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Abstract 

Dual laser flow cytometric energy transfer (FCET) – elaborated by Trón et al in 1984 – is an 

efficient and rapid way of measuring FRET on large cell populations. FRET efficiency and 

the donor and acceptor concentrations are determined from one donor and two acceptor 

signals. In this communication this method is extended towards the domain of receptor 

dynamics by the detection of polarized components of the three intensities. By enabling a 

complete description of the proximity and dynamics of FRET-systems, the new measuring 

scheme allows a more refined description of both the structure and dynamics of cell surface 

receptor clusters at the nano-scale and beyond. Associated donor fraction, limiting anisotropy 

and rotational correlation time of the donor, and cell-by-cell estimation of the orientation 

factor for FRET (2) are available in the steady state on a single FRET sample in a very rapid 

and statistically efficient way offered by flow cytometry. For a more sensitive detection of 

conformational changes the “polarized  FRET indices” – quantities composed from FRET 

efficiency and anisotropies – are proposed. The method is illustrated by measurements on a 

FRET system with changing FRET-fraction and on a two donor-one acceptor-system, when 

the existence of receptor trimers are proven by the detection of “hetero-FRET induced homo-

FRET relief”, i.e. the diminishing of homo-FRET between the two donors in the presence of a 

donor quencher. The method also offers higher sensitivity for assessing conformational 

changes at the nano-scale, due to its capability for the simultaneous detection of changes of 

proximity and relative orientations of the FRET donor and acceptor. Although the method has 

been introduced in the context of FRET, it is more general: It can be used for monitoring 

triple-anisotropy correlations also in those cases when FRET actually does not occur, e.g. for 

interactions occuring beyond the Förster-distance R0. Interpretation of 2 has been extended. 
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Introduction 

Even in the era of super-resolution microscopy, like stimulated emission depletion (STED) 

microscopy, FRET remains amongst the leading methodologies for revealing conformations, 

dynamics and clustering of biological macromolecules on the 1-10 nm distance scale [1-5].  

During FRET a portion of the excitation energy of the donor is tunneled to a nearby acceptor 

having an absorption adequately overlapping with the donor’s emission on the wavelength 

scale, and dipole orientations favorable for FRET [6-9]. FRET is measured by detecting its 

characteristic effects on the fluorescence properties of the donor and acceptor:  decreased 

fluorescence lifetime leading to decrease of fluorescence intensity (quenching) and decreased 

photobleaching, and increased fluorescence anisotropy on the donor side, increased emission 

(sensitized emission) and photobleaching, decreased anisotropy on the acceptor side [1-5]. 

In the scheme of the conventional “flow cytometric FRET” (FCET) method FRET 

efficiency and the donor and acceptor concentrations are determined from the simultaneous 

detection of donor quenching and the sensitized emission of acceptor [9-12]. The latter 

quantities are determined from one donor intensity (I1) and the two acceptor intensities (I2, I3). 

Although the FCET method, as it stands, has been applied in the past in many cases 

successfully for revealing conformational changes and cell surface receptor patterns [13-16], 

taking into account polarization in its all three detected signals offers new opportunities for 

detecting fine details of dynamics and structure of  receptor clusters. By detecting the 

polarized components of the three signals three new quantities, the donor anisotropy, the 

anisotropy of the sensitized emission of acceptor and the anisotropy of the directly excited 

acceptor are available, all in the presence of FRET. The pertinent polarization characteristics 

of  FRET behind the observations are the following (Fig. 1): On the donor side, reduction of 

lifetime by FRET may increase anisotropy, due to the shortage of time available for rotation 

of the fluorophore [17-21]. For donors completely associated with acceptors – unity FRET-

fraction – the analysis of the reciprocal anisotropy-“complement FRET” (1-E) “Perrin-plots” 

makes possible the determination of  the limiting anisotropy and the rotational correlation 

time [19-21]. These quantities can further be used for the computation of  FRET fraction in 

those cases when the donors are not completely associated with acceptors, i.e. the FRET-

fraction is smaller than unity. On the acceptor side, in addition to the directly excited portion 

of fluorescence, the sensitized emission appears with an anisotropy generally much smaller 

than that of the directly excited component [21-30]. The reduced anisotropy of sensitized 

emission is a consequence of the depolarized way of excitation by the curvy field lines of the 

donor dipole and as such it depends on the orientation and position of the acceptor dipole in 

the donor dipole field [4, 8, 9]. In contrast, the anisotropy of the directly excited acceptor 

fluorescence may depend on steric constraints on acceptor rotation imposed by the donor 

bearing tags. 

In this communication, by the correlated analysis of these anisotropies with FRET in 

the steady-state, in the spirit of the work of Dale et al. [6] we attempt to give a more refined 

“global” description of sructure and dynamics of donor-acceptor systems via the deduction of 

quantities such as FRET-fraction, limiting anisotropy, rotational correlation time and 

orientation factor for FRET (2), belonging also to the realm of the different time-resolved 

(FLIM) techniques [26, 29, 31, 32]. Based on the FRET efficiency and the donor anisotropies 

as primarily measured quantities, new quantities termed polarized FRET-indices have also 

been defined aiming at a sensitive detection of conformational changes [33]. A flow chart 

summarizing the main ideas behind the method is presented in Fig. 2. 
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FRET  between identical fluorophores (“homo-FRET”) can also lead to an anisotropy 

reduction, mimicking Brownian-rotation [23, 24, 30]. An implication is that, in the presence 

of acceptor, the anisotropy of a homo-FRET-coupled donor system may increase not only via 

the reduced time available for Brownian-rotation but also by the reduced time available for 

homo-FRET. In effect homo-FRET may be “quenched” by nearby acceptors in close 

proximity (“homo-FRET relief”). The working principles of the 3polFRET method are 

illustrated by a two donors-one acceptor system aiming at the detection of receptor trimers. 

The physical proximity of the light (2m) and heavy chain (h.c.) components of the MHCI 

molecule and the MHCII molecule – a three component-system – have been proven in the 

past with different methods. We show with 3polFRET that homo-FRET between labels bound 

on any two of these elements may efficiently be cut by an acceptor bound to the third element. 

Also with this system illustrated is the usefulness of the polarized FRET indices introduced 

for sensitively monitoring conformational changes. 

Another field of application of 3polFRET rests on the possibility for the determination 

of the limiting anisotropies (r0) of the donor and acceptor and the anisotropy of sensitized 

emission. The lower and upper limits of the 2 orientation factor for FRET and the 

corresponding lower and upper distance limits are determined on a cell-by-cell basis in the 

framework of a “Dale-Esinger style” analysis [6-9, 34, 35] detailed in the Supporting 

information. 

 

Materials and methods 

Cell line 

The JY B cell line was originally described in [36]. Cells were cultured in RPMI-1640 

medium supplemented with 10% fetal calf serum, penicillin and streptomycin [36]. 

 

Monoclonal antibodies 

The production and specificity of monoclonal antibodies (mAbs) applied in the experimental 

procedures have been described earlier [13, 37]. MAbs W6/32 (IgG2a) and L368 (IgG1) 

developed against a monomorphic epitope on the 2, 3 domains of the heavy chain and the 

2-microglobulin of MHCI, respectively [13, 37, 38]; mAb L243 (IgG2a) against MHCII, 

DR  were kindly provided by Dr. Frances Brodsky (UCSF, CA). These mAbs were 

prepared from supernatants of hybridomas and were purified by affinity chromatography on 

protein A-Sepharose. 

 

Fluorescent staining of antibodies 

Aliquots of the proteins for fluorescence conjugation were labeled with 6-(fluorescein-5-

carboxamido)hexanoic acid, succinimidyl ester (xFITC) (Molecular Probes, Eugene, OR) or 

Alexa-Fluor 488 (A488) as the donor dyes, and Alexa-Fluor 546 (A546) as the acceptor dye 

(Invitrogen). xFITC has a large amplitude tethered motion (segmental mobility) because it 

contains a 7-atom aminohexanoyl spacer ("x") between the fluorophore and succinimidyl 

ester moieties. Kits provided with the dyes were used for the conjugation. Detailed labeling 

procedure of the mAb was described earlier [13, 39, 40]. Dye-per-protein labeling ratios for 
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the A488- (A546-)conjugated L243, L368, and W6/32 mAbs were 2.4 (2.14), 3.16 (2.8), and 

1.8 (1.8), respectively. Labeling ratios for xFITC-conjugated L368 and W6/32 mAbs were 3.9 

and 3.7, respectively. These values were separately determined for each labeled aliquot in a 

spectrophotometer (Hitachi U-2900, NanoDrop ND-1000) [13]. The labeled proteins retained 

their affinity as proven by competition experiments with identical, unlabeled ligands. 

 

Labeling of cells with mAbs 

Freshly harvested cells were washed twice in ice cold PBS (pH 7.4), the cell pellet was 

suspended in 100 µl of PBS (106 cells/ml) and labeled by incubation with ~10 µg of dye-

conjugated mAbs for 40 min on ice in the dark. The excess of mAbs was at least 30-fold 

above the Kd during incubation. To avoid possible aggregation of the dye-conjugated mAbs, 

they were air-fuged (at 110,000 g, for 30 min) before labeling. Special care was taken to keep 

the cells at ice cold temperature before FRET measurements in order to avoid unwanted 

aggregations of cell surface receptors or receptor internalization. Labeled cells were washed 

twice with ice cold PBS and then fixed with 1% paraformaldehyde. The single acceptor-

labeled and the double-labeled (with both donor and acceptor) samples were titrated 

according to the surface concentration of the acceptor carrying mAb. In these samples the 

cells were treated identically, except for the amount of acceptor-stained antibodies used for 

labeling: it has been gradually increased until the final saturating concentration was achieved. 

