1	
2	
3	Distribution of pesticide residues in soil and uncertainty of sampling
4	
5	
6	GABRIELA K. SUSZTER AND ÁRPÁD AMBRUS ^{2*}
7	
8	¹ Wessling Hungary Ltd., 56 Fóti út, Budapest 1047, Hungary;
9	
10	² retired from National Food Chain Safety Office, 24 Keleti Károly u Budapest, 1024
11	Hungary,
12	
13	Abstract
14	
15	Pesticide residues were determined in about 120 soil cores taken randomly from the top 15
16	cm layer of two sunflower fields about 30 days after pre-emergence herbicide treatments.
17	Samples were extracted with acetone-ethyl acetate mixture and the residues were determined
18	with GC-TSD. Residues of dimethenamid, pendimethalin and prometryn ranged from 0.005
19	mg/kg to 2.97 mg/kg. Their relative standard deviations (CV) were between 0.66 and 1.13.
20	The relative frequency distributions of residues in soil cores were very similar to those
21	observed in root and tuber vegetables grown in pesticide treated soils. Based on all available
22	information, a typical CV of 1.00 was estimated for pesticide residues in primary soil samples

E-mail: ambrusadr@yahoo.co.uk

^{*}Address correspondence to Dr. Árpád Ambrus (Retired), National Food Chain Safety Office,
41 Hómező u Budapest, 1221 Hungary; Phone:+36 1 2263790; Fax: -;

23	(soil cores). The corresponding expectable relative uncertainty of sampling is 20% when
24	composite samples of size 25 are taken. To obtain a reliable estimate of the average residues
25	in the top 15 cm layer of soil of a field up to 8 independent replicate random samples should
26	be taken. The obtain better estimate of the actual residue level of the sampled filed would be
27	marginal if larger number of samples were taken.
28	
29	
30	Keywords: Pesticide residues in soil, distribution of pesticide residues, uncertainty of
31	sampling
32	
33	
34	Introduction
35	
36	The distribution of pesticide residues in / on treated objects has been extensively studied. The
37	deposition of residues is affected by several factors such as, application technique, positioning
38	of nozzles, growth stage and spatial arrangements of treated plants, microclimatic
39	conditions. ^[1-5] Certain proportion of applied dose inevitably reaches the soil as a combined
40	effect of factors mentioned above. ^[1, 6] Further on, heavy rain or sprinkling irrigation can wash
41	off the residues from the treated surface. ^{$[1, 7, 8]$} .
42	Around hundred-fold differences were found in various fruits (apple, banana, kiwi, orange,
43	peach, pear, plum, tomato) being in various positions of the trees. ^[9-11] Similar variability was
44	found in crops taking up the pesticide residues from soil following broadcast ^[12] or furrow
45	application. ^[13]
46	Most of the studies on distribution of residues were performed by taking 80 to 130 samples
47	from the treated areas. Each sample set provides one estimate of the true variability of

residues. Model experiment reported by Ambrus^[14] revealed that a minimum of 300 samples 48 should be taken from one field to get an estimate of the relative standard deviation (CV) 49 describing the true variability of residues within about 3 percent. The large variability of CV 50 values of residues ranging from 0.11 to 1.42 in sample sets of 100-130 crop units representing 51 182 crop-pesticide combinations^[15,16] indicated the uncertainty of sampling. It was shown that 52 one sample set may not provide reliable estimate of the true distribution of residues on the 53 treated area. Farkas et al. reported ^[16] that the relative range of the expectable CV of residues 54 in composite samples is independent from the CV of the residues in primary samples, and 55 preferably minimum 4 replicate samples should be taken from each of 20 different fields to 56 57 obtain the relative difference of CV values within 50%. Further on, their results confirmed that the central limit theorem describing the relationship between the variance of residues in 58 primary samples (V_1) and composite samples (V_n) as a function of number of primary 59 60 samples (n) is also applicable for strongly skewed continuous distribution:

