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Abstract 

The optical and biolabeling properties of a novel molecule 1-(2-acryloyloxy-3-chloro-prop-1-yl)-

amino-5-isocyanonaphthalene (ACAIN) is reported. In addition to being a real solvatochromic 

fluorophore it reacts quantitatively and rapidly with simple thiols in a thiol-ene click reaction. DFT 

calculations revealed a dark nonfluorescent state of ACAIN due to a close energy triplet state where 

electron transition can happen between the acrylic double bond and the aromatic core through an 

intramolecular hydrogen bond between the NH and C=O moieties. The hydrothiolation reaction is 

accompanied by a 1.5-19 fold increase in fluorescence intensity depending on the solvent used 

owing to the saturation of the acrylic group. The quantum yield and reactivity of the molecules 

were found to be largely dependent on the substituent of the acryl moiety. 

The biolabeling properties were investigated in detail by fluorometry and ESI mass spectrometry 

using cysteine, KAC as a simple tripeptide and BSA as a model protein.   
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Introduction 

Over the past few decades, interest in the thiol-Michael addition reaction has increased 

dramatically, since it proceeds with high yield, stereoselectivity, rate, and is thermodynamically 

favored. [1-4] Thiol-ene additions can be extremely useful in the detection, localization, 

qualification and quantitation of intracellular thiols such as cysteine, glutathione or the free cysteine 

units of complex peptides. [5] The development of fluorescent probes that react through catalyzed 

(by base or nucleophile) Michael additions resulting in anti-Markovnikov addition products [6,7] 

has been in the focus in the last decades. The application of the reactive flourophore is more 

favorable when the base molecule in non/less fluorescent and the thiol addition is accompanied 

by a substantial increase in fluorescent intensity. Such fluorophores include pyrazolines [5] 

BODIPY [8], α,β-unsaturated ketones [9] and nitroolefin-based coumarin [10].  

Solvatochromic dyes are important members of smart materials. The wavelength (color) and 

intensity of their emitted fluorescent light is affected by the environment, particularly by its 

polarity. This feature can be applied advantageously in molecular biology, especially as biolabeling 

dyes for fluorescence microscopy, where the different parts of biomolecules can be easily 

differentiated from each other by the various colors of the emitted fluorescent light caused by the 

polarity changes around the fluorophores. This phenomenon is also suitable for the determination 

of the structure of biomacromolecules (eg. peptides, or locate binding sites of enzimes), or even 

for following their interactions by observing the local changes.[14] 

Acryl(ate)s and methacryl(ate)s are easily reacted with thiols and can also be easily attached to 

different solvatochromic fluorophores. A good example is Acrylodan, a Prodan derivative bearing 

a reactive acryl moiety, which has a high affinity to thiols, therefore selectively labels proteins with 

free thiol groups [15,16] and has many important applications in bioanalytics [17-20]. After 

reacting with the –SH group of biomolecules the conjugation of the acryloyl group with the close 

aromatic ring in Acrylodan will cease and fluorescence intensity increases dramatically. This 

phenomenon is useful in differentiating the unreacted dye from the labelled biomolecules and can 

be used in the construction of molecular switches. This intensity increase after the reaction does 

not necessarily require conjugation, it can also happen by the help of inter- or intramolecular H-

bonding [21-24]. 

In addition to biolabeling thiol-ene reactions can be preferable routes for the synthesis of various 

types of polymers, such as end functionalized polymers, dendrimers, furthermore several controlled 
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radical polymerization techniques have also been developed based on this technique [11-13]. When 

a reactive fluorophore is used in the construction of smart networks, larger amounts are needed and 

consequently price and availability becomes serious issue. Most of these fluorophores are of 

complex structure or based on a pricey and hard to prepare backbone as is the case with Acrylodan. 

Therefore, there is a constant need for click reagents that are easily prepared from cheap and 

common starting materials using simple reactions, while the resulting fluorophore is 

solvatochromic, reacts completely with thiols, and has a dark and highly fluorescent state. 

In this paper we report the design and preparation of a reactive solvatochromic dye (ACAIN) (and 

its methylated and chlorinated derivatives) by the modification of our recently developed molecule, 

1-amino-5-isocyanonaphthalene (ICAN) [25] with only easily available reagents such as 

epichlorohydrin and acryloyl chloride. Quantum chemical calculations showed that when the 

acryloyl moiety is attached to the NH2 group through an ethyl spacer unit, an intramolecular H-

bond can form between the NH hydrogen and the carbonyl oxygen of the acryl group. This H-

bonding will result in a dark state owing to a HOMO-LUMO electron transfer between the acrylic 

double bond and the naphthalene core and is largely solvent dependent. The acryl group reacts with 

thiols through a click reaction rapidly, followed by a significant increase of the emitted fluorescent 

light intensity because of the saturation of the double bond. ACAIN showed high affinity to thiol 

groups on a wide range of free thiol-containing molecules without the use of any catalyst. The 

kinetics of its biolabeling properties were investigated in detail using cysteine, lysyl-alanyl-

cysteine (KAC), and bovine serum albumin (BSA) by fluorometry and ESI mass spectrometry. 

Based on density functional (DFT) calculations a model was developed for the description of the 

unique fluorescent behavior that can be useful in the development of fluorescent molecular 

switches. The resulting solvatochromic, highly fluorescent bioconjugate products can be 

particularly useful in pharmaceutical chemistry and fluorescence microscopy.  
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Results and Discussion 

The acryl group cannot be attached directly to the amino group of ICAN without disrupting its 

electron donating properties and as a consequence flawing the solvatochromic properties of the 

molecule. The attachment should be carried out using a spacer, favorably a short chain 

hydrocarbon. Epichlorohydrin offers an easy alternative because after the opening of the epoxy 

ring with the amine a secondary hydroxyl group is formed which in turn is easily reacted with 

acryloyl chloride as is presented in Scheme 1. The reaction was also carried out using methacryloyl-

chloride and 2-choloroacrylic acid to investigate the change in the optical properties when an 

electron donating (Me) and an electron withdrawing (Cl) group is present on the acryl moiety. 