The final concentrations in the titration series in M for mAbs L368 and W6/32 were 0.734 

and 0.686, respectively. 

 

Flow cytometric triple-anisotropy measurements 

Cell-by-cell basis correlated measurements of the polarized intensity components – from 

which the total intensities and anisotropies are calculated – of the donor and acceptor were 

carried out in a „triple T-format” arrangement [19, 24, 41-43] (Fig. 3). It was realized in a 

Becton-Dickinson flow cytometer (FACSVantage SE with a FACSDiVa extension) equipped 

with dual-laser excitation, with the lasers operating in the single line mode at 488 nm 

(Coherent Enterprise Ar+-ion gas laser, Innova Technology) and at 532 nm (a diode-pumped 

solid-state laser), by placing three broadband polarization beam splitter cubes (10FC16PB.3, 

Newport) in the donor and two acceptor fluorescence channels. The fluorescence intensities of 

the green (xFITC, Alexa-Fluor 488) donor dyes and the red acceptor dyes (xTRITC, Alexa-

Fluor 546) were excited at the 488-nm and the 532-nm laser lines and were detected 

orthogonally to the direction of the exciting laser light beams by green and red sensitive 

photomultiplier tubes (side on, Hamamatsu). Signals I1 and I2 both activated by the blue laser 

line at 488 nm were separated by a dichroic mirror (580 nm), then transmitted through a 

535±15 nm- and a 640±60 nm-band pass filter (HQ535/30, HQ 640/120, AF 

Analysentechnik, Tübingen) before reaching the polarization crystals which split them into 

their vertical and horizontal components. Signals I1h, I1v are detected at the flow cytometer 

photomultiplyer ports FL1 and FL2, and I2h, I2v at FL3 and FL7. Signal I3 activated by the green 

laser line at 532 nm is projected by a silvered metal mirror through a 640±60 nm-band pass 

filter (HQ 640/120) on the 3rd beam splitter cube which splits it into the I3h and I3v 

components detected at the FL4 and FL5 photomultiplyer ports. For the determination of the 

G-factor of each fluorescence channel, the originally vertical polarization direction of laser 

light is rotated by 90° with zero order quartz wave plates (half-wave retarders HWR1: 

10RP02-12 for 488 nm, and HWR2: 10RP02-16 for 532 nm, Newport) positioned between the 
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lasers and the cytometer via micro rotary stages (M-481-A, Newport). The orientations of the 

half-wave retarders have been calibrated in advance by recording the dependence of the 

polarized fluorescence intensities of fluorescent microbeads on the angle of the retarders. 

Calculation of total intensities and anisotropies 

Four polarized intensities have been detected for each signal channel [21, 24, 30]: Ii,vv, Ii,vh, 

Ii,hv, and Ii,hh, with the first index i designating the signal channel, the second and third ones 

referring to the polarization direction of the exciting laser light and that of the fluorescence, 

respectively. The signals with the horizontal excitation are detected after the vertical 

excitation by rotating the polarization direction with 90°. After subtracting the corresponding 

background intensities measured on the unlabeled cells from the polarized intensities, the 

correction factors Gi (i=1-3) balancing the sensitivities of vertical and horizontal fluorescence 

channels, the total fluorescence intensities Ii, and the fluorescence anisotropies ri were 

calculated as follows: 

(1) 

(2) 

(3) 

In the above expression for the total intensities Ii (i=1-3) a numerical correction for the high 

aperture fluorescence collection was carried out according to T. M. Jovin [24, 43] by using 

the term   2cos1cos1)(ˆ  a , where )(ˆ a  assumes a value of 1.72 for our 

numerical aperture of NA=0.6, and ψ stands for the half angle of the detected light cone. The 

anisotropy and total intensity values were computed on a cell-by-cell basis from the correlated 

Ii,vv and Ii,vh intensities with predetermined values of the Gi factors as input parameters. Based 

on Eq. 2 the rcorr aperture-corrected anisotropy can be written as the function of the r 

uncorrected one as follows: 

(4) 

The significance of this formula is that it can be used also in the reverse direction: the 

unknown )(ˆ a  aperture term can be computed from the measured value of r in the 

knowledge of the anisotropy rcorr of a calibrated standard. 

The mean values of fluorescence anisotropy and total intensity histograms measured 

on the single donor- or acceptor-labeled cells (for ~104 cells) were further used for the 

calculation of the necessary input constants , S1, S2, and S3 for constructing the histograms 

of the most important resulting quantities of the 3polFRET method: E, Id, Ia, r1, ret and ra. The 

average values of the means of anisotropy histograms obtained in different measurements 

with their standard errors were also determined and tabulated. The generation and subsequent 

analysis of flow cytometric histograms (like the ones on  Fig. 4) and 2-D correlation plots 

(dot-plots) of total fluorescence intensities, fluorescence anisotropy, and FRET efficiency 

were performed by a home-made software specialized for flow cytometric data analyses 

called Reflex, written by G. Szentesi [44], freely downloadable from 

http://www.biophys.dote.hu/research.htm, and http://www.freewebs.com/cytoflex.htm, or from 

the corresponding author bene@med.unideb.hu. 

 

Theoretical results 
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Theory of triple-polarization FRET (3polFRET) 

Anisotropy of sensitized and directly excited emission of acceptor  

Our starting point is the knowledge of the total intensities I1, I2, I3 and the corresponding 

fluorescence anisotropies r1, r2, r3 measured at the excitation wavelength of the donor 

(channels 1, 2) and of the acceptor (channel 3) [10-12, 19]. The definitions and way of 

measuring these quantities in terms of polarized intensity components are described in the 

Materials and methods. From the total intensities I1, I2, I3, the FRET efficiency E, and the 

donor and acceptor intensities Id, and Ia reflecting the donor and acceptor concentrations of 

the double-labeled cell sample are determined via the standard method of FCET outlined in 

the Supplement. In the next we only describe, how the anisotropy of sensitized emission (ret) 

and the directly excited acceptor emission (ra) are determined from the r1, r2, and r3 primary 

anisotropies. We set out by first defining the acceptor intensities and corresponding 

anisotropies measured in the presence of donor at the donor’s and acceptor’s excitation 

wavelength in the acceptor channels, I2a, r2a and I3a, r3a [41, 42]: 

 (5) 

(6) 

(7) 

(8) 

with the A’ helper quantity and 2 anisotropy conversion factor defined in Eqs. 4s, 17s of the 

Supporting information. The first terms of the I2a and I3a intensities containing Ia correspond 

to the directly excited, the second ones containing A’, the indirectly excited intensity 

components. According to Eqs. 7, 8, both r2a and r3a are smaller than ra, because these 

parameters are weighted averages of ra and ret, and the latter is generally much smaller than ra. 

By inspecting the expanded forms of I2, and I3 in the Supplement, alternative forms of I2a and 

I3a can be found as 

(9) 

(10) 

Based on these and the defining equations for r2 and r3 (Eqs. 12s, 13s in Supporting 

information) a 2nd form of r2a and r3a directly amenable for a cell-by-cell determination, can be 

isolated from r2 and r3: 

(11) 

(12) 

Because in contrast to Eqs. 7, 8 all parameters of Eqs. 11 and 12 are primarily measured 

known ones, these are the forms of r2a and r3a from which they can be determined on a cell-

by-cell basis. After determining r2a and r3a, Eqs. 7, 8 can be taken as indirect definitions of ret 

and ra, and constitute a system of equations for these two unknowns, with the following 

solutions: 

(13) 

(14) 

,AISII 12aa2


,SSAIII 131aa3 

  ,IrAIrSIr a2et1a22aa2 

   ,ISSrAIrIr a3132et1aaa3 

,1122 SIII a 

.3133 SIII a 

  ,21111222 aa IrSIrIr  

  .31331333 aa IrSIrIr  

    ,1 1321322322 SSSAIrSIrIr aaaaet  

     .1 1322132233 SSSISSrIrIr aaaaaa  
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Based on Eqs. 13, 14, cell-by-cell distribution of ret and ra can be determined which can 

further be used e.g. for the determination of the 2 orientation factor (see in Supporting 

information). The value of ra as compared to the r3 value of the single acceptor-labeled 

sample, can shed light on possible steric interaction of the donor-label constraining rotation of 

the acceptor. 

 

Donor Perrin-plots 

An important field of application of the measured r1, ret and ra anisotropies is describing 

rotational characteristics of the donor and acceptor fluorophores which can reflect dynamics 

and morphological changes – e.g. through homo-FRET – of receptor clusters. Because the 

donor anisotropy r1 contains no overspill contamination, it can directly be used for:  (i) The 

deduction of the rotational constants – the r0 limiting anisotropy and the  rotational 

correlation time – of the Perrin-model of an isotropic rotator [21, 26, 41, 42], if the fraction of 

donors associated with acceptors is unity. For an extension on the hindered rotator please see 

Discussion. (ii) For the deduction of the associated fraction of donors (f) in the knowledge of 

the rotational constants e.g. after a “calibration” process of the (i) step. For the general model 

valid for arbitrary associated fraction f, the r1 anisotropy can be written as the weighted 

average on donor populations with acceptor and without acceptor (the 1st and 2nd terms in the 

numerator, respectively): 

(15) 

where E0, and r’ denote the FRET efficiency and anisotropy in the clustered donor population 

and r the anisotropy in the unclustered one. In this formula both r’ and r can be traced back to 

the r0 and  rotational constants by applying the Perrin-equation in the absence and presence 

of acceptor:  

(16)
 

(17) 

with  denoting the ratio of the  donor lifetime (unperturbed by FRET) and , 

(18) 

and the factor 1-E0 representing the reduction in lifetime due to FRET. In Eq. 16, the 

anisotropy r can be determined on the donor-only sample. Another formula can be written, by 

noticing that the primarily measured FRET efficiency E is also a weighted average on the 

clustered and unclustered donor fractions possessing E0 and zero FRET efficiencies, i.e.