- 61
- 62

 $V_n = \frac{V_1}{n} \tag{1}$

63

The uncertainty of the measured residue comprises of four major components, ^[17] such as 64 sampling (S_S) , subsampling (S_{SS}) , sample preparation (removing the parts from soil which are 65 not analyzed e.g. plant remains, pebbles etc.), sample processing (comminution, 66 homogenization of the bulk sample taken from the field) (S_{Sp}) and analysis of test portion (S_A) 67 withdrawn from the homogenized analytical sample. The uncertainty of sample preparation 68 cannot be quantified, but by carefully following the detailed standard operation procedure can 69 be minimized. If the procedure is carried out correctly, the average concentration of the 70 pesticide residue does not change during the above operations. Their contribution to the 71

combined uncertainty of the measured residues (CV_R) can be expressed with their relative standard deviation according to the general rule of propagation of random error: ⁽¹⁸⁾

74

75
$$CV_R = \sqrt{CV_S^2 + CV_{SS}^2 + CV_{Sp}^2 + CV_A^2}$$
(2)

76

When subsampling is performed in the laboratory, the uncertainty of the laboratory phase of the analysis (CV_L) incorporates the subsampling together with sample processing and analysis:

80
$$CV_L = \sqrt{CV_{SS}^2 + CV_{Sp}^2 + CV_A^2}$$
(3)

The uncertainty of sampling, which cannot be directly determined, can be calculated as:

- 83

 $CV_S = \sqrt{CV_R^2 - CV_L^2} \tag{4}$

85

86 Once the method is optimized and validated, the CV_L , representing the within laboratory 87 reproducibility of the method, can be conveniently determined from the results of reanalyzes 88 of retained test portions containing residues in well detectable concentration as part of the 89 regular quality control of the laboratory. If the relative difference of the results of replicate 90 measurements of one sample is

91

92

 $\Delta_i = \frac{|R_1 - R_2|}{\bar{R}} \tag{5}$

and k samples were analyzed in replicates during the routine operation, the typical withinlaboratory reproducibility of the measurements can be calculated as:

$$CV_L = \frac{\sum \Delta_i}{1.128 \times k} \tag{6}$$

where the factor of 1.128, corresponding to duplicate measurements, is taken from range
statistics. ^[19]

100	The fate of residues in soil is widely studied as different tests are required for the assessment
101	of the environmental behavior of residues before registration of a pesticide is granted. ^[20] For
102	instance, samples are taken from the treated fields at various times after the application to
103	determine the decline of residues, runoff from the treated fields and the potential of residues
104	in follow crops. To correctly interpret the results of some environmental fate studies carried
105	out on large scale test areas, the information on the uncertainty of sampling would be
106	required. ^[21]
107	In contrast to the extensively-studied distribution of residues in treated plants, practically no
108	information related to distribution of residues in soil of large fields is available.
109	
110	The objectives of our work are to (a) determine the variability of residues in individual soil
111	cores (primary samples) taken from the upper 15 cm layer of commercially treated fields; (b)
112	demonstrate that, in the age of GC-MS/MS, LC-MS/MS techniques, simple gas
113	chromatographic analyses of samples of known pesticide treatment history can still be used to
114	obtain reliable results; (c) compare the distribution of residues in soil to those found in plants;
115	(d) estimate the uncertainty of sampling of soil for determination of pesticide residues, and
116	provide guidance for preparing sampling plans.
117	
118	

Materials and methods

120 Collection of soil core samples

122	Two sunflower fields with different soil characteristics and known pesticide treatment				
123	histories were selected in the northeast part of Hungary near Mezőkövesd and Hercegkút.				
124	Both fields were treated according to the regular agricultural practice. Three active				
125	ingredients: dimethenamid ((RS)-2-chloro-N-(2,4-dimethyl-3thienyl)-N-(2-methoxy-1-				
126	methylethyl)acetamide), pendimethalin (N-(1-ethylpropyl)-2,6-dinitro-3,4-xylidine), and				
127	prometryn (N ² ,N ⁴ -diisopropyl-6-methythio-1,3,5-triazine-2,4-diamine) were used as pre-				
128	emergent herbicides and sprayed onto the soil surface. The details of the pesticide				
129	applications and basic soil parameters are summarized in Tables 1 and 2, respectively.				
130					
131	The rectangular sampling sites of 100 x 100 m were selected in the middle of the fields. At				
132	every 10 m along the four edges of the site white wooden sticks were placed to mark the				
133	position. The random sampling positions were allocated with one meter accuracy based on the				
134	X:Y coordinates drawn with MS Excel randbetween function. Six assistants and the project				
135	leader took part in the sampling operations. Four assistants were moving along the edges of				
136	the sampling site and stopped at the corresponding coordinate. Two assistants were taking the				
137	samples from the imaginary crossing of the lines between the by-standers standing at the X:Y				
138	coordinates at the edges of the field as illustrated in Figure 1. The persons taking the samples				
139	carried with them a Garmin GPS navigation device and recorded the coordinates shown on it.				
140	The accuracy of visual location of the sampling position was within the accuracy (± 3 m) of				
141	the navigation device.				

