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Dietary Fish-Oil Supplementation in Experimental Gram-Negative Infection 
and in Cerebral Malaria in Mice
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Dietary fish-oil supplementation interferes with eicosanoid production and appears to de
crease production of interleukin-1 (IL-1) and tumor necrosis factor (TNF). The effect of fish oil 
was investigated in an intramuscular Klebsiella pneumoniae infection in Swiss mice and in cere
bral malaria induced by Plasmodium berghei in C57B1/6 mice. After a low inoculum of K. 
pneumoniae, 90% of fish oil-fed mice survived; survival in control mice fed equal amounts of 
corn or palm oil or normal chow was 30%, 40%, and 0, respectively. Cerebral malaria occurred in 
only 23% of fish oil-fed mice; in the controls, cerebral malaria developed in 61%, 81%, and 78%, 
respectively. Contrary to what was expected, lipopolysaccharide-induced ex vivo production of 
IL-1 a and TNFa by peritoneal cells was significantly enhanced in fish oil-fed mice compared 
with controls. Indomethacin treatment did not alter the outcome in these two infections, thus 
arguing against reduced prostaglandin synthesis as an explanation for the increase in resistance 
to infection.

In a variety of experimental and clinical situations, dietary 
fish-oil supplementation has been shown to inhibit inflamma
tion. In mice, development of lupus nephritis and induction 
of amyloidosis were significantly inhibited; in guinea pigs, 
survival after endotoxin administration was enhanced [1-3]. 
Moreover, the febrile response to interleukin-1 (IL-1) was 
attenuated by a fish oil-enriched diet in guinea pigs [4]. In 
clinical studies, rheumatoid arthritis was alleviated and psori
asis improved after 6 - 8  weeks of treatment with a fish-oil 
concentrate [5, 6 ]. In human volunteers, there was a slightly 
reduced febrile response to endotoxin [7]. The reduced in
flammation induced by fish oil has been attributed mainly to 
alterations in eicosanoid metabolism. Eicosapentaenoic acid 
is regarded as the active fatty acid in fish oil because of its 
structural similarity to arachidonic acid, the usual substrate 
for the enzymes cyclooxygenase and lipoxygenase. After 
prolonged ingestion of fish oil, the production of prostaglan
din E2 (PGE2) and leukotriene (LT) B4 is markedly reduced, 
while the biologically less active PGE3 and LTB5 are formed 
[8 , 9],

More recently, alterations have been described in the pro
duction of the proinflammatory cytokines IL-1 and tumor 
necrosis factor-a (TN Fa) after a fish oil-supplemented diet. 
In rats, production of these cytokines by Kupffer cells was 
significantly decreased after 6 weeks of a fish oil-enriched
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diet [10]. In humans, 6 weeks of dietary fish-oil supplemen
tation resulted in a decreased ex vivo production of IL-1 a: 
and -/? and T N Fa by stimulated peripheral blood mononu
clear cells, the effect being even more pronounced 1 0  weeks 
after cessation of the diet [11]. In contrast, IL-1 and TNF 
synthesis by mouse peritoneal macrophages was reported to 
be enhanced after 16 days of a fish oil-enriched diet when 
compared with controls receiving corn oil [ 1 2 ].

In many forms of severe infection, important roles for IL-1 
and TNF have been postulated. Circulating levels of IL-1 ¡3 
and TNF were elevated in septic patients and after endotoxin 
infusion in human volunteers [13]. Elevated concentrations 
of TNF have been noted in the serum of malaria patients and 
in children with Plasmodium falciparum  malaria, serum TNF 
concentrations correlated with disease severity [ 14]. Antibod
ies to TNF have prevented death in experimental gram-nega- 
tive infection and in experimental cerebral malaria [15, 16]. 
Because of the role of these cytokines in infection and the 
modulation of their production by fish oil, we investigated 
the effects of a fish oil-enriched diet on resistance to infec
tion in two experimental models, lethal gram-negative infec
tion and cerebral malaria in mice.

Methods

Gram-negative bacterial infection. Female Swiss mice of 
~ 2 5  g were obtained from a local colony and housed under 
specific pathogen-free conditions. Klebsiella pneumoniae 
(ATCC 43816), a strain that produces a lethal infection in nor
mal mice, was inoculated in the left thigh muscle of nonneutro- 
penic mice as described elsewhere [ 17], Inocula ranged from 0.5 
X 103 to 0.5 X 106 cfu. Survival was scored up to 5 days after 
infection.