      ,f1f0f1EfE 0  leading to:

 

(19) 

Eqs. 15-17 and Eq. 19 constitute a system of 4 equations for the 5 unknowns: r’, r0, , f and 

E0, implying that one of the parameters should be known for the unique solution of the 

receptor association problem. E.g. they can be solved for f and E0 when the rotational 

       ,1111 001 ffErfrfEr 

 ,10  rr

  ,11 00 Err  

, 

.0EfE 
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constants are known, and vice versa. In both cases, the final solutions can be expressed in 

terms of the apparent rotational constant app introduced as: 

(20) 

which should coincide with the real  for unit associated fraction. This can be proven with 

Eqs. 15-17, 19 after plugging unity into them for f.   

In the knowledge of r0, first the solution for E0 in terms of app and  is found by 

plugging r, r’ and E in Eqs. 16, 17 and 19 into Eq. 15: 

(21) 

For using this equation app is computed according to Eq. 20,  and  according to the formula 

for the donor anisotropy in the absence of acceptor, Eq. 16. Then by plugging this expression 

for E0 into into Eq. 19 f can be expressed as:   

(22) 

In the reversed direction, when the associated fraction f is the known parameter, first the 

rotation constant  can be  expressed from Eq. 22 in terms of app and f as follows: 

(23)  

The consistency of the formalism can be noticed here with Eq. 23, because for equal 

rotational constants (=app) the associated donor fraction (f) is unity, and vice versa, as 

expected. Then limiting anisotropy r0 can be computed by plugging Eq. 23 for  into Eq. 16: 

  (24) 

For a better illumination of the consistency, in the reversed approach, when the associated 

fraction (f) is known, both r0 and  can be expressed in terms of app and f in the following 

alternative forms: 

(25) 

(26) 

Here f is an f-dependent “perturbation factor” responsible for the deviation of the rotational 

constants  and app due to an associated fraction smaller than unity, defined as: 

(27) 

Eqs. 25-27 reveal that, partial associations of donors with acceptors reduce the value of both 

apparent rotational constants as compared to the real ones, with the amount of reduction 

proportional to 1-f: 

    ,111 Errrrapp 

  .11 appEEf 

   ,110 fapprr  

 .1 appfapp  

     .11 1 Efrrff 

  .110 appEE 

   .1 EfEf app  

    .110 EfEfrr app  
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 (28) 

It can also be seen that the f “perturbation” disappears whenever f is unity leading to a 

coincidence of  and app. 

The rotational constants obtained by assuming a known f value, can further be used 

e.g. for deducing the depolarization factors, the input parameters of the orientation factor (2), 

see in Supporting information. An example for a donor Perrin-plot displayed in the form a 2-

D scatter plot of a FRET-sample is shown on Fig. 2s Panel A in Supporting information. 

Extension of the computation of associated fraction for a hindered rotator is analyzed in the 

Discussion. 

 

Acceptor Perrin-plots

 
Anisotropy vs. FRET efficiency-related parameters, designated by x2a and x3a, correlation 

plots (Perrin-plot-like) can also be constructed on the acceptor side. After plugging I2a and I3a 

(Eqs. 5, 6) into Eqs. 13, 14 for ret and ra, r2a and r3a can be expressed as functions of x2a and 

x3a, with ret and ra in them as fitting parameters: 

(29) 

with 

(30) 

and
 

(31) 

with 

(32) 

By plotting the r2a vs. x2a and similarly r3a vs. x3a scatter plots and fitting them with straight 

lines, estimations of the mean values of ret and ra can be obtained from the intersections and 

slopes of the fitting lines. In practice the r2a vs. x2a plot gives better results than the r3a vs. x3a 

plot, because the dependence of x3a on the FRET parameter A’ is weaker than that of x2a, due 

to the small value of S3. The parameter A’ is connected with the FRET efficiency E via

,EIAI d1 

obtainable from Eqs. 5s, 6s in Supporting information. 

ret and ra do not depend on the calibration constant , in spite of this relation, because A’, I1, 

and Ia in Eqs. 29-32 are all independent of . 

An example for an acceptor Perrin-plot 

displayed in the form a scatter plot of a FRET-sample is shown on Fig. 2s Panel B in 

Supporting information. 

 

  ,222 aetaeta xrrrr  

    ,11 212 SIAIx aa 

  ,3223 aetaeta xrrrr  

    .11 1313 SISAIx aa 

 .1 appfapp  
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Polarized FRET-indices 

For the elaboration of the 3polFRET methodology an impetus was a seek for a method for the 

sensitive detection of conformational changes and/or rearrangements of elements of cell 

surface receptor clusters. In this respect, 3polFRET can also be taken as the optical 

correspondent of the classical mechanical Chasles’ theorem [45] (see also Fig. 5), which 

states that the general motion of a body can always be decomposed to the sum of a rotation 

and a translation. According to this scheme, FRET efficiency describes mainly translation 

(notwithstanding now its indirect dependence on rotation through 2), and the r1, ret, and ra 

anisotropies mainly the rotation (now notwithstanding dependence of r1 on E). However, new 

parameters, called polarized FRET indices, can also be introduced in which FRET efficiency 

E and the anisotropies combine directly. These parameters are defined by calculating FRET 

efficiencies from the polarized intensity components, instead of the total intensities. For 

simplicity, considering only the simple donor quenching, the following indices can be 

defined: 

(33) 

(34) 

(35) 

(36) 

Unprimed and primed intensities designate the absence and presence of acceptor, 1st and 2nd 

subscripts the polarization direction of excitation and emission, respectively. For 

interpretation of these indices, rotation can be thought of as a special FRET process – after G. 

Weber [33] – placing photon energy in different orientation states (polarization  directions) . 

In this respect, E1 is the efficiency of FRET which in addition to placing excitation energy to 

the acceptor side, brings the emitted photon orientation from the horizontal into the vertical 

position. By using the 
  321 rII totvv 

  and
  31 rII totvh 

relations (and similarly for 

the primed intensities), Eqs. 33-36 can be cast in the forms showing the explicit dependence 

on E, r, and r’: 

(37) 

(38) 

(39) 

(40) 

Taking Eqs. 37-40 as definitions, cell-by-cell distributions of E1-E4 can be calculated from 

those of E and r’. These quantities may expand (E1, E2) or compress (E3, E4) the scale of E 

depending on the r, r’ anisotropies, or equivalently on the r0 and  rotational constants. 

Because E1 has the largest effect, it seems to be applicable for a sensitive indicator of 

conformational changes. A detailed analysis of the polFRET indices is presented in the 

Supporting information. 

 

Experimental results 

,1),(1 vhvv IIhvE 

,1),(2 vvvv IIvvE 

,1),(3 vhvh IIhhE 

.1),(4 vvvh IIvhE 

     ,12111),(1 rrEhvE 

     ,212111),(2 rrEvvE 

     ,1111),(3 rrEhhE 

     .21111),(4 rrEvhE 
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In the framework of the conventional FCET method, FRET efficiency (E) and quantities 

proportional to the donor and acceptor levels (Id, Ia) can be determined in highly efficient 

manner in a cell-by-cell basis enabling discrimination between subpopulation of cells. Despite 

the numerous fruitful applications of the FCET method  it still have its own caveats and 

features to be improved, mainly in the following 3 areas: (i) Due to the inherently steady state 

nature of the method, these data in themselves are average values, offering  no insight into the 

fine structural details of the associations, such as the associated fraction of the donor [31]. (ii) 

The FRET efficiency besides the donor-acceptor separation depends also on the relative 

angles of the chromophore dipoles formulated in the orientation factor for FRET 2, a 

quantity on which no information is supplied by the FCET method. As to 2, the central 

question is the error in proximity determination committed by the hypothesis of either the 

static or the dynamic random limit (2
static=0.476 and 2

dynamic=2/3) [3, 6-9]. (iii)  A 

conformational change in general can be decomposed to the sum a translation and a rotation – 

in the sense of the classical mechanical Chasles’ theorem (Fig. 5) [45] – from which FRET 

efficiency depends mainly on translation, and with a smaller degree on rotation 

(notwithstanding now its indirect dependence through 2).  Is there an optical quantity which 

directly takes into account both of these motional freedoms? A question, put in the hope of 

finding a sensitive indicator of conformational changes. For answering these questions, 

fluorescence anisotropy measurable in the steady state conditions of multiparametric flow 

cytometry relatively easily and cheaply, is the candidate. Considering the potential FRET 

dependence of the donor anisotropy via the lifetime involved  in the Perrin-equation – 

traditionally formulated  in terms of “quenching resolved anisotropy” (QREA) [41, 17] – 

combining anisotropy and FCET conveys the opportunity to shift the capabilities of the steady 

state FCET method in the direction of the different time resolved techniques. These are 

realized mostly in the rather sophisticated and expensive FLIM (anisotropy FLIM, rFLIM) 

platforms [26, 29, 31]. For realizing combined measurements of FRET and anisotropy, an 

advantageous platform is offered by flow cytometry based on its high degree of multiplexing 

capability and its capability for monitoring large cell populations in a short time, the high 

throughput nature. 