Altogether 130-130 soil cores of 5 cm diameter down to 15 cm depth were taken from each sampling site (300-400 g/soil core) about four weeks after the pesticide treatments. The samples were stored in deep-freezer within 12 hours after sampling and kept frozen until their analysis. Untreated soil samples were taken from the nearby fields of similar soil characteristics. As an example, the positions of taking random samples and the approximate prometryn residues found in the primary soil cores are shown in Figure 2.

149

150 Preparation of soil samples

151

The soil cores were processed as described by Suszter et al.⁽²²⁾ Each sample was weighed, 152 spread on a tray and the foreign materials, pebbles were removed, and the prepared soil was 153 weighed again. The soil was pressed through a 5-mm sieve and transferred into the blender. 154 155 The water content of the soil was adjusted to about 30-40 w/w % by adding distilled water. The amount of added water was recorded. The soil water mixture was let to stand for a few 156 157 minutes and then it was homogenized. The consistency of the matrix was examined visually and, if required, more water was added to get a creamy soil pulp. 158 For checking the recoveries in each analytical batch, about 2 kg of blank, untreated soil was 159 homogenized with sufficient amount of water in a blender. From the creamy soil pulp 20-20 g 160 soil equivalents were measured in labeled polyethylene bags and stored in a freezer until they 161 162 were used. 163

164 Analysis of samples

166	About hundred and twenty samples were analyzed with the validated method described in the				
167	preceding article, ^[23] and 10 samples were kept as reserve. The performance parameters of the				
168	method complied with the Codex GL ^[24] and the European Guidance Document ^[25] .				
169	Matrix matched calibration mixtures containing dimethenamid (DI), pendimethalin (PE) and				
170	prometryn (PR) were prepared in 8 different concentrations ($\frac{1}{2}LOQ - 150*LOQ$ ranged about				
171	28-8000 ng/mL in case of DI and PE, and 15-4000 ng/mL in case of PR) in ethyl acetate.				
172	Chlorpyrifos (300 ng/mL) was added to each calibration solution as internal standard (ISTD).				
173	The samples were analyzed in sample sets. One set consisted of one system suitability				
174	mixture (SST) ^[26] , one reagent blank and blank soil sample, 8 calibration solutions (from				
175	0.5*LOQ up to 150*LOQ), ten soil samples containing field incurred residues, one extract of				
176	a retained test portions of a sample analyzed earlier, and one spiked sample at the LOQ or				
177	20*LOQ or 100*LOQ level. The order of injection was randomized. Figures 3 and 4 illustrate				
178	the separation of compounds and the selectivity of the detection.				
179					
180	Internal quality control				
181					
182	The concurrent recoveries obtained during the analyses of samples are summarized in Table				
183	3.				
184	To estimate the long-term within laboratory reproducibility (CV _L), replicate test portions were				
185	taken from some of the samples and their residue contents were measured on different days.				
186	For this experiment 20-20 g soil equivalents from the homogenized treated soils were				
187	withdrawn into a labeled PE bag and stored in a freezer until the replicate analysis.				
188	The long-term reproducibility was calculated with Equations 5 and 6. The results are				
189	summarized in Table 4.				

191

192 Results and discussion

Based on the binominal theorem n=119 samples would cover the 97.5th percentile (βp) of the expected residues with 95% probability level (βt). ^[14]

195
$$1 - \beta_t = \left(\beta_p\right)^n \ n = \frac{\log(1 - \beta_t)}{\log\beta_p} \tag{7}$$

196 It is recognized that larger number of samples would have provided better coverage of 197 variability of residues, but the laboratory capacity did not allow the analyses of more samples. 198 Further on, most of the experiments carried out with plant samples $^{[12, 14, 15]}$ included the 199 analyses of about 100-130 primary samples, which made the comparison of the results easier. 200 The residues determined in individual soil cores are summarized in Table 5. The spread of 201 residues in soil cores (CV_{distr}), excluding the contribution of the variability of analysis, can be 202 calculated from the variances of CV_R, and the reproducibility CV_L values (Table 4).