Cerebral malaria. For the malaria experiments, an inbred
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susceptible mouse strain had to be used. Female C57B1 / 6J mice 
of ~ 2 0  g were obtained from a local colony and housed under 
specific pathogen-free conditions. Plasmodium berghei K173 
was maintained by weekly transfer of parasitized erythrocytes 
from infected to naive mice. Mice were infected with 1000 para
sitized erythrocytes intraperitoneally. In this model, death oc
curs in the second week after infection and is associated with a 
collapse of thermoregulation [18]. Histologically, the brains of 
these animals show loss of endothelial cell wall integrity, perivas
cular edema, hemorrhages, and sequestration of leukocytes in 
the cerebral vessels [19]. On days 7, 9, and 11 after infection, 
thin blood films were made from tail blood and stained with 
May-Griinwald and Giemsa solutions to score parasitemia. 
After death, light and electron microscopy of brain tissue using 
routine histologic procedures was done to detect cerebral hemor
rhages.

Diets. In the first series of experiments, mice were fed stan
dard lab chow (Hope Farms, Woerden, Netherlands) with daily 
supplementation of 0.2 ml of a fish-oil concentrate (Mepatrin, 
gift of Sanofi, Maassluis, Netherlands, and Epax, gift of Jahres 
Fabrikker, Sandefjord, Norway; both preparations contained 
34% eicosapentaenoic acid and docosahexanoic acid) adminis
tered by gastric instillation. Control animals received 0.2 ml of 
palm oil (Kriskol, gift of Loders-Croklaan, Wormerveer, Neth
erlands) or corn oil (Mazola; Knorr, CPC, Utrecht, Nether
lands) by the same route. Oil supplementation represented 
~  1 0 % of total caloric intake.

In subsequent experiments, the animals were fed a fat-free 
standard reference diet as a dry powder (Hope Farms), supple
mented (wt/wt) with 14% fish oil and 1% corn oil (fish-oil 
group), 15% corn oil (corn-oil group), 15% palm oil (palm-oil 
group), or standard lab chow without oil supplementation. In 
these experiments, oil supplements represented ~28% of total 
caloric intake. Twice a week, the food containing the supple
ments was freshly prepared and stored at 4°C. In the malaria 
experiments, /?-aminobenzoic acid (PABA) was added to the 
drinking water to overcome the PABA-deficiency of the stan
dard reference diet, which otherwise would have interfered with 
parasite proliferation. Diets were started 6 weeks before in
fectious challenge and continued thereafter.

Indomethacin. In separate experiments, the effects of inhibi
tion of prostaglandin production were evaluated. In these exper
iments, mice were fed normal lab chow. In the K. pneumoniae 
infection, indomethacin at 1 mg/kg, dispersed in 0 .2  ml of car- 
boxy-methyl cellulose 1% (CMC), was given by gastric instilla
tion once a day starting 6 h before infection. In the malaria 
experiment, the same dosage of the drug was administrated daily 
from infection until death. Control animals received the same 
volume of CMC only.

IL-l and TNF. After 6 weeks on the diets, subsets of mice 
were killed and peritoneal cells were harvested by rinsing, using 
cold PBS with 0.38% sodium citrate as described elsewhere [20]. 
Cells were then centrifuged and resuspended in RPM1 1640 
(Dutch modification; Flow Laboratories, Irvine, UK), contain
ing 1% pyruvate, 1% glutamate, and l%gentamicin (Essex, Am- 
stelveen, Netherlands). After counting, the concentration was 
adjusted to 2 X 106 cells/ml, and volumes of 100 ¡x\ of cell 
suspensions were layered onto round-bottom microtiter plates

(Greiner, Nürtingen, Germany) to which either 100 f.l\ of me
dium or medium containing Escherichia coli (serotype 055:B5) 
lipopolysaccharide (LPS; Sigma, St. Louis) at a final concentra
tion of 100 ng/ml was added. After 24 h of culture at 37°C in a 
water-saturated atmosphere with 5% C 0 2, the culture superna- 
tants were harvested and frozen at —70°C until assay; 200 ¿¿1 of 
medium was added to the adherent cells and these cells were 
frozen at —70°C. Three freeze-thaw cycles were done before 
assay of cell-associated cytokines.