In the next we show that FCET performed in the anisotropy measuring formats of the 

3 signal channels (called 3polFRET)  is capable for the extension of the conventional FCET to 

detect rotational motion, associated donor fraction, orientation factor, and to construct new 

parameters by combining FRET efficiency and donor anisotropy – called “polarization FRET-

indices” – some of which may have more sensitivity on conformational changes than FRET 

and anisotropy separately. An overview of the chief quantities of 3polFRET is presented in 

Figs. 2, 4. 

 

Determination of  rotation constants  (r0, ) and associated fraction  (f) of the donor  

Table 1 contains data on a FRET system comprised of donor- and acceptor-labeled mAbs 

against the light and heavy chains of the MHCI cell surface receptor, with the two subunits 

representing a system of 1:1 stoichiometry and a well defined intermolecular separation [16]. 

In Part A, FRET from the L368 (bound to the 2m) towards the W6/32 (bound to the heavy 

chain of MHCI), in Part B, FRET in the reversed direction  – from W6/32 to L368 – are 

considered. To reveal the FRET-dependence of the data, the amount of the acceptor, and 

consequently the magnitude of FRET have been adjusted by changing the amount of the 

added acceptor-stained mAbs during cell labeling. The primary input data of the Perrin-

formalism are the FRET efficiency E, the  anisotropies r, r1 measured on samples labeled only 
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with donor, and both donor and acceptor (Fig. 4, Panel C), and the f0 associated fraction. The 

f0 has been determined at each acceptor concentration by using the computed FCET 

parameters Id, Ia and the definition of  (Eqs. 6s, 7s, 11s in Supporting information). 

Essentially two approaches have been followed in the data analysis: (i) In the “forward” 

approach r0 has been computed from the measured values of E, r and r1 at each associated 

fraction f0 by using Eqs. 25-27. (ii) In the “backward” approach, r1,calc and f have been 

computed with Eqs. 15, 22 with r0 and  determined in the previous “forward” direction  at 

f0=1 associated fraction. Considering r donor anisotropies, which are determined partly by 

rotational mobility of the antibody tethered-dye and partly by homo-FRET – depending on the 

labeling ratio [19, 21, 24] – , the little larger value of r in the case of L368 (Part A) reports on 

a more constrained rotation of the dye on this mAb as compared to the W6/32 mAb (Part B). 

By inspecting E and r1 in Part A, both of these parameters monotonously increase with 

increasing amount of acceptor, as expected. Inspecting now the r1,calc and f quantities 

recovered by the Perrin-formalism, we can see that while r1,calc excellently follows the 

experimental r1 at each f0 and E, f follows f0 with small error only after reaching a high 

enough value of FRET efficiency, in this case ~20 %. Accordingly, when the r0 values are 

examined, recovering r0 also fails below the ~20 % FRET limit, being these values 

substantially smaller than the expected r0 belonging to saturation (f0=1). These data imply that 

high FRET efficiency is the requirement for recovering small associated fractions at a given 

r0, or alternatively, for recovering r0 at a given associated fraction. Similar conclusions can be 

drawn from data of Part B: Perfect agreement between r1,calc and the experimental r1 at all f0, 

and a tendency for under-estimation of f and r0. However, the under-estimation is more 

pronounced, the FRET efficiencies being smaller with 7-10 % (on the absolute scale). 

Besides the standard application for describing conformational states, the r0 and  

rotational constants deduced in the knowledge of f, can be further used e.g. for computation of 

the orientation factor. Alternatively, the  rotational constant can be an indicator of an extra 

depolarization of two nearby donors due to homo-FRET in addition to rotational motion, as 

exemplified by the Perrin-analysis of a triple-FRET system – comprised of 2 donors and 1 

acceptor bound the MHCII molecule and to the 2 subunits of MHCI – considered in sections 

“Orientation factor” and “Hetero-FRET induced homo-FRET relief in receptor trimers” and in 

Tables 1s, 2s, 3s, in the Supporting information. 

 

Polarized FRET-indices 

The hybrid parameters computed from the FRET efficiency and the r and r’(=r1) anisotropies 

(in Table 1) are listed in Table 2 for the MHCI light chain-heavy chain FRET systems 

considered above. We constructed these quantities, in the hope of finding a sensitive indicator 

of conformational changes. Consulting Table 2, Part A, a finite (nonzero) value of anisotropy 

splits the series of E values into 4 series around the E values, with the largest shifts (zero-

offsets) in E1 and E4, and with the smallest ones in E2 and E3. As also can be revealed, while 

the size of shifts for E1 and E2 are determined by the magnitude of anisotropies r and r’, for E2 

and E3 the ratio of r’ and r, leading to shifts much smaller in E2 and E3 than in E1 and E4. 

Experimental distributions of E1 and E4 are shown in Fig. 4 Panel E. The sensitivity factors 

obtainable by differentiating the FRET-indices with respect to E, determining both the shifts 

and range of the different indices are the following (see also Supporting information), for Part 

A: E1, (1+2r’)/(1-r)=1.48-1.51; E2, (1+2r’)/(1+2r)=1.002-1.02; E3, (1-r’)/(1-r)=0.985-0.999; 

E4, (1-r’)/(1+2r)=0.665-0.675; for Part B: E1, (1+2r’)/(1-r) =1.43-1.45; E2, 
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(1+2r’)/(1+2r)=1.005-1.02; E3, (1-r’)/(1-r)=0.986-0.997; E4, (1-r’)/(1+2r)=0.69-0.7. These 

data imply a 40-50 % increase in range and shift for E1 (as compared to E) a 30-35 % 

reduction in range and shift for E4, and small shifts and changes in range for E2 and E3. The 

largest deviations from E for E2 and E3 are seen at saturating amount of acceptor, when the 

differences between r and r’=r1 are the largest. Based on these calculations, in the data sets of 

Table 2, E1 seems to have the aimed enhanced conformational sensitivity. FRET-indices 

could be applied also for homo-FRET. Pertinent data are shown in Table 3s, in Supporting 

information.   

 

Acceptor anisotropies  and orientation factor for FRET (2) 

The necessary ingredients for the determination of the limits of orientation factor in the 

framework of the “Dale-Eisinger analysis” are the (zero-time) limiting anisotropies for the 

donor, acceptor, and for the sensitized emission, from which the corresponding “axial 

depolarization factors” are computed (see Supporting information for details) [6-9, 34, 35]. 

However, from these 3 unknowns only the donor limiting anisotropy and  parameter can be 

determined from the donor Perrin-plots in the framework of 3polFRET, the remaining 2 are 

computed by assuming that (i) the acceptor has the same rotational correlation time as the 

donor (a=d), and (ii) the  rotational constant for the acceptor (a) is reduced in proportion 

to the smaller lifetime of the acceptor: a=ad/d. With this restriction, in the knowledge of 

the anisotropies of sensitized and directly excited emissions of acceptor (ret, ra), the axial 

depolarization factors of acceptor can be estimated. This consideration underscores the 

importance of ret and ra, besides the donor anisotropies r and r1. These parameters are listed in 

Table 3 together with the deduced orientation factor limits for the previously considered 

FRET titrations of MHCI. Pertinent distributions are shown in Fig. 4 Panel D. By inspecting 

Part A, the lower limit for 2 decreases, and the upper one is increasing with the increasing 

associated fraction. These changes can be attributed to two effects: (i) For the lowest two 

associated fractions, the r0 values are under-estimated (Table 1, Part A) and (ii) at the same 

time the ra values decrease for the whole range of associated fraction, supposedly due to 

increasing homo-FRET. Essentially the same behavior of the orientation factor limits can be 

read off from Part B of Table 2. 

As to the values of ret, these are consistently close to zero, with rare exceptions only at 

the smallest FRET efficiencies, where the larger negative deviations can be attributed to the 

small value of sensitized emission, and consequently to the small value of the product (I1A’)  

occurring in the denominator for the formula of ret in Eq. 13, see also Eq. 14s in Supporting 

information. The dropping of ra with the increasing acceptor concentration can be traced to 

the increasing role of homo-FRET in depolarizing acceptor emission. By comparing these ra 

values in the presence of donor with those observed in the absence of donor (r3 for single 

acceptor-labeled samples, not shown), no significant difference can be noticed, implying that 

the reason for the anisotropy increase is not a donor-induced increase in rigidity of the dye-

holding protein matrix (“solidification”). 

 

Discussion 

The 3polFRET scheme combines proximity and mobility 

The conventional dual laser FCET methodology [10-16] has been extended with polarization 

optics to make possible a more complete, “close-to global” approach of FRET determination. 

This novel platform pushes the range of capabilities of FCET towards direct methods of 

fluorescence lifetime measurements – the different FLIM techniques – by enabling the 
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determination of FRET-fraction, rotational properties of the donor and acceptor as well as the 

determination of the limits of orientation factor for FRET (2) [26, 29, 31]. This methodology 

opens the way towards a complete description of FRET systems – by simultaneously 

measuring FRET efficiency and orientation factor – on relatively easily and cheaply realizable 

systems like flow cytometry and imaging microscopes operating in the steady state. 

Realization of the method in flow cytometry has a special impetus, due to its high-throughput 

nature i.e. the capability for filtering out rare cell events from a huge background population 

in a short time. 

