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ABSTRACT 

In this study we show that cylindrospermopsin (a cyanotoxin) content of filaments of Aphanizomenon ovalisporum 
ILC164 depended on growth on combined nitrogen or nitrogen fixation. Our results also demonstrated that the shift 
down of cyanobacterial filaments from combined nitrogen to dinitrogen fixing condition resulted in a significant de-
crease of cylindrospermopsin pool size which resumed a growth rate dependent manner as the heterocyst and nitro-
genase formation appeared. The current study indicated that alteration of nitrogen metabolism of Aphanizomenon 
ovalisporum (Forti) induced changes in cyanotoxin (cylindrospermopsin) metabolism. In addition, this is the first report 
that isolated heterocysts, the differentiated anaerobic cells for nitrogen fixation of cyanobacteria, did not contain cylin-
drospermopsin. 
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1. Introduction 

Cyanobacteria, free living obligate photoautotrophic mi- 
croorganisms can drive energy from sunlight and carbon 
from carbon dioxide content of the air which dissolves in 
water. Some cyanobacteria are also able to fix atmos- 
pheric dinitrogen. Filamentous nitrogen fixing cyano- 
bacteria that combine aerobic metabolism in their ve- 
getative cells, with anaerobic metabolism in their differ- 
entiated cells, called heterocysts are widespread in many 
eutrophic ecosystems [1-7]. In addition, phytoplanktonic 
cyanobacteria are responsible for extensive blooms in 
natural surface waters. Bloom-forming cyanobacteria, 
among those the nitrogen fixing ones, have caused in- 
creasing concern over the last two decades in fresh water 
and marine environment, since a number of species are 
capable of producing metabolites that act as toxins of 
biological origin [8,9,10]. Harmful metabolites of cyano- 
bacteria, called cyanotoxins are a diverse group of natu- 

ral toxins both from the toxicological and chemical po- 
ints of view. These toxins can be classified into several 
categories based on their mode of action. They are neu- 
rotoxins, hepatotoxins, harmful lipopolysaccharides, gas- 
troenteral toxins and a variety of other, as yet unidenti- 
fied toxic compounds [10-14]. In more recent years cyl- 
indrospermopsin (CYN), a ulphur containing hepatotoxin 
(tricyclic guanidyl hydroxymethyluracil) known to pro- 
duced by Cylindrospermopsis raciborskii was concerned 
in the worst known case of human poisoning in Australia 
[12,15]. Beside that CYN is produced by several other 
organisms as well, namely by Anabaena bergii, Aphani- 
zomenon ovalisporum, A. flos-aquae, Raphidiopsis cur- 
vata, Umezakia natans [9,14-16]. 

The growth of cyanobacteria, like other organisms, is 
greatly affected by the concentration of nutrients of 
which there is often a short supply in natural environ- 
ment [17]. These organisms are often subjected to limita- 
tion in phosphorous, combined nitrogen, sulphur etc. that 
may give rise to specific alteration of cyanobacterial phy- *Corresponding author. 
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siology and metabolism. The response of obligate photo- 
autotrophic cyanobacteria to changes in nutritional con- 
ditions is an active research topic [17,18]. However, 
there is still a need for studies about the interference of 
main nutrient limitation with cyanotoxin production of 
cyanobacteria, especially in the case of CYN. Recently, 
we have found that sulphate and phosphate starvation of 
A. ovalisporum, a nitrogen fixing and toxic, CYN pro- 
ducing cyanobacterium results in a characteristic reduce- 
tion of CYN pool size on the basis of cell number and 
dry mass of culture [19]. However, there are no data on 
the interference of combined nitrogen starvation with 
cyanotoxin content of A. ovalisporum. In addition, under 
combined nitrogen limitation, the nitrogen fixing fila- 
mentous cyanobacteria induce the differentiation of het- 
erocysts, specialized cells for dinitrogen fixation [2-6,20]. 
Since nitrogen fixing cyanobacteria are frequently well- 
known members of harmful blooms in natural waters, it 
deserves considerable attention to see the alteration of 
CYN content of cells shifted down from combined ni-
trogen growth condition to nitrogen fixing one. What is 
more, no cyanotoxin analysis, including CYN has been 
reported from heterocysts so far. 