Mouse IL-l a  and - \ß  were determined by specific RIAs [21]. 
Murine recombinant IL-l« (rIL-1«; gift of P. Lomedico, HofT- 
mann-Laroche, Nutley, NJ) and murine rIL-1/3 (gift of A. Shaw, 
Glaxo, Geneva) were labeled with 125I by a modification of the 
chloramine-T method and purified by chromatography over 
Sephadex G-50. All antibodies were prepared at our institute. 
The assay buffer consisted of 0.01 M  sodium phosphate in 0.9% 
saline (pH 7.4) with 0.25% bovine serum albumin (BSA; Sigma) 
and 0.25% sodium azide. Reference standards from 104 to 40 
pg/ml were prepared in RPMI 1640 by serial twofold dilutions 
of mouse rlL-la and -1/3. Samples of 100 ¿¿1 were assayed in 
duplicate or in triplicate. Samples from LPS-stimulated cells 
were assayed undiluted as well as in a 1:4 dilution in RPMI. An 
aliquot ( 1 0 0  /¿I) of specific polyclonal antibody (rabbit anti
mouse II-la o r -lß, respectively), diluted appropriately in assay 
buffer, was added to the reference standards and to the samples. 
After 24 h of incubation at room temperature, 104 cpm of radio- 
labeled IL-1 a or -1 ß in 100 jzl of assay buffer was added. After a 
further 2  days of incubation at room temperature, the first anti
body was precipitated by adding 0.75 ml of a solution contain
ing 1.6% goat anti-rabbit IgG and 9% polyethylene glycol (16- 
20 kDa; Sigma). After incubation at room temperature for 1 h, 
samples were centrifuged at 1500 g for 15 min, and the radioac
tivity pelleted in the assay tubes was counted in a 7  counter. 
Nonspecific binding (NSB) in the absence of first antibody was 
subtracted and the result expressed as a percentage of the zero 
standard (B0) minus NSB. Standard curves were plotted as per
centage of B0 against cytokine concentration, and cytokine con
centrations were read from the linear part of the curve. Sensitiv
ity of the assay was 80 pg/ml for IL-1 a  and 320 pg/ml for IL-1 ß. 
When the original sample was diluted, the value is expressed as 
that of the original concentration.

Mouse TNF« was determined by ELISA as described else
where [22]. In short, 96-well immunoassay plates (Nunc, Ros- 
kilde, Denmark) were coated overnight at 4°C with TN3, a 
hamster monoclonal antibody specific for murine TNF and lym- 
photoxin (kindly provided by K. C. F. Sheehan and R. D. 
Schreiber, Celltech, Slough, UK) [23]. Plates were blocked with 
1% BSA. After four washings with wash-buffer, test samples 
were added to the plate for 1 h at room temperature. A standard 
titration curve was obtained by serial dilution of a known sam
ple of recombinant murine TNF (Genzyme, Cambridge, MA) in 
medium identical to that of the test sample. Plates were then 
washed four times with wash-buffer and incubated with rabbit 
anti-mouse TNF immune serum (Genzyme) and peroxidase- 
conjugated goat anti-rabbit IgG (Jackson, West Grove, PA). 
After adding the substrate (¿?-phenylenediamine; Sigma) for 10 
min, the color reaction was stopped with 1.0 M  H2S 0 4 and pho- 
tospectrometry (492 nm) was done. The ELISA has a lower 
detection limit of 150 pg/ml.
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Organ counts o f  bacteria. Forty-eight hours after the injec
tion of K. pneumoniae, mice fed fish oil and control mice were 
anesthetized with ether and bled from the retrobulbar vessels by 
eye extraction. Blood for cultures was taken and livers and 
spleens were removed aseptically, weighed, and homogenized in 
sterile saline in a tissue grinder. To bring the bacterial counts 
after culture into the optimal range for reading, samples of liver 
and spleen were diluted in sterile saline. The suspensions were 
plated on sheep blood agar, and after overnight incubation the 
colony-forming units were counted.

Statistical analysis. Survival curves were analysed using the 
Kaplan-Meier log rank test [24]. Other differences between 
groups were analysed using the Kruskal-Wallis test with x 2 ap
proximation. Differences between groups were tested for signifi
cance only when overall P < .05 (regarded as significant).

Results

K. pneumoniae infection. After 6 weeks of oil supplemen
tation by gastric instillation, no differences in survival be
tween fish, corn, or palm oil-fed mice were seen. In this 
experiment, the K. pneumoniae inoculum was 105 cfu and 
the median survival was 32 h. In subsequent experiments, oil 
supplementation was increased to 15% (wt/wt). Using lower 
inocula of this organism, fish oil-fed mice survived longer 
than control groups (figure 1 A). The effect was most promi
nent with the lowest bacterial inoculum used (figure 1B, P < 
.05). No differences in the numbers of K. pneumoniae col
ony-forming units in blood, liver, and spleen were found 
between the mice fed fish oil or normal lab chow. Indometh- 
acin ( 1  mg/kg), given daily from infection until death, did 
not influence survival after K. pneumoniae infection (data 
not shown).