Generally these parameters can be determined in the time- or frequency-domain by 

using some fluorescence lifetime measuring scheme. However, in the 3polFRET approach 

they are determined in the steady state from the primarily measured FRET efficiency (E), 

donor anisotropy in the presence of FRET (r1), anisotropy of sensitized and directly excited 

emissions of acceptor (ret, ra). The determination of FRET-fraction and rotational constants is 

based on the FRET dependence of the donor anisotropy (r1) via the Perrin-equation,  both 

FRET efficiency and donor anisotropy involving the same donor lifetime. The ingredients of 

the orientation  factor, the axial depolarization factor for the donor, acceptor and FRET are 

then determined from the rotational constants of the donor, and the ret and ra anisotropies. This 

methodology is rapid because – notwithstanding now the different S-factors and  (see them 

in Supporting information) – the necessary anisotropies (r1, ret, ra) are determined on a single 

double-labeled FRET sample, together with the FRET efficiency (E). Furthermore, it is cost-

effective and relatively simply realizable in flow cytometers and fluorescence microscopes, 

requiring only wave retarders and polarization beam- (or image-) splitters in the excitation 

and detection ports [17]. 

 

Polarization FRET-indices unify FRET and polarization for sensing conformational changes 

Apart from the determination of FRET-fraction and orientation factor, this global approach 

for FRET may also be promising for a more complete description of conformational changes, 

due to the fact that 3 conformation sensitive parameters – the r1, ret, and ra anisotropies – are 

detected in addition to the FRET efficiency E. In this respect our 3polFRET approach can also 

be envisioned as the nano-optical realization of the principle formulated in the Chasles’ 

theorem of mechanics (Fig. 5) [45] stating that the general motion of a body – like those in a 

conformational change – can always be decomposed to the sum of a translation and a rotation, 

with the translation corresponding to FRET and rotations to the anisotropies. However – 

besides this direct scheme, in which anisotropies and FRET are separately treated – an 

indirect scheme can also exist, when the effects of FRET and rotations appear in a combined 

manner. In the indirect scheme, FRET efficiency is computed not from the total intensities, 

but from the polarized intensity components of e.g. the donor intensity, giving rise to 4 

different “FRET-indeces” E1-E4 (Eqs. 37-40), taking into account all possible pairings of the 

excitation and detection polarization directions. The evolution of these indices can also be 

envisioned as splitting up the FRET efficiency E into four – not independent (Eq. 28s in 

Supporting information) – polarized components due to the lack of complete orientational 
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isotropy manifested in the finite (non-zero) donor anisotropy, like in the cases of E1 and E4, or 

due to an increase of donor anisotropy upon FRET, like in the cases of E2 and E3. A 

geometrical representation of the relative positions of the indices in a “generalized anisotropy 

space” is shown in Fig. 6. After calculating the anisotropy-dependent sensitivity factors in 

formulae of the 4 indices, E1 turned to be amenable for application as a conformational index, 

by enhancing the FRET range with a factor of ~(1+2r’)/(1-r), in contrast to the others which 

compress (E4, with  a factor of ~(1-r’)/(1+2r) ) or influence only a little (E2, E3 with factors 

proportional to ~r’-r, the difference of anisotropies) the FRET range (see also in Supporting 

information). 

Although the polarized FRET indices E1-E4 have been defined for hetero-FRET, they 

can also be applied in the case of homo-FRET, by taking E as zero, and representing by r the 

intensity weighted average of anisotropies of samples labeled separately by the different 

donor-species (no homo-FRET), and by r’, the anisotropy of the sample labeled in a single act 

with the mixture of the different donors (finite homo-FRET) (see Table 3s in Supporting 

information). 

 

Associated fraction for hindered rotations 

Rotational motion of dyes tethered to receptors in the cell membrane may be constrained (or 

hindered) and the limiting anisotropy and rotational correlation time introduced in Eq. 16 are 

only “apparent” or “effective” values describing rotational motion only crudely. By intuition, 

keeping the original formulation of the Perrin-model (Eq. 16) possible hindrance in dye 

rotation may lead to an under estimation of the rotational constant (), and as a consequence 

an under estimation in the associated  donor fraction (f). In contrast to this behavior of  

associated fraction, the uncertainty in 2 (Eqs. 29s, 30s in Supporting information) should not 

be influenced much, because hindrance mostly affects the rotational correlation time, not the 

r0, the quantity governing 2. 

In the next we attempt to prove this guess analytically by presenting a summary of 

constrained rotations of tethered dyes (see also in Supporting information to [21]). A refined 

description of donor rotation can be given by an extended form of the Perrin-equation, when 

in the framework of the “wobbling in a cone” model of rotational depolarization a term 

describing the “half angle of the rotational cone”, the r∞ limiting anisotropy is also 

incorporated [26, 41, 42, 46]: 

(41) 

Here r0,h and h, the limiting anisotropy and rotational constants in the presence of  hindrance, 

are defined analogously to the unhindered case (Eq. 18). The degree of hindrance is expressed 

by r∞, and it can be given as a percentage () of the limiting anisotropy r0,h: 
 

(42) 

With , Eq. 41 can be cast in another form more amenable for further analysis: 

    .1,0 hh rrrr  

.,0 hrr
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(43) 

This equation is valid for the donor in the absence of acceptor. It can be seen that at the limit 

of the unhindered rotator (=0), it goes into the original Perrin-equation (Eq. 16). In the 

presence of acceptor after taking into account the lifetime-reduction due to FRET, Eq. 43 

assumes a form analogous to Eq. 17: 

(44) 

As to the associated fraction (f) the pertinent formulae, Eq. 19 defining f the, and Eq. 

15 the average anisotropy of the donor in the presence of acceptor, can be taken as valid also 

here. The procedure of associated fraction determination remains also the same, with the 

exception that now Eqs. 43, 44 should be plugged into Eq. 15 for the donor anisotropy 

average, instead of Eqs. 16, 17. The procedure can be applied also here in two ways: Either 

the rotational constants are determined in the knowledge of the associated fraction (f) 

(“forward direction”), or vice versa, the associated fraction (f) is determined in the knowledge 

of the rotational constants (r0,h, h, ) (“backward direction”). In both cases the input, 

measured parameters are the donor-only anisotropy (r), the donor anisotropy in the presence 

of acceptor (r1), and the FRET efficiency (E). The associated fraction (f) may be known in 

advance from presumptions on the structure. The rotational constants may be obtained even is 

the steady state by non-linear fitting of Eq. 44 to the empirical anisotropy vs. fluorescence 

lifetime curves. Lifetime changes can be achieved by FRET with a series of acceptor 

antibodies of increasing labeling ratio, or increasing labeling concentration, or by some other 

quenching process, e.g. quenching with KI [41, 47]. 

 If the rotational constants are the known quantities (“backward direction”), e.g. r0,h 

and , then calculation of E0, and f goes also via introducing the “helper quantity” analogous 

to app (Eq. 20), but designated now as app,h: 

(45) 

By inspecting Eq. 45 it can be seen that in the limiting case of zero for  implying no 

hindrance, app,h goes into app of Eq. 20 as it should do. With app,h and  h, the solution for 

E0 of Eq. 15 is similar in structure to Eq. 21: 

(46) 

The solution for f is obtained from Eq. 19  after plugging E0,h of Eq. 46 in place of E0: 

 (47) 

In the reversed (“forward”) direction, the solution for the rotational constants h, r0,h can be 

obtained by first expressing h from Eq. 46 as, 

(48) 

then putting h into Eq. 43, from which r0,h can be expressed as: 

   .11,0 hhhrr  

     .1111,0 EErr hhh  

    .11,01, ErrErrr hhapp  

  .11 ,,0 hhapph EE 

  .11 , hhapph EEf 

    ,1 , EfEf happh  
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(49) 

To see the effect of hindrance on the f and E0 clearly, the following relationship 

between the (app,h/h) and (app/) ratios can be deduced by taking into account the 

definitions for h and app,h  (Eqs. 43, 45) and for  and app Eqs. 16, 20): 

(50) 

where r0=r0,h has also been assumed. 

Decisive is that the 2nd term in the braces is positive, because the r-containing term in 

it is larger than the term containing r1. The positivity of the 2nd term implies the following 

inequality: 

(51) 

Based on the inequality in Eq. 51, hindrance against rotation decreases E0 (from Eqs. 21, 46 

for E0, E0,h), and increases f (from Eqs. 22, 46 for f, fh): 

(52) 

That the associated fraction f should increase with hindrance can be reasoned qualitatively as 

follows: In Eqs. 43, 44 hindrance appears as a negative feedback effect opposing the increase 

of anisotropy due to lifetime reduction. Because due to the presence of the 1-E factor in r’ 

(Eq. 44) the opposing effect of  is relatively suppressed in r’ as compared to r (Eq. 43), 

implying that by increasing  the weight in the average donor anisotropy r1 (Eq. 15) is shifted 

towards the term containing r. However, r1 is a measured constant, which implies that the 

multiplying factor of r (1-f) should reduce and the factor of r’ (f) increase in Eq. 15. This 

means that f should be increased with increasing . Accordingly, E0 should decrease based on 

Eq. 19. 

The connection between the linear approximation, i.e. the original Perrin formulation 

forced to describe hindered rotator data and the hindered model of Eq. 43 can be revealed by 

transforming Eq. 43 to the form of Eq. 16: 

(53) 

Comparing Eqs. 53 and 16, it can be seen that: (i) Eq. 53 describes an unhindered rotator 

possessing a lifetime-dependent effective rotational correlation time, and effective rotational 

constant: 

(54) 

The lifetime dependence of h,eff is dictated by , as a “coupling constant”, in the 

denominator.  (ii) Because the multiplication factor of h is smaller than unity, hindrance 

reduces the effective speed of rotation, as expected. (iii) Because the numerator of r’ in Eq, 53 

is independent of , the forced linear fitting (with Eq. 16) of the hindered rotator supplies 

approximately the true r0,h limiting anisotropy, i.e. r0≈r0,h. The approximation is the better, the 

smaller  is. 