2. Materials and Methods 

2.1. Strain and Culture Conditions 

Cylindrospermopsin producing Aphanizomenon ovalis- 
porum strain ILC-164 from Lake Kinneret, Israel was 
grown in liquid medium of Allen as described earlier 
[19]. The cultures were kept in glass flasks thermostati- 
cally maintained at 28˚C and illuminated with cool white 
fluorescent light (80 μmol·photons·m−2·s−1). Aeration and 
mixing was achieved by bubbling with sterile air. Growth 
of the cultures was monitored by measurement of chlo- 
rophyll-a content (Chl-a µg·ml−1) in 80 % acetone ex- 
tracts, cell number and dry mass content. Cell number 
and heterocyst frequency was determined in 5 µl culture 
samples in triplicate (all cells of filaments were counted 
microscopically [19]. For dry mass measurement 3 ml 
samples were centrifuged (6.000 × g, 5 min), washed and 
the pellets were lyophilized, weighted and cell mass 
(mg·ml−1) calculated. All measurements were in tripli- 
cates [19].  

2.2. Nitrogen Starvation of A. ovalisporum  
Cultures 

Combined nitrogen grown exponential A. ovalisporum 
cultures were centrifuged (6.000 × g for 10 min, Beck- 
man Avanti TM Centrifuge, J-25, at 25˚C) and the cell 
pellet was carefully washed twice with sterile combined 
nitrogen free medium. At zero time the washed cells 
were resuspended in sterile prewarmed full medium 
(control) at the same densities or in medium containing 

only 0.1 mM of combined nitrogen (NH4NO3) for shift- 
ing to dinitrogen fixation. The resuspended cultures were 
further cultivated under otherwise unchanged conditions. 
Samples were collected each day and used for assays as 
described above.  

2.3. Isolation of Heterocysts from  
Aphanizomenon ovalisporum 

Heterocysts were isolated by the lysozyme method of 
Fay [21,22]. Harvested filaments (centrifuged by 6.000 × 
g for 5 min) of a 10 l culture fixing nitrogen for 336 h 
were washed free from culture medium and resuspended 
in 1 mM Tris-HCl (pH 7.6), 2 mM EDTA, 0.5 M manni- 
tol. The filaments were maintained at 35˚C and lysozyme 
(Sigma) was added at a concentration of 1.0 mg·ml−1 and 
incubated for 45 min. The suspension was put on ice and 
drawn through a Pasteur pipette. Then suspension was 
diluted 20-fold with mannitol-Tris buffer (without ly- 
sozyme and EDTA) and vigorously vortexed. Hetero- 
cysts were collected by differential centrifugation until 
no vegetative cells were apparent in the pellet (dry mass 
of vegetative cell free, isolated heterocysts was 127 mg 
from a 10 l culture). 

2.4. Western Blot Analysis 

For detection of dinitrogenase reductase protein in nitro- 
genase complex of cyanobacterial samples, proteins of 
cell free extracts of A. ovalisporum filaments (grown in 
presence or absence of combined nitrogen) were sepa- 
rated by 7.5% SDS polyacrylamide gel-electrophoresis 
and the gels were stained with Coomassie Brilliant Blue 
[23]. The molecular mass of sample proteins was cali- 
brated with the help of SDS-PAGE markers (Pharmacia, 
LMW Kit). Western blots were carried out after 
SDS-PAGE to detect presence of dinitrogenase reductase 
in samples by a modified method of [24]. Briefly, the 
separated proteins (unstained gels) were transferred to 
nitrocellulose filter (Protran BA85, Schleicher and 
Schuell, Germany). Following protein transfer to nitro- 
cellulose (300 mA, 3 hours, Tris-Glycine-Methanol) the 
membranes were incubated in blocking buffer (phosphate 
buffered saline /PBS/, pH 7.4 containing 2% bovine se- 
rum albumin and 0.1% Tween 20; 1 hour, room tem- 
perature). The blot was immunologically probed with a 
specific antibody raised to dinitrogenase reductase sub- 
unit (Chicken anti nifH, Agrisera AB, Sweden). Primary 
antibody was incubated with the membrane for 7 hours, 
at room temperature (the primary antibody was diluted 
1:3000 in blocking buffer). A blotting grade secondary 
antibody enzyme conjugate (anti Chicken IgG Alkaline 
Phosphatase conjugate, Sigma) diluted 1:7000 in block- 
ing buffer was added to bind to the primary antibody (2 
hours, room temperature). The alkaline phosphatase 
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catalyzed the formation of a stable and detectable purple 
product at the site of dinitrogenase reductase–anti nifH 
complex from the soluble substrate system 5-bromo-4- 
chloro-3-indolyl-phosphate (BCIP, Sigma) and nitroblue 
tetrazolium (NBT, Sigma). The working buffer for BCIP- 
-NBT substrate solution was 0.1 M Tris-HCl (pH 9.5) 
containing 0.5 mM MgCl2. After antibody incubations 
(primary and secondary antibodies) the membranes were 
washed 3 times in PBS containing 0.1% Tween 20. 