- 203
- 204

$$CV_{distr} = \sqrt{CV_R^2 - CV_L^2} \tag{8}$$

205

The contribution of within field variability of residues (CV_{distr}) to the variability of detected residues CV_R (calculated from the corresponding variances as V_{distr}/V_R %) ranged between 95-99%, which indicates that the contribution of the variability (uncertainty) of analytical results to that of measured residues in soil cores is negligible. Therefore, the sampling uncertainty can be directly calculated from the measured residues applying Equation 1. The relative frequency distribution of normalized residues (residues measured in soil cores

taken from one field are divided with their average value) found in samples taken from the

213 Mezőkövesd field is shown in Figure 5. The pattern is same as found in case of carrot samples

taken from treated fields in another study reported earlier. ^[12, 15] For comparison, the relative
frequency of linuron residues in carrot is also included in Figure 5.

216

The applicability of central limit theorem for pesticide residues present in cores of treated soil 217 was tested by drawing 10000 random samples of sizes 10 and 25 with replacement ^[26]. The 218 219 results, summarized in Table 6, show that the difference (Δ_{CV} %) in the relative standard 220 deviations of residues in composite samples obtained with random sampling (CV_R) and the theoretically expected ones (CV_{Rth}) based on Equation 1 are less than 1.2%. The difference in 221 the average residues in primary samples and the corresponding averages of calculated 222 223 residues in composite samples (CV_{AVE}%) are less than 0.4%. The averages of CV_{Rsoil} and CV_{Rrootveg} values from the five primary soil datasets and from 14 datasets of the residues in 224 carrot and potato^[15] are 88% and 99%, respectively. Farkas and co-workers ⁽¹⁶⁾ estimated a 225 CV_{Rrootveg} of 1.03 for primary samples of root and tuber vegetables based on 256 supervised 226 trials. The CV_{Rrootveg} values encompass the CV_{Rsoil} values indicating that the results obtained 227 228 from different sources are in good agreement.

229

230 Conclusions and recommendations

231

The performance parameters of analytical method including long-term reproducibility developed and validated for determination of pesticide residues with GC-TSD are within the corresponding criteria specified by the Guidance documents for analytical quality control ^(24, 25). Our results indicate that gas chromatographic elution and detection may be reliably used, in combination with appropriate internal quality control,^[27] for the analyses of pesticide residues especially in samples of known pesticide treatment history.

238

The variability of residues being present in the experimental fields (CV_{Rsoil}) was within the 239 240 CV_{Rrootveg} range of carrot and potato primary samples indicating that similar variability can be expected in soil cores and root vegetables grown in treated soil. Because underestimation of 241 242 the uncertainty of the results of soil sampling may lead to erroneous conclusions, it is recommended to use the rounded relative standard deviation of 100% for describing the 243 variability of residues in soil cores taken from the top 15 cm soil layer, until further more 244 245 robust data obtained directly from treated soils will be available. The uncertainty of the residues measured in composite soil samples can be calculated with Equation 1 based on the 246 number of soil cores taken. Since the uncertainty of measured residues in composite samples 247 248 inversely proportional to the square root of number of soil cores, it may only be slightly reduced by taking lager number of soil cores over 25 (CV₂₅=20%; CV₃₀=18%; CV₅₀=14%) 249 250 and the processing of larger samples may be difficult in typical residue laboratory and could 251 increase the CV_{Sp} and the combined uncertainty of the results (CV_R) as well. A sample size of 25, also recommended by ISO Standard 10381-1:2002^[28] seems to be a good practical 252 253 compromise.