 

Scheme 1. Synthesis of 1-(3-chloro-2-hydroxyprop-1-yl)-amino-5-isocyanonaphthalene (2, 

CHAIN), 1-(2-acryloyloxy-3-chloro-prop-1-yl)-amino-5-isocyanonaphthalene (3, ACAIN), 1-N-

(2-methacryloyloxy-3-chloroprop-1-yl)-amino-5-isocyanonaphthalene (4, MACAIN) and (2-

chloroacryloyloxy-3-chloroprop-1-yl)-amino-5-isocyanonaphthalene (5, CACAIN). 

 

To test the solvatochromic properties of ACAIN and its derivatives UV-vis and steady-state 

fluorescence measurements were carried out. It should be noted, however, that this paper focuses 

on ACAIN, therefore its properties are presented in the main article, while the corresponding data 

for MACAIN and CACAIN are presented in the supporting information.  

The UV-Vis spectrum of ACAIN recorded in THF shows a diffuse band attributed to the HOMO-

LUMO transition between =300 nm and 400 nm with a peak value of 366 nm (spectrum No. 1. in 

Figure 1.). 
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Figure 1. The normalized absorption (1) and emission spectra of ACAIN recorded in hexane 

(2), THF (3) and water (4). 1 was recorded in THF. 

 

The peak position showed only a slight variation between max=356-373 nm depending on the 

solvent used. The extinction coefficient corresponding to this peak varies between =5700 Mcm-1 

in water and =9100 Mcm-1 in dichloromethane. The double peak structure of the band is most 

probably due to the superposition of the NH vibrational transition onto the absorption spectrum. It 

should be noted that the experimental UV-Vis spectra are in very good agreement with the 

calculated spectra (Figure S22 in the Supporting Information (SI)). Emission spectra were recorded 

in solvents of different polarity. The results are summarized in Table 1. for ACAIN and for 

MACAIN and CACAIN in TableS1(a)-S1(b) in the SI. 
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Table 1. Excitation (λex), emission (λem) maxima, Stokes shift (Δν), molar absorbance (ε) and 

quantum yield (ΦF) of ACAIN in different solvents 

Solvent 

λex 

(nm) 

λem 

(nm) 

Stokes shift 

(cm-1) 

ε  
(M-1) 

ΦF  

(%) 

Hexane 356 423 4449 8500 3 

Cyclohexane 359 423 4214 7040 8 

Toluene 362 439 4845 8100 5 

Dichloromethane 362 456 5694 9100 7 

i-Propanol 367 477 6284 6450 26 

Tetrahydrofuran 366 460 5583 7950 18 

Chloroform 363 455 5570 7200 10 

Ethyl acetate 366 459 5536 8000 19 

Dioxane 364 456 5543 7640 15 

Acetone 368 472 5987 6800 35 

Methanol 367 485 6629 7740 18 

Acetonitrile 364 479 6596 7500 25 

Pyridin 369 479 6223 7110 9 

Dimethyl formamide 370 482 6280 7280 46 

Dimethyl sulfoxide 373 490 6401 6800 63 

Water 362 502 7704 5700 3 

 

As can be seen from the data of Table 1. ACAIN has visible emission in every solvent investigated. 

Characteristically for solvatochromic behavior the Stokes shifts increase with solvent polarity, that 

is bathochromic shift of the emitted light with increasing solvent polarity was found. The lowest 

emission wavelength was observed in hexane with em,max=423 nm, the largest in water em,max=502 

nm and that of the THF solution can be found in between them at em,max=460 nm as is presented 

in Figure 1. Surprisingly low quantum yields were observed in nonpolar solvents for all three 

compounds compared to the values of the starting ICAN molecule, which has the strongest 

emission in such solvents. According to the data of Table S1 the introduction of an electron 

donating methyl group to the 2 position of the acryl moiety of ACAIN increases the quantum yields 

in almost every solvent by ~10-20 %. On the other hand, the introduction of the electron 

withdrawing chlorine atom to the same position drastically lowers the QY values, that is the QYs 

do not exceed 10% even in polar solvents in the case of CACAIN. The explanation for these 

phenomena will be presented later.  
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The solvent-dependent behavior of ACAIN was quantitatively described by the most recent Catalán 

model according to Equation 1.  

tSdPsSPbSBaSAYY o  ,    (1) 

where Y0 is the property of the substance of interest (e.g., emission maximum and Stokes shift) in 

the absence of solvent, for example, in the gas phase. SA is the quantitative empirical measure of 

the ability of bulk solvent to act as a hydrogen-bond donor towards a solute. SB is the quantitative 

empirical measure of the ability of a bulk solvent to act as a hydrogen-bond acceptor or electron-

pair donor towards a solute, forming a solute-to-solvent hydrogen bond or a solvent-to-solute 

coordinative bond, respectively. SP and SdP are the solvent polarizability and dipolarity 

parameters, respectively, determined using reference dye molecules. a, b, s and t are the 

corresponding coefficients and their inclusion in the equation indicates the dependence of the 

property under investigation upon the respective solvent parameter. 

The Catalán coefficients for the emission wavenumber at the maximum ( em,max) and the Stokes 

shifts (Δ ) were obtained by multilinear regression analysis and are summarized in Table 2. The 

corresponding SA, SB, SP and SdP values of the solvents along with the plots of the measured 

values of  em,max and Δ  versus their calculated values according to Eq. 1 for ACAIN (and its 

derivatives) are presented in the Supporting Information as Table S4 and Figure S8. According to 

the data ACAIN, MACAIN and CACAIN can be considered as real solvatochromic dyes. 

 

Table 2. Solvent-independent correlation coefficients aSA, bSB, sSP and tSdP of the Catalán 

parameters SA, SB, SP and SdP, respectively, solute property of the reference system (  em,max)0, 

correlation coefficient (r) and number of solvents (n) calculated by multiregression analysis for the 

solvatochromism of CHAIN and ACAIN. 