2.5. Amplification of PS Gene and PKS Gene in 
Vegetative Cells and Heterocysts of  
A. ovalisporum 

DNA extraction was achieved by the phenol-chloroform 
method of [25,26]. PCR was used to analyse the presence 
or absence of the PKS and PS specific gene region, 
which are important parts of the gene cluster responsible 
for CYN biosynthesis. The photo preparation and the 
analysis of results was achieved using Cleaver Geldoc 
system. For the PS and PKS gene amplification, the PCR 
reaction was performed in 25 µl containing 12.5 master 
mix (Fermentas; PCR buffer, 0.05 u/µl taq Polimerase, 4 
mM MgCl2, 0.4 nM dntP), forward and reverse primer, 
DNA template (100 ng). Amplification was performed in 
a T Gradient thermocycler, consisting of an initial dena-
turation step at 95˚C for 5 min, followed by 35 cycles of 
0.5 min at 94˚C, 0.5 min at 5˚C and 2 min at 72˚C and a 
final extension step of 7 min at 72˚C. For the PKS gene 
amplification, the PCR reaction was performed as above, 
using PKS M4 
(5’-GAAGCTCTGGAATCCGGTAA-3’) and PKS M5 
(5-AATCCTTACGGGATCCGGTGC-3) primers. For 
the PS gene amplification, the PCR reaction was per- 
formed as above, using PS M13 
(5’-GAAGCTCTGGAATCCGGTAA-3’) and Ps M14 
(5-AATCCTTACGGGATCCGGTGC-3) primers [26]. 
The PCR products were electrophoresed in 1% agarose 
gel. 

2.6. Analysis of CYN Content of Combined  
Nitrogen Grown and Nitrogen Fixing Cells 
and Heterocysts of A. ovalisporum 

3 ml culture samples were centrifuged (6.000 g for 3 min) 
and the pellets were lyophilized and used for CYN assay 
[27,28]. For CYN content assay of heterocysts, isolated 
heterocysts were resuspended in 1 mM Tris-HCl pH 7.6 
buffer and sonicated for 2 min in 15 s intervals on ice at 
full power. An aliquot of the sonicated material was ly- 
ophilized for dry mass assay. The rest of sonicated extract 
was centrifuged (10.000 g, 30 min, 4˚C) and the super- 
natant assayed for CYN content and a part of it saved for 
Western blotting. The cyanotoxin content was determined 
with the help of a slightly modified method of capillary 
electrophoresis as described earlier by our laboratory 

[27,28]. A longer capillary (85 cm) was used to obtain 
better separation of the compounds. The data were nor- 
malized to the zero time control which was chosen to 100 
% on basis of cell number. 