         ,1111 11, ErrErErrrapphhapp  

.,  apphhapp 

.,0,0 ffEE hh 

         .1111,0 EfEfEfEfrr appapph  

    .111rr hhh,0 

    .11 hheff 
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  According to the rotational data obtained by rFLIM technique on the same mAbs and 

cells (Fig. 2s in Supporting information to [21]), the  parameter expressing hindrance varies 

around 23%. By using this value for  in computing associated fractions according to Eq. 47 

with the data of Table 1, ~20%-larger f values result for r0=0.2, and ~10%-larger for r0=0.25. 

This calculation indicates also that, the effect of hindrance depends also on the value of the 

limiting anisotropy. According to both flow cytometric and rFLIM observations, the eff 

values (at 488 or 514 nm) are around 0.4 [19, 21]. By using 23% for  in Eq. 54, a value of 

0.53 can be obtained for h, implying that the (h) term can be neglected compared to 1 

(being 0.11), and eff≈h(1-). This also shows that the r0≈r0,h is also a reasonable 

approximation.                      

 

Calibration of FRET by determining  

In the calculations we followed the conventional way of FCET calculation when the  factor 

[48, 49] balancing the different sensitivities of the donor and acceptor channels has been 

determined from suitable single-labeled samples: From samples labeled with only donor and 

acceptor in a known acceptor-to-donor concentration ratio, ensured e.g. by a 1:1 donor-

acceptor stoichiometry, as in the present case of the two subunits of the MHCI receptor. 

Afterwards, E and Id are computed with . (In contrast to E and Id, the intensity Ia, 

proportional with the acceptor concentration, is independent from .) However, a “reversed 

scheme” can also be imagined, when the  factor is the aimed parameter. When the limiting 

anisotropy and the associated fraction of the donor are known in advance, FRET efficiency E 

can be computed on the donor side with the Perrin-model. Then the  factor is fixed by the 

condition that the FRET efficiency of the FCET formalism should be the same as the one 

obtained by the Perrin-model. Reversely, by knowing , validity of the Perrin-model could be 

checked by comparing two FRET efficiencies: one computed with the FCET method as 

standard, and the other one computed with the Perrin-model. The precondition of this 

approach is that donor anisotropy should be sensitive on FRET, i.e. rotational modes on the 

time scale of FRET – “transfer rotational modes” – should be present [19]. 

 

Incomplete polFRET schemes: 1polFRET, 2polFRET approaches 

If the acceptor anisotropies are not important, a simplified polFRET scheme can be applied, 

when the polarized intensity components are detected only for the donor, and the total 

intensities I2, I3 for the acceptor (1polFRET). This scheme can be applied e.g. when the 

associated donor fraction or the rotational constants of the donor are important, and for the 

determination of  in the aforementioned way.  In another simplification, only a single laser is 

used at the donor’s excitation wavelength (“single-laser polFRET” or “dual-polarization 

FRET (2polFRET)”, discussed in [21]). In this version of FRET determination, the I3 intensity 

necessary for the solution of the FCET problem in addition to I1 and I2 – i.e. for finding E, Id, 

Ia – is replaced by the acceptor anisotropy ra’ in the presence of donor. The reliability of the 
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method is determined by the condition that the anisotropy of sensitized emission (ret) should 

be a known value, e.g. zero. Although the method rests on the acceptor anisotropy ra’ 

measured in the presence of FRET, the detection of the donor anisotropy r1 is also necessary. 

It is needed for correcting donor’s cross-talk in the acceptor anisotropy, see Eqs. 12s, 13s  in 

Supporting information. The main differences between the earlier “single laser polFRET” and 

the present approach, 3polFRET are that in the latter: (i)  No assumption on the anisotropy of 

sensitized emission is made. (ii) Directly excited acceptor anisotropy (ra) is measured, making 

possible checking for the sterical effect of the presence of the donor-bearing ligand (“sterical 

hindrance”). (iii) Because of the simultaneous determination of the donor anisotropy (r1), and 

the 2 acceptor anisotropies – sensitized emission (ret) and directly excited (ra) – with FRET 

efficiency (E), the latter approach makes feasible a more complete description of the FRET 

system, enabling also the orientation factor (2). In the knowledge of the orientation factor for 

FRET, computation of distance distributions may be attempted (see in Supporting 

information). (iv) New indicators of receptor dynamics, called polarization FRET-indices (E1-

E4) may be introduced, some of which with the promise for an enhanced sensitivity in 

detecting conformational changes. 

 

Triple-anisotropy correlations for FRET and non-FRET interactions: 2 in a wider context   

The 3polFRET method has been introduced as a “natural extension” of the conventional 

FCET method from the unpolarized optical regime to the polarized one. However, it might 

have a broader field of application, because the simultaneous measurement of 3 anisotropies 

does not necessitate the presence of FRET. It can be used for monitoring 2-3 different spectral 

channels of a single fluorophore or up to 3 different fluorophores with “well separable 

spectral ranges”, e.g. quantum dots (QDs) [21, 30]. Consequently it belongs to the “spectral 

anisotropy” category recently introduced by Esposito et al. [29]. 

Another related technique recently introduced in the field of biosensing is “dual-

polarization interferometry” (DPI) [50]. The name of this technique suggests as if two 

different pairs of polarization channels – the two polarized components of say channel#1 and 

channel#2  – would be applied simultaneously. However, in the present form of the technique 

the interference between two polarized components of a single channel is exploited, one 

polarized component serving as the probe beam, and the other one as the reference beam for 

the interference. This technique can also be extended with involvement new polarization 

channels for new parameters. 

As to the relevant non-FRET interactions, e.g. correlated membrane events elicited by 

spreading membrane potential in an axon (“solitary waves”), or osmotic pressure in a cell, can 

be mentioned [51]. Collective motions of DNA can also be monitored by selectively labeling 

with 3 different dyes. According to the Perrin-equation (Eq. 15) basically the correlations 

between 3 different lifetimes and rotational correlation times can be detected in these cases. In 

this respect the method shows some similarity to the astronomic observations where 
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correlations between intensities or intensity anisotropies of light waves arriving from distal 

points are measured [52]. 

Accordingly, the interpretation of 2 can also be put in a wider context, conceiving it 

as a purely geometrical measure of the relative orientational distributions of two dipole 

ensembles. This can be made e.g. by taking Eqs. 29s, 30s (in Supporting information) for 

2
min and 2

max as the definitions, which make sense independently whether FRET is 

measured or not.  

 

Earlier works on FRET determination from dual- and  triple-anisotropy correlations 

The concept of simultaneously measuring FRET with the donor and acceptor anisotropies has 

already been applied in the field of single-molecule fluorescence [27, 53] where the 

occurrence of a single FRET event is justified by the detection of the anti-correlations of 

donor and acceptor intensities and anisotropies for a given donor-acceptor pair. Here the need 

for the dual-anisotropy approach for FRET detection naturally arises because fluctuations of 

the orientation factor for FRET (2) do not average out at this statistical level. In a very 

elegant work in the field of wide-field steady-state fluorescence imaging,  Mattheyses et al. 

[28] have already used the triple-polarization concept for a robust determination of FRET 

efficiency and the donor and acceptor concentrations from only a single camera exposure for 

all the 3 detected signals with the aim of rapid identification of binding events in biosensing 

detection schemes. Although the terms of their matrix formalism should correspond to our 

terms (Eqs. 11, 12), their meaning and implications regarding the dynamics of the FRET 

system have been left burried. 

 

The polarization bias of FRET efficiency 

Our formalism is amenable to estimate the committed errors in the FRET efficiency 

determined either only via the donor intensity (i.e. the efficiency of donor quenching) or from 

the sensitized emission of acceptor when the intensities are detected without a polarizer with 

vertically polarized excitation. This error is due to the fact that when FRET is detected 

perpendicularly to the direction of excitation with linearly polarized light, the detected 

intensities are not the total ones, which are independent from polarization, but only partial 

intensities showing some polarization dependence [42, 43]. This polarization error can be 

circumvented by either exciting via a linear polarizer set at the magic angle (54.7°) relative to 

polarization direction of the detection, or detecting through a polarizer set at the magic angle 

relative to the polarization direction of excitation. Detecting perpendicularly to the 

illumination direction, the polarization dependence also sustains even when excitation is with 

depolarized light. This effect has been exploited for a high-sensitive detection of polarization 

in [54].          

 

2 as a tool for controlling FRET 
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The most fundamental property of 2 is that in the absence of its knowledge the FRET 

efficiency can not be translated into distance, the aimed parameter in most of the applications 

of FRET. We followed the route of  2 determination via the depolarization factors (please see 

it in Supporting information) as originally published by Dale et al. [6]. They also were the 

first in calling the attention for treating FRET and polarization in a unified fashion. 

Depolarization factors, the input parameters of 2 can also be determined by excitation angle-

resolved intensity measurements in a confocal microscope [34]. A possibility for narrowing 

the uncertainty of 2 has recently published in [35]. 