 

Compound  em,max,0  aSA bSB sSP tSdP  r n 

 (cm-1)   

CHAIN 29300±1139 -2715±480 -2746±588 -5918±1384 -2675±1064 0.968 14 

ACAIN 29113±1252 -2349±635 -2037±775 -5356±1714 -3062±1376 0.947 15 
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As seen from the data of Table 2 solvent polarity has the largest effect on the solvatochromic 

behavior but both the H-bond donating and accepting capabilities of ACAIN are also pronounced 

(large a and b parameters) because of the presence of the free NH hydrogen (H-bond donor) and 

the carbonyl group of the acryl moiety (H-bond acceptor). This tendency of ACAIN to easily form 

H-bonds will have an important role when discussing the optical behavior of its thiol adducts. 

 

Reaction of ACAIN with thiols 

Acrylates, like many activated olefins are easily reacted with thiols via a Michael addition 

mechanism. This click type hydrothiolation reaction is well documented [7] and has many practical 

applications such as protein labeling using the free SH group of the cysteine moiety. 

 

Figure 2. The thiol-ene click reaction of ACAIN with different thiols. The inset NMR 

spectra show the aromatic and olefin region of ACAIN (purple, bottom) and the ACAIN-

propanethiol reaction mixture after 5 minutes (green, top) 

 

The reactivity of ACAIN in thiol-ene click reactions was studied using a variety of thiols starting 

from simple aliphatic (propanethiol) and aromatic (thiophenol) ones through simple biomolecules 

such as cysteine, peracetyl--thioglucose and lysyl-alanyl-cysteine (KAC), a tripeptide, to proteins 

such as bovine serum albumin (BSA). The reactions were followed by 1H NMR (4, 5, 6, 7) or ESI 



 9 

MS (8, 9) methods. The reaction conditions are summarized in Table 3 except for 8 and 9 which 

will be dealt in detail later.  

 

Table 3. The reaction conditions of the hydrothiolation reaction of ACAIN with different thiols. 

The conversion values are given for ACAIN and all reactions were carried out at 25 C. 

Thiol No. [Thiol] [ACAIN] solvent time conversion 

4 0.106 M 0.053 M d6-DMSO <5 min 100% 

5 0.318 M 0.159 M d6-DMSO <5 min 100% 

6 0.079 M 0.053 M d6-DMSO:D2O (1:1) <5 min 100% 

7 0.190 M 0.095 M DMSO 1 h 46 % 

 

A number of solvents were examined but acceptable conversion was observed only in DMSO and 

water. The hydrothiolation reaction of the acryl group usually requires an amine catalyst such as 

triethylamine (TEA). However, in the case of propanethiol and thiophenol an almost instantaneous 

reaction was observed in d6-DMSO at room temperature after the addition of the thiols in twofold 

molar amount relative to ACAIN. As can be seen in the 1H NMR spectra presented in Figure 2 

after 5 minutes reaction time the olefin proton signals of the acryl group completely disappeared. 

The formation of the addition product was confirmed by ESI-MS measurements and by the 

appearance of the S-CH2 signals at 2.62 and 2.41 ppm. It can also be seen from the spectra that the 

thiol addition does not affect the electronic structure of the naphthalene core, only the signal of the 

NH proton shifts slightly downfield from 5.39 to 5.33 ppm. 

Unlike the 1H NMR spectrum, the adduct formation largely affects the fluorescence behavior of 

ACAIN. It was noted earlier that ACAIN has low quantum yields especially in nonpolar solvents. 

In contrast, the ACAIN-propanethiol adduct showed intense fluorescence in almost all solvents as 

can be seen in Figure 3. This intensity increase was not limited to the ACAIN-propanethiol adduct 

but could be observed in the case of every other thiols (5, 6, 7, 8, 9), as well. 
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Figure 3. Visible fluorescence of ACAIN (top) and ACAIN-propanethiol adduct (bottom) in 

solvents in order of increasing polarity excited at λ=365 nm. All solutions have the same 

concentration: 25.4 M 

 

The fluorescence properties of ACAIN and its PrSH adduct are compiled in Table 4. The most 

dramatic increase in fluorescence intensity was observed in the less polar solvents hexane, toluene 

and dichloromethane where the increase was ~13-19 fold, while in the most polar solvents except 

water it was only 1.5-2.5 fold. The emission maxima and the shape of the emission peak were 

virtually unchanged. The extinction coefficients of the thiol adducts were also found to be very 

close to those of ACAIN within a ~10% error. Based on these observations it is surmised that the 

acryl group gives rise to a non-radiative path from the excited state to the ground state. By 

saturating the double bond this non-radiative way is eliminated and the quantum efficiencies 

increase considerably. The explanation of this phenomenon will be given in the quantum chemical 

part of the paper. 

The reactivity of MACAIN and CACAIN was also investigated in the presence of propanethiol. 

Using the same experimental conditions as with ACAIN no reaction of PrSH with MACAIN could 

be observed, while CACAIN reacted approximately 100 times faster than ACAIN in DMSO as is 

presented in FigS10. Unfortunately the increased reactivity of CACAIN is accompanied by lower 

hydrolytic stability, namely CACAIN was found to hydrolyze in water even at pH=7.  It should be 

noted, however, that no significant hydrolysis could be detected in the case of ACAIN in aqueous 

buffers applied during the kinetic measurements at pH=7, pH=8 and pH=9. In addition, ACAIN 

has very low quantum yield in water, a common feature among many solvatochromic fluorophores.  

In polar protic solvents such as water the energy gap that separates the S0 and S1 states is reduced 
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leading to a marked increase in non-radioactive decay and results in a decrease in the fluorescence 

quantum yield [14]. The low quantum yield may be favorable in applications such as biolabeling. 

 

Table 4. The fluorescence intensities and emission maxima of ACAIN and its adduct with 

propanethiol in different solvents at 20 C. All solutions have the same concentration of 2.54 M. 

The intensity ratios were calculated relative to the intensities of the pure ACAIN solutions.  