Cerebral malaria. In the second week of the infection, 6 

(31.5%) of 19 mice receiving the fish oil supplementation by 
gastric instillation developed the cerebral malaria syndrome 
compared with 18 (95.7%; P <  .001 ) of 19 mice in the palm 
oil-fed group and 4 of 5 mice in the control group that did 
not receive dietary intervention. Cerebral malaria was sus
pected in animals that died in the second week after infection 
and was confirmed histologically. Parasitemia in the fish oil-
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Figure 1. Survival of Swiss mice after intramuscular administra
tion of (A) 0.5 X 104 and (B) 0.5 X 103 cfu of Klebsiella pneumon
iae. Oil supplements constituted 15% of the diet (wt/wt). Results of 
repeated experiments; each group consists of at least 10 mice. In B, 
difference in survival between fish-oil fed mice and other diet 
groups is significant (P < .05).

the fish-oil group than in the other groups, the differences 
were not significant (figure 2 ).

Indomethacin. Of 23 mice treated with indomethacin,
fed mice was significantly lower than in the other diet groups 15 (62.2%) developed cerebral malaria compared with 11 
(fish oil vs. no oil, P < .01 on days 7 and 9; fish oil vs. palm (57.9%) of 19 animals in the control group. Parasitemias be-
oil, P <  .05 on day 9). On days 7 and 9, parasitemia was 
significantly lower in the fish-oil group compared with the 
other groups.

tween the two groups did not differ significantly (data not 
shown).

I L - la  and -Ifi and TNF. The effects of the different diets 
In mice fed a fat-free reference diet supplemented with on the concentrations of cytokines associated with resident 

15% fat (wt/wt), cerebral malaria occurred in 7 (23.3%) of 30 peritoneal cells cultured for 24 h and the concentrations in 
animals in the fish-oil group, in 20 (60.6%) of 33 in the corn- the supernatants are depicted in figure 3. Concentrations of 
oil group (fish oil vs. corn oil, P < .02), and in 25 (80.6%) of LPS-stimulated, cell-associated IL -la  were significantly 
32 in the palm-oil group (fish oil vs. palm oil, P <  .001), higher in animals fed fish oil than in those fed corn oil (P < 
while 18 (78.3%) of 23 mice in the group fed normal lab .02) or palm oil (P < .01). Concentrations of secreted IL-la: 
chow died of cerebral malaria (fish oil vs. normal lab chow, P were low and did not differ between groups. On average, 
<  .001). Although at days 9 and 11 parasitemia was lower in IL-1 ¡3 concentrations were higher than those of IL-1 a; cell-
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creased resistance to infection in two experimental models in 
mice, lethal K. pneumoniae infection and cerebral malaria. 
The results indicate that the immunomodulatory and possi-

%

bly immunosuppressive effects of dietary fish-oil supplemen
tation did not lead to decreased resistance to infection. These 
results are in agreement with the finding of increased sur
vival of endotoxin shock following dietary fish-oil supple
mentation [3].

Rubin et al. [25] did not find differences in the susceptibil
ity of (NZBxNZW)Fl mice to Listeria monocytogenes, Pseu
do mo n as aeruginosa, Candida albicans, or murine cytomega
lovirus after 4 weeks of a fish oil-enriched diet. In their 
study, fish-oil supplementation may have had no effect be
cause of the shorter duration of supplementation. In at least 
one other study, the antiinflammatory effect of fish oil did 
not become apparent until fish-oil feeding had been sus
tained for 6 weeks [4].

In the K. pneumoniae infection, protection in the fish oil- 
fed group was most prominent when the bacterial inoculum

cell-associated secreted

o
FO PO CO

days post infection
Figure 2. A, Survival of C57B1/6 mice in the second week after 
infection with 103 erythrocytes parasitized with Plasmodium 
berghei. Diets were supplemented with 15% fish oil, corn oil, palm 
oil (wt/wt), or normal lab chow (fish oil vs. corn oil, P < .02; fish oil 
vs. palm oil, P < .001; fish oil vs. normal lab chow, P < .001). B, 
Parasitemia expressed as percentage of erythrocytes parasitized; in 
this experiment, differences were not statistically significant.

1 °
bX)8

Ö

jD 4
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associated IL-1/3 was the highest in palm oil-fed mice and 
secreted IL-1/? the highest in the fish-oil group. These differ
ences were not statistically significant. In the three experi
mental groups, concentrations of cell-associated TNF were 
low and mostly below the detection limit (data not shown). 
In contrast, concentrations of secreted TNF, both unstimu
lated and stimulated, were significantly higher in the fish-oil 
group compared with the palm-oil and corn-oil groups (P < 
. 0 2  and <  .0 1 , respectively).