3. Results  

3.1. Growth and Heterocyst Development of 
Aphanizomenon ovalisporum Cultures 

Growth curves (cell number·ml−1) from representative 
experiments of combined nitrogen starved A. ovalis- 
porum cultures are shown in Figure 1. It is obvious, the  
 

 

Figure 1. Growth of Aphanizomenon ovalisporum cultures 
on combined nitrogen step-down. An exponential phase cul- 
ture grown on Allen medium was centrifuged, gently wa- 
shed with combined nitrogen free medium and divided into 
two parts (zero time) and further cultivated in full medium 
(control ─♦─) or starved for combined nitrogen (─●─) 
throughout the experiment as described in Materials and 
Methods (A). Alterations of heterocyst frequency (B) and 
nitrogenase (C) Western blot of Aphanizomenon ovalispo- 
rum under control (combined nitrogen ─♦─) and nitrogen 
starvation (─●─) conditions. 

Open Access                                                                                            AiM 



G. VASAS  ET  AL. 560 

combined nitrogen starvation, the turn on dinitrogen fi- 
xation reduced the growth rate of the culture (Figure 
1(A)). When heterocyst development was initiated by re- 
placing combined nitrogen containing medium with 
minimal medium, growth ceased after 25 hours and re- 
commenced 75 h later. Under the experimental condition 
described, the removal of combined nitrogen from a cul- 
ture of A. ovalisporum caused the differentiation of a 
proportion of vegetative cells and resulted in the forma- 
tion of heterocysts. The mature heterocyst frequency 
reached a maximum (8.5%) at 250 h (Figure 1(B)) and 
was concomitant with the dinitrogenase reductase sub- 
unit level. Consequently, nitrogenase activity developed 
parallel with the heterocyst formation as shown by west- 
ern blots (Figure 1(C)). The presence of heterocysts and 
dinitrogenase reductase first became detectable after 60 
and 72 hours, respectively (Figures 1(B) and (C)). The 
heterocyst count and the amount of dinitrogenase reduce- 
tase then rose rapidly and the maximum nitrogenase level 
recorded 240 h after combined nitrogen starvation (Fig- 
ure 1(B) and (C)). 

3.2. Occurrence of Dinitrogen-Reductase Protein 
in Aphanizomenon ovalisporum Cultures 

Protein extracts of culture samples (combined nitrogen 
grown and nitrogen fixing ones) and isolated heterocysts 
were subjected to SDS-polyacrylamide gel electrophore- 
sis and Western blotted. The blots proved the presence of 
nitrogenase complex in heterocysts (Figures 1(C) and 2) 
which was not detectable in extracts of combined nitro- 
gen grown vegetative cells (Figures 1(C) and 2). In- 
creased amount of cell extracts of heterocysts loaded to 
polyacrylamide gel and transferred to nitrocellulose pa- 
per provided a linear signal increase for nitrogenase (Fi- 
gure 2).  

3.3. Alteration of Cylindrospermopsin Content 
of Combined Nitrogen and Nitrogen Fixing 
Aphanizomenon ovalisporum Cultures 

We analyzed the alterations in cylindrospermopsin con- 
tent of control and combined nitrogen starved (nitrogen 
fixing) cultures and isolated heterocysts with the help of 
capillary electrophoresis. When combined nitrogen grown 
A. ovalisporum cells were transferred from nitrogen effi-
cient medium to dinitrogen, concomitant with the differ-
entiation events the CYN content of the cells was de-
creased to a minimum value at 150 h (Figure 3). After 
this period of time the CYN content of cultures increased 
to about 95 % of control level (Figure 3). In control, 
combined nitrogen grown cultures the CYN content of A. 
ovalisporum cells was stable and the amount of CYN did 
not change on cell number base throughout the experi-
ment (Figure 3). It is worth to mention that in nitrogen 

fixing cultures CYN content of cells started to rise (150 h) 
when the increase of nitrogenase level was detected con- 
comitantly (Figures 1(C) and 3). 

3.4. Amplification of PS Gene and PKS Gene in 
Vegetative Cells and Heterocysts of  
A. ovalisporum 

The vegetative cells (as positive control) and heterocysts 
of the strains of A. ovalisporum, a well-known CYN 
producing strain (ILC-164) were tested for PKS and PS 
genes to investigate whether the gene rearrangement af- 
fects the detection of genes responsible for CYN biosyn- 
thesis. The amplified genes were detected in the vegeta- 
tive cells and heterocysts too as shown on Figure 4. 
 