Solvent Pl. Intensity λ(em) nm Intensity ratio 

  ACAIN ACAIN+PrSH ACAIN ACAIN+PrSH  

Hexane 189 2836 423 424 15.0 

Toluene 160 3011 439 438 18.8 

Dichloromethane 237 3210 456 457 13.5 

i-Propanol 838 3226 477 481   3.8 

Tetrahydrofurane 760 2831 460 458   3.7 

Ethyl-acetate 713 2808 459 460   3.9 

Dioxane 648 3824 456 450   5.9 

Acetone 1277 2536 472 470   2.0 

Methanol 674 2268 485 485   3.4 

Piridine 634 932 479 479   1.5 

Acetonitrile 1132 2598 479 480   2.3 

Dimethyl formamide 2183 3352 482 484   1.5 

Dimethyl sulfoxide 1977 3241 490 490   1.6 

Water 85 305 502 494   3.6 

  

 

Kinetic Investigation of the reaction of ACAIN with biomolecules 

The reaction between ACAIN and different compounds containing thiol (-SH) groups were 

followed spectrofluorometrically. The fluorescence intensity versus time curves for the reaction of 

ACAIN with cysteine, KAC and BSA at different pH are shown in Fig. 4.  

 

Figure 4 

 

As seen in Fig. 4. the fluorescence intensities increase with time constantly until plateau values 

have been reached indicating the completion of the reaction, i.e., covalent binding of all ACAIN 

molecules to the target compounds through acryl-thiol reaction. Moreover, in the case of BSA as 

can be seen in Fig. 4.c., there are large increases in the fluorescence intensity at the very beginning 
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of the reaction followed by much slower increases in the fluorescence intensities. The initial, very 

sharp and large increase in the fluorescence intensities, which occur instantly upon adding of BSA 

to the ACAIN solution, can be ascribed to the fast non-covalent binding of ACAIN molecules to 

the BSA as was previously demonstrated for Acrylodan and BSA by Mims et al. [16]. ACAIN 

itself reveals poor fluorescence in water due to the low quantum yield but becomes brightly 

fluorescent on non-covalent binding to BSA ascribed to the change of the micro-environment of 

ACAIN molecules. The change of the environment of ACAIN molecules results in a considerable 

increase in quantum yield and blue shifted emission maximum from 502 nm to 462 nm. The further, 

relatively slow increase in the fluorescence intensities are due to the covalent binding of ACAIN 

molecules to the BSA via acryl-thiol reaction involving the free thiol group of Cys-34 unit of BSA. 

It should be noted, that the second slow increase in fluorescence intensity was completely missing 

when the experiment was repeated using 1 as the fluorophore (FigureS11 in the SI).  



 13 

 

Figure 4. The fluorescence intensity versus time curves for the reaction of ACAIN with cysteine (a) (em=505 nm), KAC (b) (em=505 

nm) and BSA (c) (em=460 nm). Experimental conditions: [cystein]o = [KAC]o = [BSA]o = 50 M, [ACAIN]o =6.3 M, T = 20 oC. 
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To evaluate the kinetic curves presented in Fig. 4., we can assume a second-order kinetics for the 

reaction of the fluorophore (F) with the substrate (S) according to eq. 2. 

 

FSSF
k
       (2) 

 

In these kinetic experiments large excess of molar concentrations of S to those of F were applied, 

i.e., [S]o >> [F]o, to obtain pseudo first-order kinetics. Using the pseudo first-order kinetics eq. 3 

can be derived for the variation of the fluorescence intensity with time (the derivation of eq. 3 can 

be found in the Supporting Information) 

 

 

)e1(II)t(I
tk

o
obs

     (3) 

 

where oIII   , and oI  and I  are the initial and final fluorescence intensities, respectively.  

 

Eq. 3. was fitted to the experimental fluorescence intensity versus time curves to determine the 

values of kobs. According to the results, kobs values increased with the pH, suggesting that the 

deprotonation of the thiol group play an important role in the rate determining step of the acryl-

thiol reaction. Assuming that the thiolate anion reacts much faster with the acryl group of ACAIN 

than the undissociated thiol group, eq. 4 can be applied (the derivation of eq. 4. is shown in the 

Supporting Information) 

 

 

 
othiolateoathiolateobs ]S[k

1
]H[

]S[Kk

1

k

1
   (4) 

 

where kthiolate and Ka are rate constants for thiolate-acryl reaction and the acid dissociation constant 

of the thiol group.  
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Plotting 1/kobs as a function of [H+] yielded straight lines (see Supporting Information Fig.S12). 

From the slopes and intercepts of these lines, the values of Ka were obtained. The pKa values 

determined for cysteine and KAC using eq. 4. are 8.1 and 8.2, respectively. It is important to note 

that these values are very close to the literature values of pKa reported for the free cysteine that are 

in the range of 8.2-8.5 [26,27]. However, the pKa value determined for the BSA is ~7, which is 

lower than those obtained for cysteine and KAC. This result, however, seems to be in line with the 

reported pKa values for BSA being in the range of 7-8.5 [28,29]. 

It is known that the acryl moiety is not only electrophilic towards sulfhydryl groups but can also 

react with amines. Therefore, acryl containing fluorophores such as Acrylodan can also modify 

lysine residues during the biolabeling of proteins [16,30]. Our model protein BSA contains 35 

cysteines and 58 lysines [31,32]; however, all of the cysteine residues, with the exception of Cys-

34, are involved in intramolecular disulfide bonds. The lysine/free cysteine ratio is 58 to 1 in BSA, 

therefore for practical applications it is important to determine the selectivity of ACAIN towards 

free cysteine units. Mass spectrometric methods such as ESI-MS and MS/MS provide an efficient 

way to study not only the kinetics but also the binding point of ACAIN during the labeling reaction 

therefore MS studies were also carried out to get deeper insight into the reaction of ACAIN with 

KAC and BSA. For these experiments unbuffered solutions were applied in order to avoid using 

of buffers incompatible with ESI and ion suppression. To investigate the selectivity of ACAIN with 

SH and NH2 groups it was reacted with a simple tripeptide, KAC where an N-terminal lysine (K) 

is separated by an alanine (A) from a C-terminal cysteine (C) with amide functionality. KAC 

therefore contains 2 NH2 (lysine) and 1 SH (cysteine) group. ACAIN (1.04 mM) was mixed with 

KAC (0.52 mM) in water/DMSO (50/50 V/V) at 25 C. Samples were taken out at predetermined 

times, up to 6 hours reaction time, and were analyzed by ESI-MS/MS method.  