254

For the sampling area of 100×100 m, the sticks placed at each 10m provided a practical 255 256 solution. However, if samples are to be taken from a large area of several hectares this method 257 cannot be applied. Once the sampling target is precisely defined, an imaginary rectangular coordinate system should be overlaid on it, the zero point permanently marked, and the 258 sampling positions defined by the X:Y coordinates should be randomly selected including the 259 entire sampling target, but excluding those points which are outside the sampling target as 260 shown in Figure 6. The sampling positions should be identified based on the GPS coordinates. 261 262 Nowadays GPS devices with ± 1 m accuracy exist at reasonable cost. One of the advantages of

263	using GPS devices is that the repeated sampling, if necessary, from the same sampling				
264	position is possible.				
265	Concerning the number of composite samples of size 25 to be taken there is no optimum,				
266	however over 8 independent replicate samples the gain becomes marginal. The optimum can				
267	be calculated, on a case-by-case basis, taking also into account the cost of sampling and				
268	analysis. ^[29]				
269					
270	Acknowledgement				
271					
272	The authors appreciate the permission of the owners of the fields for taking samples and				
273	acknowledge the contribution of the analysts of the IAEA Seibersdorf Laboratory and Soil				
274	Testing Laboratory of Fejér County to performing the sampling and analyses, and				
275	characterizing the soil samples.				
276					
277	References				
278					
279	[1] Smith, F.D.; MacHardy, W.E. The retention and redistribution of captan on apple				
280	foliage. Phytopathology. 1984, 74, 884–899.				
281	[2] Travis, J.W. Effects of canopy density on pesticide deposition and distribution in				
282	apple trees. Plant Disease. 1987 , 71, 613–615.				
283	[3] Travis, J.W. Effects of travel speed, application volume, and nozzle arrangement on				
284	deposition and distribution of pesticides in apple trees. Plant Disease. 1987, 71, 606–				
285	612.				
286	[4] Xu, X.M; Wu, P.H.; Thorbek, P.; Hyder, K. Variability of initial spray deposit in				
287	apple trees in space and time. Pesticide Manag Sci. 2006, 62, 947–956.				

288	[5] Rawn, D.F.K.; Quade, S.C; Shields, J.B.; Conca, G.; Sun, W; Lacroix, G.M.A.; Smith,
289	M.; Fouquet, A.; Bélanger, A. Variability in captan residues in apples from a Canadian
290	orchard. Food Addit. Contam. Part A. 2007, 24, 149-155.
291	[6] Cross, J.; Walklate, P.; Murray, R. Spray deposits and losses in different sized apple
292	trees from an axial fan orchard sprayer: 1. Effects of spray liquid flow rate. Crop
293	Protect. 2001 , <i>20</i> , 13–30.
294	[7] Frank, R.; Northover, J.; Braun, H.E. Persistence of captan on apples, grapes, and
295	pears in Ontario, Canada 1981–1983. J Agric. Food Chem. 1985 , <i>33</i> , 514–518.
296	[8] Frank, R; Braun, H.E.; Ritcey, G. Disappearance of captan from field-grown and
297	greenhouse-grown tomato fruit in relationship to time of harvest and amount of
298	rainfall. Canadian J. Plant Sci. 1985, 67, 355–357.
299	[9] Ambrus, A. The influence of sampling methods and other field techniques on the
300	results of residue analysis. In Pesticide Residues; Frehse H.; Geissbühler H., Eds.,
301	Pergamon Press: Oxord, UK, 1979; 6 -18.
302	[10] Hill, A.R.C.; Reynolds, S.L. Unit-to-unit variability of pesticides residues in fruit
303	and vegetables. Food Addit. Contam. Part A. 2002, 19, 733-747.
304	[11] Song, Y.; Lu, X.; Ren, F. Variability of Pesticide Residues in Vegetables from the
305	Marketplaces in Jinan City. Agricultural Sciences in China. 2011, 10, 1646–1652.
306	[12] Horváth, Zs.; Ambrus, A.; Mészáros, L.; Braun, S. Characterisation of distribution
307	of pesticide residues in crop units. J. Environ. Sci. Health Part B. 2013, 48, 615-
308	625.
309	[13] FAO. Pesticide residues in food- Report of the Joint FAO/WHO Meeting on
310	Pesticide Residues. FAO Plant Production and Protection Paper No. 140. FAO,
311	Rome, 1997; 29.