Discussion

We have shown that raising the content of n-3 polyunsatu
rated fatty acids in the diet during a period of 6 weeks in-

m Unstimulated 
LPS-stimulated

Figure 3. Concentrations of interleukin (IL)- \a, IL-1/3, and tu
mor necrosis factor (TNF) after culture of peritoneal cells for 24 h 
in presence or absence of lipopolysaccharide (LPS, 100 ng/ml). 
Values for LPS-stimulated, cell-associated IL-la were significantly 
higher for fish oil (FO) compared with palm oil (PO; P < .01) or 
corn oil (CO; P < .02). Values for secreted TNF were significantly 
higher in FO group compared with PO group (P < .02) or CO group 
(P < .01). // = 5 for each group.

fish oil 

corn oil 

palm oil 

normal diet
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was low, resulting in a longer median survival in all experi
mental groups. Whatever mechanism is involved in the in
creased resistance to this bacterial infection after fish-oil 
feeding, it is clear that it does not become apparent when the 
course of infection is rapidly fatal.

Dietary fish-oil supplementation has been shown to re
duce the production of eicosanoids like PG E2. Because in
creased survival to experimental endotoxin shock after treat
ment with a cyclooxygenase inhibitor has been reported 
[26], we investigated whether a cyclooxygenase inhibitor 
such as indomethacin would influence survival in our mod
els. The absence o f an effect of indomethacin on survival in 
these infections argues against reduced prostaglandin synthe
sis as an explanation for the increased resistance to infection.

In contrast to what was expected, the increase in survival 
in the K. pneumoniae infection and the P. bergliei infection 
was not associated with decreased production of IL-1 and 
TNF by peritoneal cells. In fact, the cell-associated IL-1 a: 
and TNF production capacity of these cells was enhanced in 
the fish oil-fed mice. These findings are in disagreement 
with the reports of reduced IL-1 and TNF production by rat 
Kupffer cells and human peripheral blood mononuclear cells 
after dietary fish-oil supplementation [10, 11, 27]. One study 
reported increased IL-1 and TNF production by mouse peri
toneal macrophages, but cells were studied after only 16 days 
of a fish oil-supplemented diet [12]. Differences in species, 
cell types, and durations of diets should be considered to 
explain these divergent findings.

In the models of infection studied here, protection by low 
dosages of exogenously administered IL- 1 has been well doc
umented [28-30]. The protection provided by fish-oil sup
plementation is similar to the protection by IL-1 adminis
tered exogenously 24 h before gram-negative infection and 
early in the course of experimental malaria. An exaggerated 
endogenous production of IL-1 and TNF early in infection 
induced by dietary fish-oil supplementation may have the 
same effect as the exogenous administration of these cyto
kines.

Apart from interference with cytokine production, dietary 
fish-oil supplementation has been associated with attenua
tion of some of the responses to exogenously administered 
IL-1. In guinea pigs, the febrile response to rIL-1 injection 
was attenuated after 6 weeks of a fish oil-enriched diet [4]. In 
rats, feeding fish oil for 6 weeks attenuated the catabolic 
response to a combined infusion of rIL-1 and recombinant 
TNF, as reflected by reduced whole-body leucine oxidation 
and increased net hepatic protein anabolism [31]. Also, an
orexia induced by IL-1 was reduced in rats following a fish 
oil-enriched diet [32].

Because many of these effects have also been observed 
after pretreatment with a cyclooxygenase inhibitor before in
jection of IL-1 [33, 34], modulation of these IL-1 effects by 
fish-oil supplementation could be due to the decreased pros
taglandin production after the fish oil-supplemented diet.

As mentioned before, in our study, treatment with indo
methacin did not influence outcome, thus making reduced 
prostaglandin synthesis not a plausible explanation for the 
observed increase in resistance to infection. Of note, the in
crease in survival after pretreatment with low-dose IL-1 was 
not influenced by a cyclooxygenase inhibitor [17].

In conclusion, dietary fish-oil supplementation increases 
resistance to infection in the two experimental models stud
ied. Reduced synthesis of prostaglandins does not seem to 
play a role here because treatment with the cyclooxygenase 
inhibitor indomethacin did not influence outcome in these 
experimental infections. Contrary to expectations, the in
creased resistance to infection was associated with an en
hanced ex vivo production of IL-1 and TNF by peritoneal 
cells in the fish oil-fed animals. The relative importance of 
this enhanced cytokine production in the increased survival 
in these infections remains to be established.
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