Similar fragmentation pathway was found for the KAC and the labeled KAC, which shows that the 

connected ACAIN has no significant effect on the fragmentation pattern. 

Figure 5. shows the ESI-MS/MS spectrum of the ACAIN-KAC adduct recorded after 6 hours 

reaction time.  
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Figure 5. The tandem mass spectrum of the ACAIN-KAC adduct. The fragment ions 

marked by asterisks are generated with the loss of NH3 from the corresponding product ions. 

Figure inset shows the structures of the ACAIN and the KAC and the possible generated 

fragment ions of the KAC molecule. 

 

As can be seen in Fig. 5. the presence of the ACAIN-KAC adduct is supported by the accurate 

mass of the protonated adduct ion, [ACAIN-KAC+H]+ with m/z 634.256 (634.257 calculated) and 

the fragmentation pattern. The majority of the product ions come from the fragmentation of the 

tripeptide backbone. Based on the tandem mass spectrum the ACAIN binding point can be 

determined by the analysis of the product ions. The fragment ions generated in the higher mass 

region are produced by the loss of the lysine and the alanine. These amino acids appear in the mass 

spectrum as the a1, a1*, a2, b1, b2 and b2* type product ions. According to the ESI-MS spectrum, 

neither cysteine, nor any product ion containing cysteine with free thiol group can be detected, 

while all of the fragment ions which contain cysteine are labelled with ACAIN. Furthermore, no 
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lysine bound to ACAIN can be detected, while the x, y and z type fragment ions can only be found 

with the ACAIN moiety. It should be noted that these x, y and z type fragment ions appeared in the 

tandem mass spectrum of unlabelled KAC. The ESI-MS/MS spectrum of the unlabelled KAC 

tripeptide can be found in the supporting information as FigS13. Based on the MS/MS 

investigations, it can be concluded that the ACAIN reacts only with the cysteine moiety of the KAC 

tripeptide and no reaction with the amine groups under the applied reaction conditions could be 

observed.  

The ESI MS investigation of the labeling of BSA with ACAIN using the same experimental 

conditions as in the case of KAC followed. Attachment of one ACAIN molecule to a BSA molecule 

increases the mass of BSA with 315 Da compared to that of the starting protein. According to 

Figure 6., the BSA-ACAIN reaction can be followed by ESI-MS method. At t=0 min the typical 

mass spectrum of the protonated starting protein at different charge states can be observed. The 

measured masses and the charges of the ions are marked over the peaks. After 40 min reaction time 

another series of peaks is clearly visible in the middle panel of Figure 6, which belongs to the BSA-

ACAIN reaction product. The charge state of these ions is the same as that of the corresponding 

BSA ions. In order to gain the masses of the compounds deconvolution was used (FigS14 in the 

Supporting Information). As it can be seen the differences between the masses of labelled and 

unlabelled BSA is 315 Da, which is in very good agreement with the mass of the ACAIN molecule 

(315 Da). However, after 260 min reaction time a third series with a molecular weight of 630 Da 

higher appeared which belongs to the BSA-2ACAIN adducts. Although it was shown that ACAIN 

does not bind to the lysine moiety of KAC it reacts with one lysine of BSA. This behavior was 

previously shown in the reaction of Acrylodan with BSA [16] and with Interleukin-1 [30]. Since 

ACAIN is a hydrophobic molecule just as Acrylodan, it tends to incorporate into the hydrophobic 

pockets of proteins. BSA has two such hydrophobic pockets: one at Cys-34 where the first ACAIN 

molecule binds and the other at Lys-240 where the lysine moiety is activated because of its 

nonpolar environment and the second ACAIN binding most likely happens. The assumption that 

ACAIN binds to the only activated lysine (Lys240) of BSA is further supported by the fact that no 

additional series appeared in the mass spectrum, however long the reaction was allowed to proceed. 

Further details including the kinetic curves for the reactions of ACAIN with KAC and BSA are 

presented in the Supporting Information as FigS15 and FigS16, respectively. 
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Figure 6. The mass spectra of the reaction mixture of the BSA and ACAIN at different 

reaction times. The peaks are marked with the corresponding masses and the charge state of the 

ions. Experimental conditions: [BSA]o=0.52 mM, [ACAIN]o=1.04 mM in water/DMSO (50/50 

V/V) at 25 C. 

 

DFT calculations 
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For practical applications and for the design of more effective fluorophores it is important to know 

why and how the ACAIN molecule has negligible fluorescence in the least polar and observable 

emission in the most polar solvents. Therefore we selected hexane and DMSO as model solvents 

and calculated the ground state (S0) and excited state (S1 and T1) geometries with the electronic 

spectra of ACAIN and its thiol adduct. The DMSO system was expanded with an explicit solvent 

molecule to account for the H-bonding between the ACAIN and the DMSO.  

Depending on the polarity of the solvent molecules, intramolecular or solvent-solute interactions 

can dominate which give rise to different molecular structures in different solvents. The calculated 

equilibrium structures of ACAIN in n-hexane at different electronic states are shown in FigS17 in 

the Supporting Information. We found that in the triplet state a hydrogen atom (or proton) transfer 

from the –NH group (T1(N)) to the acrylic oxygen is possible (T1(O)). (In the ground and S1 states 

we found no local minima with O-localized proton.) All the structures have an intramolecular 

H-bond between the amino group and the acrylic oxygen. Also, in the S1 and T1(O) states the acryl 

group becomes almost coplanar with the naphthalene ring. 

These geometry optimizations revealed a possibility for the lack of emission because of intersystem 

crossing (ISC) which is most likely to happen between S1 and T1(O) as they are similar in geometry 

and very close in energy (5.4 kJ/mol) making the overlap of their vibrational energy levels possible. 

