and their low molecular weight is an important 

step in the design of new potent α-amylase inhibitors for the treatment of chronic metabolic diseases such 

as type II diabetes and obesity. 

 

4. Materials and methods 

4.1 Pharmacophore creation and validation 

Crystal structures (3OLD, 3OLE, 3OLG, 3OLI, 3IJ9, 3IJ7, 2QV4, 3BAJ, 3BAY, 1XH2, 1XD0, 1XD1, 1XH0, 

1XCX, 1XCW, 1CPU, 1MFV, and 1OSE) of the HPA, HSA and porc ine pancreatic α-amylases (PPA) co-

crystallized with sugar-based inhibitors deposited in PDB 
29, 30

 were investigated using the platform 

LigandScout 3.1.
35, 51, 52

 Binding modes of co-crystallized inhibitors were analyzed in detail and their 

chemical interactions were translated into 3D pharmacophore models. Then, the resulting 

pharmacophores were aligned and used as a basis to develop a unique query for virtual screening. 

Pharmacophore models created and developed were validated using 19 biologically known active and 55 

inactive α -amylase inhibitors collected from Chembl database 
53

 and literature (Supplementary data, 

Tables S1 and S2).  All  these collected molecules were built and minimized using MOE 2010.10.
54

 3D 

coordinates were generated using CORINA 3.4.
55

 The command-line tool idbgen was used to generate 

database files to be used as inputs for screening in LigandScout  3.1.
35

 The software Omega 
56

 was used 

to generate 25 conformations per compound. Based on the best early enrichment factor (EF1%) and 

AUC100%, one pharmacophore was selected for virtual screening of commercial chemical compounds.  

Commercial libraries were obtained from Analyticon (30,352),
57, 58

 Asinex (465,543),
59-61

 Life chemicals 

(372,071),
62

 Chembridge (646,018),
63

 Specs (204,362),
64

 Bionet (42,660),
65

 and Prestwick (1,183).
66

 All 

libraries were computationally processed using Standardizer 5.8.0 
67

 to correct protonation states. 

Subsequently, the command-line program idbgen was used to convert libraries into ligand-database 

format (ldb) to be used as inputs for virtual screening in LigandScout 3.1. The software Omega,
56

 with 

FAST parameters was used to generate up to 25 conformations per molecule. For shape- and feature-

based similarity search by ROCS 3.1.2,
45

 commercial libraries were transformed into 3D coordinates using 

CORINA 3.4 
55

 and then the software OMEGA 2.4.6 
68

 was used to create 25 conformations per molecule 

as oeb.gz format as inputs for ROCS.
45
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4.2 Molecular docking 

All docking studies were performed using PDB entry 3OLE (resolution 1.55 Å)
7
 using GOLD 5.1.

36, 46
 

Validation of docking was performed by reproducing the binding mode of the co-crystallized inhibitor, 

acarviostatin II03, with RMSD between the heavy atoms of the original co-crystallized ligand and the 

docked conformation ligand of 0.8 Å (Supplementary data, Fig. S2). Docking volume was defined by 

selecting all residues within 10 Å around the co-crystallized inhibitor. Default docking parameters were 

used. All docking experiments were carried out using GoldScore
69

 as scoring function with 100 % search 

efficiency. 100 Docking poses were generated for each compound. All conformations were imported into 

LigandScout 3.1 and minimized with MMFF94 force field
37

 before analysis. 3D Pharmacophores were 

created in a volume within 7 Å sphere around the co-crystallized ligand. Visualization, analysis and 

illustration were done using LigandScout 3.1. 

JKlustor 5.8.0
38

 was used to perform structural similarity clustering for compounds obtained from virtual 

screening.  

4.3 Biological testing  

α-Amylase (EC 3.2.1.1) from human saliva (Type IXA) was purchased from SIGMA Aldrich (Steinheim, 

Germany). It gave a single band on sodiumdodecylsulfate-polyacrylamide gel electrophoresis (SDS-

PAGE) and possessed no α- and β-glycosidase activity. The substrate 2-chloro-4-nitrophenyl-4-O-β-D-

galactopyranosyl-maltoside (GalG2CNP) was purchased from Sorachim, Switzerland. Liberation of CNP 

from GalG2CNP was monitored continuously with a UV-VIS spectrophotometer (JASCO V550) under 

temperature-controlled conditions (37˚C) at 400 nm.  Kinetic experiments were carried out based on 

previously published protocol,
39

 at 37˚C in 50 mM MES buffer pH 6.0 containing 5 mM Ca(OAc)2, 51.5 mM 

NaCl and 152 mM NaN3. Inhibitor compounds were dissolved in DMSO and dilutions for the latter 

tests were made in the same solvent. The substrate (0.75 - 4 mM) and inhibitor were mixed together and 

the reaction was initiated by adding HSA (2 nM) to the incubation medium (total volume of 500 μl).  

Measurements without inhibitor were carried out at a final concentration of 2.5 % DMSO. The increase of 

absorbance of CNP liberated by HSA was measured continuously at 400 nm using the Parallel Kinetics 

Analysis program of a JASCO V550 spectrophotometer. Concentration-response plots were used to 

determine the effects of the inhibitor on the enzymatic reaction and IC50 values of inhibitors. These 

experiments were performed at constant enzyme and substrate concentrations. Fractional activity (Y axis) 

was plotted as a function of inhibitor concentration (X axis). The data were fit using a standard four-

parameter logistic nonlinear regression analysis of Grafit software.
70

 The type of inhibition was determined 

by Lineweaver-Burk plot (Supplementary data, Fig. 5 and Fig. 6). All experiments were repeated three 

times and the obtained IC50 did not vary more than 5 %. 
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