 

Figure 2. Presence of dinitrogenase reductase subunits in 
vegetative cells and heterocysts. Extracts of nitrogen fixing 
(−Nc, 25 μg protein) filaments and isolated heterocysts in 
increasing amount [hc1 (25 μg); hc2 (50 μg); hc3 (75 μg), 
hc4 (100 μg protein)] and combined nitrogen grown fila-
ments (+Nc, 25 μg protein) were blotted and are shown by 
one representative experiment. 
 

 

Figure 3. Alteration of cylindrospermopsin content of con-
trol (─♦─) and nitrogen fixing (─●─) cultures. In time 0 
sample, the basal level of cylindrospermopsin was 1.91 × 
10−4 ng per cell. 
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Figure 4. Presence of PKS and PS genes in vegetative cells 
and heterocyst. PKS in combined nitrogen grown filaments 
(A) and isolated heterocysts (B); PS in extracts of combined 
nitrogen grown (C) and isolated heterocysts (D); marker 
(M). 

3.5. Cylindrospermopsin Content of Heterocysts 

In order to ascertain whether the isolated heterocysts 
contain CYN, heterocysts of 10 l culture of A. ovalis- 
porum (127 mg dry mass) were isolated and after cyano- 
toxin extraction the extracts were assayed for CYN by 
capillary electrophoresis (Figure 5). Figure 5(A) pre- 
sents the capillary electrophoretic separation of compo- 
unds of isolated heterocysts and no CYN was detected. 
To show the unequivocal identity of CYN peak in the 
electropherogram the capillary electrophoretic run was 
spiked with HPLC-purified CYN standard (insert of 
Figure 5(A)). CYN was purified as our laboratory des- 
cribed earlier [27] and its electropherogram is shown on 
Figure 5(C). In contrast to the isolated heterocysts, the 
cyanotoxin extracts of combined nitrogen grown cells 
contained CYN (Figure 5(B)).  

4. Discussion 

Filamentous cyanobacteria grown in presence of a source 
of assimilable combined nitrogen consist of undifferenti- 
ated vegetative cells. Following transfer to medium free 
of nitrogen source, many species, among those Apha- 
nizomenon ovalisporum develop specialized cells known 
as heterocysts at regular intervals in each filament. Com- 
bined nitrogen depletion results in striking changes in the 
morphology, ultra structure, pigment composition, pho- 
tosynthesis, nitrogen fixing activity, DNA structure etc. 
of nitrogen fixing cyanobacteria [1-6,20]. The hetero- 
cysts are sites of anaerobic nitrogen fixation and they are 
formed concomitantly with combined nitrogen depletion. 
The molecular basis of those processes is well studied 
and understood [2,3,5,6,29].  

Toxic bloom developments of cyanobacteria caused 
mainly by eutrophication of surface water bodies, both in  

 

Figure 5. Capillary electrophoretic separation of CYN from 
heterocysts of Aphanizomenon ovalisporum. Insert in (A) 
shows a representative experiment which was spiked with 5 
μg·ml-1 CYN. CYN content of the combined nitrogen grown 
culture (B). Electropherogram of HPLC-purified CYN 
standard (10 μg·ml−1). 
 
marine and fresh waters are a worldwide problem. In ad- 
dition toxic cyanobacterial blooms imply a high risk for 
human and animal health due to the ability of several 
species to produce potent toxins [7]. Cylindrospermopsin, 
a water soluble cyanotoxin is described as a potent hep- 
totoxin with additional affection of kidneys, heart, thy- 
mus, spleen and intestine [8,12-14,30]. It is believed that 
the damage is chiefly caused by inhibition of protein 
synthesis [31-34]. What is more, carcinogenic and aller- 
gic activities were suggested recently due to the presence 
of uracil and sulphinated guanidino moieties [35-37]. In 
addition, [27] demonstrated that CYN interferes with 
plant metabolism as well. The biosynthesis of CYN is 
understood [26] and its chemical structure and feeding 
experiments with stable isotopes suggested the role of 
polyketide synthase [38]. [39] recommended that cyano-
bacterial amidinotransferases are likely to be involved in 
the formation of guanidino-acetic acid, a precursor of 
CYN.  