The energy diagram in Fig. 7 shows the electronic energy of the ground, S1 and T1 electronic states 

in the S1 optimized geometry along with the energy minimum of the T1(N) and T1(O) states. The 

dashed and dotted lines show approximations of the potential energy surfaces. It can be seen, 

however, that the energies of S1 and T1(O) are close to each other and the conical intersection point 

for the relaxation into the T1(N) state lies even closer to S1.  
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Figure 7. Electronic energies of the S1 structure of ACAIN (in hexane) in its S0, S1 and T1 

(T1(S1)) electronic states. The other two energies correspond to the two triplet minima. The lines 

are approximations of the S1 (···) and T1 (---) potential energy surfaces. 

 

For the thiol adduct although the energy difference between the S1 and T1(O) is also relatively 

small (12.0 kJ/mol) ISC cannot happen because the geometry of S1 is much closer to the other 

triplet minimum (T1(N)) with an energy separation of 78.7 kJ/mol. Furthermore, the T1(O) state is 

much higher in energy than the other two states in Fig. S19.  

The situation in DMSO is different as there is an H-bond between the amino group and a DMSO 

molecule, while the acryl unit is π-stacked to the naphthalene ring (Fig. S18). The structures of S0, 

S1 and T1(N) are very similar to each other, while in the T1(O) state the hydrogen favors the acrylic 

oxygen over the DMSO and upon protonation the acryl unit twists out from the π-stacking. This is 

similar to what was observed in the case of the thiol adduct in hexane because the energy spacing 

of the S1 and T1(O) states is also small (8.6 kJ/mol). Moreover, they are still far away on the 

potential energy surface due to their geometries. The energy difference between the similar 

structures of S1 and T1(N) is 56.2 kJ/mol (Fig. S20) which is about ten times higher than the one 

calculated in hexane. Therefore, the non-radiative relaxation to the T1 state in DMSO is less 

probable than in hexane. 
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The calculated electronic spectra are in good agreement with the experimental results except for 

the emission of ACAIN (Fig. S21), which is due to the near degenerate triplet and singlet states. It 

is important to note that the main emission band of the thiol adduct consists of only one transition, 

while the one in the calculated spectra of ACAIN has two, one at higher wavelength with very low 

oscillator strength and one at lower wavelength with oscillator strength similar to that of the thiol 

adduct. The spacing of these two transitions is larger in hexane. This result implies that the excited 

ACAIN molecules relax to a dark S1 state in both hexane and DMSO. 

The difference in the emission of the ACAIN and its thiol adduct lies in the fact that ACAIN and 

thio-ACAIN has different frontier molecular orbitals. In the amino-isocyanonaphthalene moiety 

the electronic transition responsible for the fluorescence is a charge transfer between the donor 

amino and the acceptor isocyano groups [33]. However in ACAIN the HOMO-LUMO transition 

involves an intramolecular charge transfer from the main ring to the acryl unit as it can be seen in 

Fig. S22-S23. In the thiol adduct the acrylic double bond gets saturated eliminating the possibility 

for this low energy π-π* transition, hence the molecule becomes fluorescent.  

In order to support our model we performed calculations on molecules with modified acryl units. 

First the ACAIN molecule was simplified by removing the chloromethyl group (replaced by a 

hydrogen atom) to reduce the calculation times. This truncating has no effect on the electronic 

transitions investigated here therefore the chloromethyl group plays no role in the quenching of the 

emission observed in ACAIN. However, when an acrylic hydrogen atom is substituted with an 

electron-donating methyl group, it is expected to destabilize the molecular orbitals containing the 

acryl π-system thereby increasing the HOMO-LUMO gap. The calculations indeed show a higher 

energy S1 state with increased singlet-triplet gap which means a less probable internal conversion. 

In addition, when an electron withdrawing chlorine atom is used as the substituent instead of the 

methyl group calculations show the opposite effect (Table S5). 

After these results we performed calculations on MACAIN and found good correlation between 

the experimental quantum yield and the calculated singlet-triplet energy difference (Table S6). 

 

Conclusions 

1-(2-acryloyloxy-3-chloro-prop-1-yl)-amino-5-isocyanonaphthalene (ACAIN), 1-(2-

methacryloyloxy-3-chloro-prop-1-yl)-amino-5-isocyanonaphthalene (MACAIN) and (2-

chloroacryloyloxy-3-chloroprop-1-yl)-amino-5-isocyanonaphthalene (CACAIN) were prepared 
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by introducing acryl, methacryl and chloroacryl moieties using epichlorohydrin as spacer on our 

previously developed solvatochromic fluorophore ICAN. All three compounds exhibited real 

solvatochromic behavior (Δλem~100 nm) which could be quantitatively described by the Catalán 

and Kamlet-Taft models as well. Interestingly, the quantum yields were found to be rather low, 

especially in nonpolar solvents, decreasing in the order of QYMACAIN>QYACAIN>QYCACAIN. ACAIN 

reacts rapidly and quantitatively with simple thiols in a thiol-ene type click reaction. Using 

propanethiol, thiophenol, and cysteine as thiols complete disappearance of the acryl double bond 

was observed in 5 minutes at room temperature in DMSO without any catalyst using the thiols in 

a molar excess. The hydrothiolation reaction was accompanied by a significant increase in 

fluorescence intensity depending on the solvent used. The brightening of the addition product is 

due to the saturation of the acrylic group and can be applied in the fluorometric monitoring of the 

hydrothiolation reactions. In the case of MACAIN no such reaction could be observed, while 

CACAIN proved to react 100 times faster in DMSO than ACAIN. Unfortunately, the improved 

reactivity owing to the chloroacryl moiety drastically reduces the hydrolytic stability of CACAIN, 

whereas ACAIN is stable under the same conditions. The biolabeling properties of ACAIN were 

investigated in detail by both fluorometry and ESI mass spectrometry using cysteine, lysyl-alanyl-

cysteine (KAC) and BSA as a model protein. The selectivity of the labeling was tested using KAC 

as a simple tripeptide containing a lysine and a cysteine moiety separated by an alanine unit. 

Investigating the reaction by ESI-MS/MS method no fragment ions could be found where ACAIN 

labelled the lysine NH2 group, only the hydrothiolation reaction with the cysteine SH group was 

observed. However, when labeling BSA two series of labelled products could be identified in the 

ESI-MS spectrum belonging to the molecules containing one and two ACAIN molecules attached 

covalently. The second attachment most probably occurs on the only activated lysine unit of BSA 

in a hydrophobic pocket as was described earlier for Acrylodan, a well-known biolabeling dye.  