- [14] Ambrus, Á. Variability of pesticide residues in crop units. Pest Manag. Sci. 2006, 62, 312 693-714. 313
- [15] Farkas, Zs.; Horváth, Zs.; Kerekes, K.; Ambrus, Á.; Hámos, A.; Szeitzné Szabó, M. 314 Estimation of sampling uncertainty for pesticide residues in root vegetable crops. J. 315 Environ. Sci. Health Part B, 2014, 49, 1-14. 316
- [16] Farkas, Zs.; Horváth, Zs.; Szabó, I.J.; Ambrus, Á. Estimation of sampling uncertainty 317 318 of pesticide residues based on supervised residue trial data. J. Agric. Food Chem. **2015,** *63*, 4409–4417. 319
- [17] Ambrus Á. Reliability of measurement of pesticide residues in food. Accred. Qual. 320 Assur. 2004, 9, 288-304. 321
- [18] Ellison, S.LR.; Williams, A. Eds. EURACHEM/CITAC Guide: quantifying 322
- uncertainty in analytical measurement 3rd edition, 2012.
- https://www.eurachem.org/index.php/publications/guides/quam (accessed Dec. 2016) 324
- [19] Sokal, R.R.; Rohlf, F.J. Biometry. The principles and practice of statistics in 325
- biological research 3rd ed. W.H. Freeman and Company: New York, 1995, 247. 326
- [20] Ambrus, Á. (Ed.). Submission and evaluation of pesticide residues data for the 327 estimation of maximum residue levels in food and feed. 3rd ed., Plant Production and 328
- Protection Paper 225. FAO, Rome, 2016; 17-26. 329

- [21] Dubus, I.G.; Brown, C.D.; Beulke S. Sources of uncertainty in pesticide fate 330 modelling. Sci Total Environ. 2003, 317, 53-72. 331
- [22] Suszter, G.; Ambrus, A.; Schweikert-Turcu, M.; Klaus P.M., Estimation of efficiency 332 of processing soil samples, J. Environ. Sci and Health Part B, 2006, 41, 1-22. 333

334	[23] Suszter, K.G.; Ambrus, A. Testing the efficiency of extraction of incurred residues
335	from soil with optimized multi-residue method. J. Environ. Sci and Health Part B.
336	2017 , Ms#B-2311.

- 337 [24] Codex Alimentarius Commission. Guidelines on good laboratory practice in
- pesticide residue analysis, CAC/GL 40-1993 amended in 2000. FAO, Rome, 2001.
- 339 <u>https://www.google.hu/webhp?sourceid=chrome-instant&ion=1&espv=2&ie=UTF-</u>
- 340 <u>8#q=GUIDELINES+ON+GOOD+LABORATORY+PRACTICE+IN+PESTICIDE+R</u>
- 341 <u>ESIDUE+ANALYSIS+CAC%2FGL+40-1993</u> (accessed Dec 2016).
- 342 [25] European Commission Directorate-General for Health and Food Safety (SANTE).
- Guidance document on analytical quality control and method validation procedures
 for pesticides residues analysis in food and feed. SANTE/11945/2015,
- 345 <u>http://ec.europa.eu/food/plant/docs/plant_pesticides_mrl_guidelines_wrkdoc_11945_</u>
 346 en.pdf (accessed Dec 2016).
- 347 [26] Ambrus, Á. Estimation of sampling uncertainty for determination of pesticide
- residues in plant commodities, J. Environ. Sci and Health Part B, **2009**, *44*. 1-13.
- 349 [27] Soboleva, E.; Ambrus Á. Application of a system suitability test for quality
- assurance and performance optimization of a gas chromatographic system for
- 351 pesticide residue analysis. Journal of Chromatography A. **2004**, *1027*, 55-65.
- ISO 10381-1:2002 Soil quality -- Sampling -- Part 1: Guidance on the design of
 sampling programmes. <u>www.iso.org/iso/catalogue_detail.htm?csnumber=32423</u>
 (accessed Dec 2016).
- [29] Farkas, Zs.; Cook, J.M.; Ambrus, Á. Estimation of uncertainty of measured residues
 and testing compliance with MRLs, in *Food Safety Assessment of Pesticide Residues*.
 Ambrus Á.; Hamilton D. Eds. Imperial College Press, London, UK. 2017, 405-466.