Besides the above “passive role” of 2 played in proximity determinations, it can also 

be exploited “actively”, for controlling FRET directionality. This may be based on that 2 

expresses the directionality of interaction by the donor and acceptor, being a factor 

characteristic for the orientational distribution of the donor’s local field [7-9]. Orientation of 

FRET process is a problem of engineering the distribution of the donor’s local field. This can 

be accomplished  e.g. by the type of donor transition, or by putting a plasmonic nano-particle 

or some other boundary surface in the vicinity of donor, modifying the distribution of the 

donor’s local field [55]. 

 A special type of donor transition amenable for the above purpose is the rotating donor 

dipole [56]. Emitters of natural chirality belong to this class of emitters. However some long 

lasting chirality for officially not chiral emitters can also be expected after excitation with 

circularly polarized light based conservation of angular momentum (helicity) [57]. 

Conservation of angular momentum is manifested in a recently discovered series of 

phenomena with circularly polarized light classified as spin orbit interaction (SOI) of light 

[58]. SOI expresses a deep connection between polarization and geometry called geometric 

(or Pancharatnam-Berry) phase. The deep consequence of geometric phase is that the 

behavior of electrodynamics may be governed by spatial geometry and factors affecting the 

geometry. Because FRET in inherently connected to geometry and polarization, 

manifestations of angular momentum conservation can also be expected for FRET [57-59]. 

Circularly polarized light, as a depolarized way of excitation can also lead to modification of 

FRET by enabling more donors for the acceptors to quench when acceptor dipole orientations 

are anisotropically distributed [34, 60].  

 

Extending 3polFRET into the domain of circular polarization 

Besides linear polarization, circular polarization can also be used for representing the 

polarization state of matter [61]. E.g. the linearly polarized state can be conceived as the 

coherent superposition of two counter-rotating circularly polarized state.  In the framework of 

the “circular-base” description of polarization, optical activity is explained by a phase shift 

between the left- and right-rotating circular components leading to changing the direction of 

linear polarization. In this respect the depolarization of sensitized emission during FRET can 

also be visualized as a kind of “optical activity of FRET”. The complete description of 

polarization state of light requires specifying also its circular content besides the linear one. 

These questions and the ones detailed above necessitate pushing 3polFRET into the 

domain of circular polarization [62]. This may be accomplished by introducing circular 

polarizers (quarter-wave plates) into the excitation and detection paths besides the linear 

polarizers, enabling the full description of polarization state of fluorescence with the 

components of the 4-D Stokes-vector [61].                

 

Conclusion 
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Dual-laser flow cytometric FRET method (FCET) has been extended for a detailed 

quantitation of stoichiometry and dynamics of receptor clusters by the detection of polarized 

intensity components of the donor and acceptor. The new approach (3polFRET) enables a 

complete description of FRET systems in the multiplexing and high-throughput conditions of 

flow cytometry. The capabilities of the new method  have been illustrated  with the 

determination of donor’s associated fraction and rotational dynamics, and orientation factor 

for FRET-systems comprised of the two subunits of the MHCI molecule with changing 

acceptor level. Hetero-FRET-induced  “relief of  homo-FRET” has been detected in a 2 

donors-1 acceptor system comprised of the two subunits of MHCI as the donors and MHCII 

as the acceptor by analysis of donor Perrin-plots. For a more sensitive detection of 

conformational changes hybrid parameters, the polarized-FRET indices have been introduced 

by mixing FRET efficiency and donor anisotropy. One of them, E1 has been shown to extend 

the range of FRET substantially. Although the method has been worked out for a flow 

cytometer, it can be realized also in fluorescence microscopes capable for triple-channel 

polarization imaging.  Dynamical information can be gathered with this method, similar to 

that with anisotropy FLIM (rFLIM), but at the steady state, which is simpler and at a lower 

cost. Realizing it in flow conditions the much higher speed of data acquisition and the 

increased statistical precision are the other merits. 
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Legend to figures 

Fig. 1 Polarization effects of FRET. Panel A: Shown are, orientation distributions of donor 

(green cone) and acceptor dipoles (red cone) at large mean separation R1, with a low level of 

FRET. Panel B: Orientation distributions of donor and acceptor dipoles  at smaller mean 

separation R2, with an increased level of FRET. Increased FRET due to shortening of donor-

acceptor separation (R2<R1) leads to narrowing and broadening of orientation distribution of 

donor  and acceptor excited state dipoles, illustrated by cones with the green and red arrow, 

respectively. They are shown on the surface of the cones, but could be anywhere in the 

conical volumes. In parallel, the reduced volume of the cone of donor dipoles reflects reduced 

intensity and fluorescence lifetime due to the donor quenching – dipoles at larger angles are 

inclined to be quenched preferably. The increased volume of the cone of acceptor dipoles 

reflects increased intensity (sensitized emission) due to the indirect excitation by the curvy 

donor dipole fields – extra dipoles appear at larger angles. The lengths of the individual donor 

and acceptor dipoles – and consequently, the radiative rates and intrinsic lifetimes – are not 

affected (d,1=d,2, a,1=a,2). 

Fig. 2 Flow-chart of the triple-polarization FRET (3polFRET) method. The fluorescence 

anisotropies and intensities of the donor and acceptor are the primarily measured quantities (in 

the ellipses). The FRET efficiency and the amount of the donor and acceptor are computed 

from the total intensities of the donor and acceptor (in the rectangles). The donor anisotropy is 

used either for describing rotational motion of the donor if the associated donor fraction is 

known, or – as a refinement of the characterization of the receptor clusters – for the 

computation of the associated donor fraction if the rotational constants of the donor are the 

known quantities. The polarized FRET indices are defined as combinations of the donor 

anisotropies and FRET efficiency. The computation of orientation factor and subsequently the 

distance distributions rests on the knowledge of the rotational constants of both the donor and 

acceptor.     

Fig. 3 Scheme of „triple T-format” optical arrangement for the combined measurement of the 

donor and acceptor anisotropies: top view of triple-polarization FRET (3polFRET) with the 
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collected signals. The cells are illuminated through the main focusing lens L1, by the blue and 

green laser lights whose polarization direction can be adjusted by the HWR1 and HWR2 half-

wave retarders. The fluorescence intensities of the donor and acceptor (green, red) are 

collected by the lens L2 (NA=0.6). The fluorescence intensities activated by the blue laser are 

dispersed by dichroic beam splitter BS (580 nm) into green and red components (I1, I2), which 

are projected through band pass filters BPF1 (535±15 nm),  BPF2 (640±60 nm) and relay 

lenses L3, L4 onto the polarization beam splitter cubes PBS1, PBS2. The fluorescence activated 

by the green laser (I3) is projected by the silvered mirror SM on the polarization beam splitter 

cube PBS3 through the band pass filter BPF3 (640±60 nm) and relay lens L5. The polarization 

direction of the illuminating laser light beams can be rotated into the perpendicular direction 

for the measurement of the G-factors by the HWR1 and HWR2 half-wave retarders. The 

polarization direction in the plane of the drawing (horizontal) is represented by double-ended 

arrows, the perpendicular polarization (vertical) by encircled dots. PM1, PM3 right angle 

prisms for mirroring light from the lasers into the cytometer’s ports. FSC: forward (small 

angle) light scattering, I1: donor intensity, I2: sensitized acceptor intensity, I3: directly excited 

acceptor intensity. There is ~30 sec lag between the signals activated by the two laser lines.    

Fig. 4 Characteristic flow cytometric distributions of the 3polFRET method. The unquenched 

donor intensity Id, the directly excited acceptor intensity Ia, and the FRET efficiency 

distribution E are computed from the total I1, I2 and I3 intensities in the conventional manner 

by using the S1, S2, S3 and  spectroscopic-optical constants. The relative magnitude of I1 as 

compared to Id (thick and thin lines on Panel A) is reduced in proportion with the FRET 

efficiency E due to the quenching by FRET. The Ia (Panel B) and Id intensities are the input 

parameters for determining the acceptor-donor concentration ratios and the f0 FRET fractions 

in Table 1. In Panel C the donor anisotropy in the presence of acceptor r1 is shown together 

with the anisotropy r of the donor-only sample. As compared to r, anisotropy r1 is shifted to 

the right due to FRET. One of the two parameters, the associated donor fraction f and the 

limiting anisotropy r0 of the donor can be determined in the knowledge of the other parameter, 

and r, r1 and E according to the Perrin-equation extended for partial donor associations. On 

Panel D: ra (thin line) is the anisotropy of the directly excited acceptor and ret (thick line) is 

the anisotropy of acceptor excited by FRET. According to the expectation, ret is distributed 

around zero. Deviation of ra, measured in the double-labeled FRET-sample, and the 

corresponding anisotropy of the I3 intensity for the acceptor-only sample (r3a) is an indicator 

of possible steric interaction between the donor and acceptor-carrying ligands. On Panel E , 

only two of the polarization FRET indices, E1 (leftmost, thin line) and E4 (rightmost, thick 

line), having the largest deviations from E are shown, together with E (middle line). These 

quantities are defined by mixing of the FRET efficiency E and the donor anisotropies r1, and 

r. On Panel F, the lower and upper bounds (thick and thin lines) for the FRET orientation 

factor 2 are displayed. These quantities are computed from the limiting anisotropies for the 

directly excited donor and acceptor, as well as for acceptor excited by FRET. The histograms 

have been collected from cells labeled with donor-conjugated L368 and acceptor-conjugated 

W6/32, both at saturation, against the light and heavy chains of MHCI, the 4th sample of 

Table 1, Part A. Related reciprocal donor  anisotropy vs. “complement FRET efficiency” (1-
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E), and acceptor anisotropy vs. the FRET-related quantity x2a 2-D correlation plots collected 

on the MHCI-MHCII system are displayed on Fig. 2s in Supporting information. 