Nutrient limitation stress and its regulation in cyano- 
bacteria may have much common with heterotrophic 
bacterial nutrient restriction [40]. Therefore, one would 
anticipate the influence of nitrogen starvation on the me- 
tabolism of cyanotoxins, herein on CYN. It has been long 
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known, the combined nitrogen starvation results in a 
transient stop of growth of cyanobacteria capable for ni- 
trogen fixation. Later, as consequence of alteration of 
gene expression, formation of heterocysts and nitroge- 
nase, the growth resumes, though not necessarily at the 
same rate [6,25]. In this respect A. ovalisporum behaved 
as it was suspected under nitrogen shift down (Figure 1). 
Nevertheless, no data are available how nitrogen starve- 
tion alters the cyanotoxin content of CYN producing and 
nitrogen fixing A. ovalisporum cells. In addition, spatial 
and temporal variation of cyanotoxin content and toxicity 
of bloom samples is well documented [11,15,41-43]. In 
previous studies of microcystin production of organisms 
that do not fix nitrogen (e.g. Microcystis aeruginosa) it 
became clear that nitrate deprivation alters the cyan- 
otoxin production. [42] demonstrated conclusively that 
microcystin content of cells and cell division is tightly 
coupled in nitrogen limited cultures. In the case of des- 
metyl-3-micro-cystin-RR producing Oscillatoria agard- 
hii (not N2 fixing cyanobacterium) high toxin production 
correlated with high combined nitrogen concentration in 
the culturing medium [44]. Basically similar data were 
obtained for microcystin producing Anabaena strains, but 
under nitrate grown conditions only [45]. Our finding 
suggest for a nitrogen fixing organism (A. ovalisporum) 
that the cyanotoxin content (CYN) of cells is dependent 
on metabolic activity of cells which most of the cases 
was correlated with growth rate (Figures 1 and 3). 
However, when nitrogen limitation started the CYN con- 
tent of cells dramatically decreased and resumed only 
after an efficient nitrogenase functioning which sup- 
ported the increase of growth rate of nitrogen fixing cells. 
In addition, our former study undoubtedly proved for the 
same organism (A. ovalisporum) that sulphur and phos- 
phorus limitation changed CYN, a sulphur containing 
cyanotoxin production of cells in a similar manner [19]. 

It is known that isolated heterocysts are highly active 
in light driven nitrogen fixation measured by acetylene 
reduction and in protein synthesis [46-48]. Although the 
heterocysts contained the PKS-PS genes necessary for 
CYN biosynthesis (Figures 3 and 4), the isolated hetero- 
cysts of A. ovalisporum did not contain CYN as shown 
by capillary electrophoresis (Figure 5). The breakdown 
of reserve molecules during heterocyst formation and 
dramatic alteration of gene expression in heterocysts has 
been noted long ago [2,3,5,6,16,20,25, 49,50]. The cur- 
rent study indicates that the CYN content of isolated het- 
erocysts was reduced in A. ovalisporum under combined 
nitrogen starvation. This is not surprising, since it is well 
known that during heterocyst differenttiation no net in- 
crease in cell mass of filament is possible and it is con- 
comitant with basic alteration of heterocyst and vegeta- 
tive cell metabolism [25]. Taking into account that the 
heterocyst focuses on nitrogen fixation under intra- 

cellu-lar anaerobic conditions, it may be that in such cir- 
cumstances, the toxin production is blocked. We suggest 
that these metabolic changes might be the reason of the 
disappearance of CYN during heterocyst differentiation. 

5. Conclusion 

Our findings suggest for the nitrogen fixing A. ovalispo- 
rum that the CYN content of cells is dependent on meta- 
bolic activity of cells, which is correlated with growth 
rate. CYN content of cells dramatically decreased when 
nitrogen limitation started and resumed only after an ef- 
ficient nitrogenase functioning, which supported the in- 
crease of growth rate. The current study indicates that the 
CYN content of isolated heterocysts was reduced in A. 
ovalisporum, although the PKS and PS genes responsible 
for CYN biosinthesis were present in differentiated hete- 
rocysts.  
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