301	FIGURE CAF HONS
362	Figure 1. Location of sampling position based on randomly selected coordinates.
363	(position of sampling assistants standing at the positions of X=48, Y=23 coordinates, \blacklozenge
364	sampling position
365	Figure 2. Sampling positions with approximate concentration of prometryn residues (upper
366	chart) in soil cores taken from the Mezőkövesd sampling site
367	Figure 3. Overlaid chromatogram of a reagent blank (blue), a field treated soil sample
368	(red) and a blank sample fortified at F1 level (brown)
369	Figure 4. Overlaid chromatogram of a blank soil(red), a field treated soil sample (blue)
370	and a blank sample fortified at F2 level (brown)
371	Figure 5. Relative frequency distribution of normalized residues detected in Mezőkövesd
372	field, and linuron residues in carrot.
373	Figure 6. Sampling target (indicated with gray color) placed in a coordinate system.
374	
375	

FIGURE CAPTIONS

3,0

376	
377	TABLE CAPTIONS
378	
379	Table 1. Summary of pesticide applications on the experimental sunflower fields
380	Table 2. Summary of soil parameters
381	Table 3 . Summary of recoveries and their relative standard deviations
382	Table 4. Long-term reproducibility of determination of pesticide residues in soil samples
383	Table 5. Characteristic of residue distributions
384	Table 6. Examples for the CV values of residues in composite samples drawn with random
385	sampling with replacement from the primary residue populations in individual soil
386	cores.
387	
388	
389	
390	
391	

Figure 1. Location of sampling position based on randomly selected coordinates.

395 (position of sampling assistants standing at the positions of X=48, Y=23 coordinates, \blacklozenge

396 sampling position

Figure 2. Sampling positions with approximate concentration of promethrin residues (upper

chart) in soil cores taken from the Mezőkövesd sampling site

0.00 -

406

411 **Figure 3.** Overlaid chromatogram of a reagent blank (blue), a field treated soil sample

9.0

9.5

10.0

10.5

Minutes

8.5

8.0

7.5

Figure 4. Overlaid chromatogram of a blank soil(red), a field treated soil sample (blue)

418 and a blank sample fortified at F₂ level (brown)

Figure 5. Relative frequency distribution of normalized residues detected in Mezőkövesd

field, and linuron residues in carrot.

Site	Active	Trade name, formulation	Dosage,	DLA
	substance		g a.i./ha	
Hercegkút	Dimethenamid	FRONTIER 900 EC	1440	27
	Prometryn	GESAGARD 500 FW	1000	
Mezőkövesd	Dimethenamid	WING EC	1000	30
	Pendimethalin	WING EC	1000	
	Prometryn	PROMETREX 500 SC	1000	

Table 1. Summary of pesticide applications on the experimental sunflower fields

444 Formulations: EC: emulsifiable concentrate; FW: smoke pellets; SC suspension concentrate. ;

445 a.i. active ingredient; DLA: days between last application and sampling

Table 2. Summary of soil parameters

matter [%] Hercegkút Ramann-type 3.14 6.41 33.8 41.6 24.6 brown forest soil soil	Site	Soil type	Organic	pН	Sand %	Silt %	Clay %
Hercegkút Ramann-type 3.14 6.41 33.8 41.6 24.6 brown forest soil soil soil 40.0			matter [%]				
brown forest soil Mezőkövesd Brown forest 2.4 6.8 36.0 26.5 37.5 soil with clay illuviation The measurements were carried at the Soil Testing Laboratory of Agricultural Serv	Hercegkút	Ramann-type	3.14	6.41	33.8	41.6	24.6
soil Mezőkövesd Brown forest 2.4 6.8 36.0 26.5 37.5 soil with clay illuviation The measurements were carried at the Soil Testing Laboratory of Agricultural Serv Institute of Feiér County, Hungary.		brown forest					
Mezőkövesd Brown forest 2.4 6.8 36.0 26.5 37.5 soil with clay illuviation The measurements were carried at the Soil Testing Laboratory of Agricultural Serv Institute of Feiér County, Hungary.		soil					
soil with clay illuviation The measurements were carried at the Soil Testing Laboratory of Agricultural Serv Institute of Feiér County, Hungary.	Mezőkövesd	Brown forest	2.4	6.8	36.0	26.5	37.5
illuviation The measurements were carried at the Soil Testing Laboratory of Agricultural Serv Institute of Feiér County, Hungary.		soil with clay					
The measurements were carried at the Soil Testing Laboratory of Agricultural Serv		illuviation					
Institute of Feiér County, Hungary.	The measurem	ents were carried	at the Soil Test	ting Lat	oratory of	Agricult	ural Serv
	Institute of Fej	ér County, Hunga	ıry.				