The optical properties of ACAIN and its SH adducts were described by high level quantum 

chemical calculations. The optimized structures revealed the formation of an intramolecular 

hydrogen bond between the NH and C=O moieties. This intramolecular H-bond gives rise to a dark 

nonfluorescent state of ACAIN due to a close energy triplet state where electron transition can 

happen between the acrylic double bond and the aromatic core. When the double bond is saturated 

by the SH addition the internal conversion pathway leading to nonradiative decay ceases to exist 

resulting in the increase of the fluorescence quantum yields of the thiolated products. The 
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brightening is more pronounced (15-19 fold) in nonpolar solvents where the majority of the starting 

ACAIN molecules is locked in the internal H-bonding position and only moderate (1.5-2 fold) in 

polar solvents where the solvent can break up the H-bond. Based on our DFT calculations the 

structure of the spacer has little effect on the electronic transitions as long as the internal H-bond 

can form. The situation significantly changes when the modification is carried out on the acrylic 

part. When the acryl group is replaced by a methacryl group i.e. an electron-donating group is 

introduced on the double bond the calculations showed an increased singlet-triplet gap which 

means a less probable internal conversion. Indeed, after preparing and investigating the properties 

of MACAIN a good correlation between the experimental quantum yield and the calculated singlet-

triplet energy difference was found. Also if an electron withdrawing chlorine atom is used instead 

of the methyl group calculations show the tightening of the singlet-triplet gap, which could be 

applied in the construction of molecular switches based on ACAIN. 

 

Experimental 

 

Materials 

Acetone, dichloromethane (DCM), hexane, 2-propanol (iPrOH), toluene, triethyl amine (reagent 

grade, Molar Chemicals, Hungary) were purified by distillation. Acetonitrile (MeCN), 

tetrahydrofuran (THF), methanol (MeOH), dimethyl-sulfoxide (DMSO), pyridine (HPLC grade, 

VWR, Germany), chloroform, ethyl-acetate (EtOAc), cyclohexane, 1,4-dioxane (reagent grade, 

Reanal, Hungary), epichlorohydrin, acryloyl chloride, methacryloyl chloride, 2-chloroacrylic acid, 

4-N,N-dimethylaminopyridine, N,N-dicyclohexyl carbodiimide (Sigma-Aldrich, Germany) were 

used without further purification. Buffer solution pH 7.01 (HI 7007, Hanna Instruments) was used 

as received. Buffer solution pH 8.0 and 9.0 (0.1 M) were prepared by mixing 1 M K2HPO4 and 

KH2PO4 solutions (pH 8.0) or 1 M K2HPO4 and 1 M HCl solutions (pH 9.0) at appropriate ratios 

diluted with water and their final pH was adjusted under a pH meter.  

 

 

 

Synthesis 

 



24 

 

 

1-N-(3-chloro-2-hydroxyprop-1-yl)-amino-5-isocyanonaphthalene (CHAIN) 

A 250 ml ACE pressure flask was charged with 1-amino-5-isocyanonaphthalene (1.00 g, 5.95 

mmol) dissolved in ethanol (100 ml) and with epichlorohydrin (930 μl, 11.9 mmol) and vigorously 

stirred with a magnetic stirrer at 90 °C for 3 days. After cooling down, the solvent was removed on 

a rotary evaporator. The crude product was purified on a column filled with normal-phase silica 

gel, using dichloromethane as eluent. Yield: 0.82 g, 53 % (light brown waxy solid). 

1H NMR (360 MHz, CDCl3) δ = 7.90 (d, J = 8.6 Hz, 1H), 7.59 – 7.42 (m, 3H), 7.35 (t, J = 8.0 Hz, 

1H), 6.71 (d, J = 7.4 Hz, 1H), 4.85 (s, 1H), 4.25 (s, 1H), 3.80 – 3.67 (m, 2H), 3.57 – 3.46 (m, 1H), 

3.36 (dd, J = 12.7, 7.4 Hz, 1H), 2.80 (d, J = 4.7 Hz, 1H) ppm. 

13C NMR (95 MHz, CDCl3) δ = 162.64 (CNC), 140.52 (C9,10), 126.70 (C5), 126.46 (C2), 122.44 

(C7), 121.66 (C1), 121.43 (C6), 119.94 (C3), 110.85 (C8), 104.68 (C4), 70.98 (CCHOH), 51.74 (CCH2), 

46.31 (CCH2Cl) ppm. 

ESI-TOF MS (m/z): calculated m/z of [C14H13ClN2O+Na]+ adduct ion is 283.061; found; 283.060 

 

1-N-(2-acryloyloxy-3-chloroprop-1-yl)-amino-5-isocyanonaphthalene (ACAIN) 

Into a 250 ml round-bottom flask charged with 1-N-(3-chloro-2-hydroxyprop-1-yl)-amino-5-

isocyanonaphthalene (1.00 g, 3.84 mmol) and triethyl amine (2.14 ml, 15.3 mmol) dissolved in 

tetrahydrofuran (150 ml) acryloyl chloride (623 μl, 7.68 mmol) was added dropwise at 0 °C, then 

stirred with a magnetic stirrer for 12 hours. The solvent was removed on a rotary evaporator and 

the crude product was purified on a column filled with normal-phase silica gel, using 

dichloromethane as eluent. Yield: 0.86 g, 71 % (orange crystals). 

1H NMR (360 MHz, CDCl3) δ = 7.84 (d, J = 8.6 Hz, 1H), 7.64 – 7.46 (m, 3H), 7.39 (t, J = 8.0 Hz, 

1H), 6.80 (d, J = 7.5 Hz, 1H), 6.51 (d, J = 17.3 Hz, 1H), 6.19 (dd, J = 17.2, 10.5 Hz, 1H), 5.94 (d, 

J = 10.4 Hz, 1H), 5.53 – 5.43 (m, 1H), 4.84 (t, J = 5.2 Hz, 1H), 3.83 (d, J = 4.8 Hz, 2H), 3.75 – 

3.60 (m, 2H) ppm. 