 

Fig. 5 Cartoon illustrating the analogy between 3polFRET and the Chasles-theorem of 

classical mechanics 

According to the Chasles-theorem the general motion of a rigid-body represented by the 

triangle – as a model for a subunit of a biological molecule in a conformational change – can 

be decomposed to the sum of a translation (1) and a rotation (2). In fluorescence spectroscopy 

these motional freedoms can be described by measuring FRET and the donor and acceptor 

anisotropies, respectively. The polarized FRET-indices introduced by Eqs. 32-35 for 

describing conformational changes are combinations of FRET efficiency and donor 

anisotropies, in which the effects of changing proximity (translation) and orientation 

(rotation) are measured additively. 

 

Fig. 6 Cartoon visualizing the splitting of FRET efficiency E into the polarized FRET index 

components E1-E4. The FRET indices and E are shown in the space of “generalized 

anisotropy” (defined by Eq. 23s in Supporting information) with their distances characteristic 

on the amount of splitting. The smallest deviations are seen between E2, E3 and E, being 

proportional to the FRET-induced donor anisotropy enhancement, r’-r, which is small. For no 

enhancement (r’=r) E splits only to E1 and E4. For nonzero anisotropies E1 and E4 always 

deviate from E and from each other, with the largest deviation proportional to the sum of the 

donor anisotropies measured in the absence and presence of FRET, r+r’. For zero anisotropy – 

quick rotations on the fluorescence time scale – there is no splitting at all. For non-zero r and 

when r’>r, the splittings of E into E1 and E4 change inversely with FRET efficiency (E) and 

rotational constant (=). Although the splittings of E into E2 and E3 also change inversely 

with the FRET efficiency, they change parallel with the rotational constant (), see also Fig. 

1s, in Supporting information.  
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Table 1. FRET-resolved associated fractions of donors (f) in acceptor-titrated intramolecular FRET between MHCI subunits on JY cells. 

FRET-pairs 
FRET- 

fraction 

(%) 

FRET 

efficiency 

(%) 

Donor anisotropiesd) 

Calculated according to 

Perrin-model with r0 at 

f0=100 %e) 
Donor: xFITC-

conjugateda) 

Acceptor: Alexa-

Fluor 546-

conjugateda) 

mAb1 Antigen1 mAb2 Antigen2 f0
b) Ec) r r1 r0 r1,calc f 

Part A 

L368  2m 

W6/32(1) 

MHCI 

h.c. 

12.5±1.3 
5.2±0.4f) 

0.138±0.012 

0.139±0.008 -0.005±0.006 0.139±0.013 1.3±0.9 

W6/32(2) 37.4±3.0 
14.7±1.2 

0.143±0.010 0.135±0.016 0.143±0.012 7.9±1.5 

W6/32(3) 75.0±5.5 
23.3±2.0 

0.147±0.011 0.164±0.012 0.145±0.015 79.0±6.0 

W6/32(4) 100.0±8.5 
29.6±3.0 

0.151±0.012 0.172±0.011 0.148±0.013 92.6±8.3 

Part B 

W6/32 MHCI h.c. 

L368(1) 

2m 

6.5±0.5 
4.2±0.4 

0.123±0.010 

0.126±0.010 -0.048±0.058 0.149±0.015 0.6±0.7 

L368(2) 23.6±1.4 
7.6±0.6 

0.127±0.008 0.059±0.030 0.126±0.011 4.2±1.4 

L368(3) 46.6±3.7 
13.1±1.1 

0.128±0.009 0.150±0.012 0.128±0.012 18.2±1.5 

L368(4) 100.0±9.0 
22.2±1.6 

0.135±0.012 0.190±0.013 0.133±0.014 84.6±8.5 

a) Labeling ratios (L) for the antibodies are listed in parentheses: donor conjugated L368 (3.9), W6/32 (3.71); acceptor conjugated L368 

(2.1),  W6/32 (2.8). 
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b) FRET-fractions f0, for the light chain-heavy chain subunits of the MHCI with 1:1 stoichiometry, have been  adjusted by the added amount 

of acceptor mAbs. They have been computed  as    ,ILISLf daaa2dd0  where the -values are the molar decadic absorption 

coefficients for the donor and acceptor at the wavelength of the donor excitation, L-values are the labeling ratios of mAbs, Ia and Id are 

intensities for the directly excited acceptor and unquenched donor on the FRET sample, and  is spectroscopic and optical constant for 

calibration of FRET (d: donor, a: acceptor). 

c) E means FRET efficiency determined from the total donor and acceptor intensities according to the standard FCET formalism (Eqs. 1s-

5s, in Supporting information). 

d) r, fluorescence anisotropy of the sample labeled with only the donor. r1, fluorescence anisotropy of the sample labeled with  both donor 

and acceptor, which depend on both FRET efficiency (E) and clustered donor fraction (f0). Starting limiting anisotropies r0 have been 

determined with the Perrin-model (Eqs. 15-17) with f0, E, r, r1 as input parameters. 

e) These parameters have been determined according to the Perrin-model (Eqs. 15-17) by using r0 value of the donor determined when 

f0=100 %.  

f) Data indicate means with their standard errors (SEM) determined on 3 different measurements. 
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Table 2. Polarized FRET-indices (E1-E4) measured for acceptor-titrated intramolecular FRET between the MHCI subunits on JY cells. 

FRET-pairs 

Polarized FRET-indices (%)b) 
Donor: xFITC-

conjugateda) 

Acceptor: Alexa-Fluor 

546-conjugateda) 

mAb1 Antigen1 mAb2 Antigen2 E1 E2 E3 E4 

Part A 

L368  2m 

W6/32(1) 

MHCI h.c. 

-40.3±3.2 c) 5.1±0.5 5.3±0.5 36.0±3.0 

W6/32(2) -27.0±2.6 14.2±1.1 15.0±1.2 42.6±3.8 

W6/32(3) -15.3±1.6 22.1±1.9 24.0±2.2 48.6±4.3 

W6/32(4) -6.0±0.5 28.4±2.5 30.5±3.0 53.2±4.6 

Part B 

W6/32 MHCI h.c. 

L368(1) 

2m 

-36.7±3.0 3.8±0.4 4.5±0.4 32.8±3.2 

L368(2) -31.9±3.2 7.2±0.6 7.9±0.8 35.2±3.7 

L368(3) -24.3±2.4 12.5±0.9 13.6±1.1 39.3±3.6 

L368(4) -12.3±1.0 20.9±1.7 23.0±2.0 45.8±3.8 

a) Labeling ratios (L) for the antibodies are listed in parentheses: donor conjugated L368 (3.9), W6/32 (3.71); acceptor conjugated L368 

(2.1),  W6/32 (2.8). 

b)  Polarized FRET-indices (E1-E4) were determined by using E, r and r1 according to Eqs. 37-40. Total association of donors (f0=1) was 

also assumed, when r1=r’. While the deviation of E2 and E3 indicates the degree of enhancement of donor anisotropy due to FRET, i.e. the 
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presence of rotational modes on the timescale of FRET, the deviation of E1 and E4 indicates the presence of anisotropy itself, i.e. the lack 

of  rotational modes on the time scale of fluorescence. The absolute range of FRET efficiency is dilated by E1, and compressed by E4 with 

with ~30 %.  

c) Data indicate means with their standard errors (SEM) determined on 3 different measurements. A similar set of data has been compiled 

for a two donors-one acceptor system in Table 2s in Supporting information. 
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Table 3. FRET-resolved limits of orientation factor (2) measured for acceptor-titrated intramolecular FRET between the MHCI subunits on JY 

cells. 

FRET-pairs 

Acceptor anisotropiesb) Lower and upper limits of orientation factorc) 
Donor: xFITC-

conjugateda) 

Acceptor: Alexa-Fluor 

546-conjugateda) 

mAb1 Antigen1 mAb2 Antigen2 ret ra 2
min 2

max 

Part A 

L368  2m 

W6/32(1) 

MHCI h.c. 

-0.107±0.100 d) 0.186±0.015 0.60±0.05 1.40±0.12 

W6/32(2) 0.014±0.010 0.181±0.016 0.43±0.03 2.20±0.20 

W6/32(3) 0.006±0.008 0.177±0.014 0.35±0.05 2.45±0.20 

W6/32(4) 0.011±0.010 0.174±0.017 0.32±0.04 2.49±0.20 

Part B 

W6/32 MHCI h.c. 

L368(1) 

2m 

-0.033±0.100 0.191±0.015 0.61±0.06 1.27±0.13 

L368(2) 0.006±0.010 0.180±0.014 0.46±0.04 1.95±0.20 

L368(3) 0.004±0.010 0.174±0.012 0.37±0.04 2.44±0.20 

L368(4) -0.005±0.020 0.173±0.016 0.28±0.02 2.61±0.25 

a) Labeling ratios (L) for the antibodies are listed in parentheses: donor conjugated L368 (3.9), W6/32 (3.71); acceptor conjugated L368 

(2.1),  W6/32 (2.8). 

b) Acceptor anisotropies ret and ra were calculated according to Eqs. 13, 14. 
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c) Lower and upper limits for the orientation factor  2
min and 2

max were computed according to Eqs. 29s, 30s in Supporting information. 

d) Data indicate means with their standard errors (SEM) determined on 3 different measurements. A similar set of data has been compiled 

for a two donors-one acceptor system in Table 4s in Supporting information.   
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Figure 5 
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