Table 5. Summary 01	recoveries	(K %) a	nu uic		e stanuai		lations (C	· v A)	
Spike levels	Dime	thenami	d	Pend	limethali	in	P	cometryn	
mg/kg	Q (%)	CV_A	n	Q (%)	CV_A	n	Q(%)	CV_A	n
F ₁ : LOQ: 0.01-0.02	86.4	0.19	6	97.2	0.02	4	82.2	0.06	6
F ₂ :20*LOQ: 0.2-0.4	74.5	0.09	8	75.5	0.11	8	77.0	0.07	8
F ₃ :100*LOQ:	88.9	0.08	6	87.1	0.12	6	86.4	0.07	6
Combined F ₁ - F ₃ :	82.4	0.15	20	84.2	0.14	18	81.4	0.08	20

455 **Table 3.** Summary of recoveries (R%) and their relative standard deviations (CV_A)

456 F₁, F₂ and F₃: fortification levels; LOQ: Limit of quantitation; Q: recovery; CV_A: coefficient

457 of variation; n: number of replicate tests; Combined: the reported values were calculated from

458 all recoveries obtained at 3 spike levels.

	k	CVL
Dimethenamid all*	25	0.260
Pendimethalin	16	0.191
Prometryn all*	28	0.176
* measured in samples ta	aken fron	n both fields

_

Table 4. Long-term reproducibility of determination of pesticide residues in soil samples 460

Table 5. Characteristic of residue distributions

]	Mezőkövesd	Hercegkút			
	Dimethenamid	Prometryn	Pendimethalin	Prometryn	Dimethenamid	
Ave	0.498	0.495	0.143	0.108	0.267	
CV_{R}	0.83	0.88	0.69	0.87	1.14	
R_{min}	0.046	0.035	0.010	0.005	0.010	
R_{max}	2.97	2.60	0.644	0.836	2.44	
CV_{distr}	0.81	0.86	0.66	0.85	1.13	

 $\overline{\text{CV}_{\text{R}}}$: relative standard deviation of residues measured in soil cores (rounded values);

467 CV_{distr}: within field distribution of residues in randomly taken 120 soil cores (rounded values)

	n	Rave	CV _R	CV_{Rth}	$\Delta_{\rm CV}$ %	Δ_{AVE} %
Dimethenamid	1	0.498	0.829			
	10	0.499	0.262	0.262	0.28	0.15
	25	0.500	0.167	0.166	0.45	0.36
Prometryn	1	0.495	0.877			
	10	0.495	0.278	0.277	0.06	0.08
	25	0.494	0.175	0.175	-0.28	0.30
Pendimetanil	1	0.143	0.688			
	10	0.143	0.216	0.217	0.59	0.15
	25	0.143	0.136	0.138	1.17	0.02

Table 6. Examples for the CV values of residues in composite samples drawn with random

Dimethenamid	1	0.498	0.829			
	10	0.499	0.262	0.262	0.28	0.15
	25	0.500	0.167	0.166	0.45	0.36
Prometryn	1	0.495	0.877			
	10	0.495	0.278	0.277	0.06	0.08
	25	0.494	0.175	0.175	-0.28	0.30
Pendimetanil	1	0.143	0.688			
	10	0.143	0.216	0.217	0.59	0.15
	25	0.143	0.136	0.138	1.17	0.02

sampling with replacement from the primary residue populations in individual soil cores.

Rave: average residues in primary and 10000 composite samples

CV_R: relative standard deviation of residues found in primary (soil cores) and composite

samples

CV_{Rth}: the theoretical relative standard deviation of residues calculated based on equation 1

 Δ_{CV} cv%: percentage difference between the CV_{Rth} and CV_R values relative to CV_{Rth}

 Δ_{AVE} %: percentage difference between the average of residues in composite samples and the

average of primary samples relative to that of primary samples