1H NMR (360 MHz, DMSO) δ = 8.32 (d, J = 8.7 Hz, 1H), 7.83 – 7.72 (m, 1H), 7.54 (t, J = 8.1 Hz, 

1H), 7.45 (dd, J = 8.6, 7.5 Hz, 1H), 7.29 (d, J = 8.3 Hz, 1H), 6.85 (d, J = 7.7 Hz, 1H), 6.74 (t, J = 

5.7 Hz, 1H), 6.36 (dd, J = 17.2, 1.6 Hz, 1H), 6.19 (dd, J = 17.2, 10.3 Hz, 1H), 5.97 (dd, J = 10.3, 

1.6 Hz, 1H), 5.39 (td, J = 9.7, 6.0 Hz, 1H), 3.99 (ddd, J = 17.9, 12.0, 4.8 Hz, 2H), 3.67 – 3.49 (m, 

2H) ppm. 
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13C NMR (95 MHz, CDCl3) δ = 162.93 (CNC), 161.96 (CC=O), 140.15 (C9,10), 130.04 (C5), 126.76 

(C1), 125.37 (C3), 122.55 (CAcryl CH2), 121.62 (CAcryl CH), 119.79 (C6,7), 111.00 (C2,8), 104.65 (C4), 

71.67 (CCHO), 46.52 (CCH2), 45.14 (CCH2Cl) ppm. 

ESI-TOF MS (m/z): calculated m/z of [C17H15ClN2O2+Na]+ adduct ion is 337.071; found; 337.070 

 

Thiol adducts of 1-N-(2-acryloyloxy-3-chloroprop-1-yl)-amino-5-isocyanonaphthalene (ACAIN) 

A 25 ml round-bottom flask was charged with 1-N-(2-acryloyloxy-3-chloroprop-1-yl)-amino-5-

isocyanonaphthalene (0.050 g, 0.16 mmol), the thiol (0.16 mmol) dissolved in 5 ml DMSO and 

was stirred with a magnetic stirrer for 10 minutes to 6 hours at room temperature, then extracted 

with water and dichloromethane. The organic phase was separated, dried on anhydrous magnesium 

sulfate, and the solvent was removed on a rotary evaporator. Yield: 46-95 %. 

 

Adduct formed with 1-propanethiol: 

1H NMR (360 MHz, CDCl3) δ = 7.89 (d, J = 8.6 Hz, 1H), 7.56 (dt, J = 16.0, 8.4 Hz, 3H), 7.38 (t, 

J = 8.0 Hz, 1H), 6.78 (d, J = 7.5 Hz, 1H), 5.45 (dq, J = 9.8, 4.9 Hz, 1H), 4.86 (s, 1H), 3.80 (d, J = 

5.1 Hz, 2H), 3.72 – 3.58 (m, 2H), 2.86 – 2.75 (m, 2H), 2.73 – 2.70 (m, 1H), 2.48 (t, J = 7.3 Hz, 

2H), 1.63 – 1.50 (m, 3H), 0.94 (t, J = 7.3 Hz, 3H) ppm. 

ESI-TOF MS (m/z): calculated m/z of [C20H23ClN2OS+Na]+ adduct ion is 413.106; found; 413.106 

 

Adduct formed with thiophenol: 

1H NMR (360 MHz, DMSO) δ = 8.33 (d, J = 8.7 Hz, 1H), 7.75 (d, J = 7.1 Hz, 1H), 7.53 (t, J = 8.1 

Hz, 1H), 7.44 (dd, J = 8.5, 7.5 Hz, 1H), 7.37 – 7.16 (m, 4H), 7.11 (t, J = 7.2 Hz, 1H), 6.83 (d, J = 

7.8 Hz, 1H), 6.70 (t, J = 5.8 Hz, 1H), 5.39 – 5.31 (m, 2H), 3.94 (qd, J = 11.9, 4.8 Hz, 2H), 3.62 – 

3.46 (m, 2H), 3.12 (t, J = 7.0 Hz, 2H), 2.63 (t, J = 7.0 Hz, 2H) ppm. 

ESI-TOF MS (m/z): calculated m/z of [C23H21ClN2O2S+K]+ adduct ion is 463.064; found; 463.064 

 

Adduct formed with cysteine: 

1H NMR (360 MHz, DMSO) δ = 13.95 (s, 1H), 8.23 (d, J = 8.6 Hz, 1H), 7.72 (d, J = 7.3 Hz, 1H), 

7.54 (t, J = 8.1 Hz, 1H), 7.44 (t, J = 8.0 Hz, 1H), 7.27 (d, J = 8.3 Hz, 1H), 6.80 (d, J = 7.8 Hz, 1H), 

5.28 (d, J = 4.6 Hz, 1H), 3.89 – 3.77 (m, 2H), 3.52 (ddd, J = 21.3, 14.4, 6.2 Hz, 2H), 3.41 (s, 2H), 

2.96 (dd, J = 14.2, 3.5 Hz, 1H), 2.86 – 2.70 (m, 3H), 2.66 (s, 2H), 2.63 – 2.54 (m, 2H) ppm. 
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ESI-TOF MS (m/z): calculated m/z of [C20H22ClN3O4S+Na]+ adduct ion is 458.091; found; 458.091 

 

Adduct formed with 1-thio-2,3,4,6-tetra-O-acetyl-β-D-glucose: 

1H NMR (400 MHz, CDCl3) δ = 7.91 (dd, J = 8.5, 2.6 Hz, 1H), 7.62 – 7.50 (m, 3H), 7.47 – 7.37 

(m, 1H), 6.78 (d, J = 7.5 Hz, 1H), 5.49 – 5.40 (m, 1H), 5.19 (tt, J = 9.6, 4.8 Hz, 1H), 5.10 – 5.01 

(m, 1H), 5.01 – 4.91 (m, 1H), 4.48 (dd, J = 10.0, 6.4 Hz, 1H), 4.19 – 4.06 (m, 3H), 3.80 (d, J = 4.9 

Hz, 2H), 3.71 – 3.57 (m, 3H), 3.02 (tt, J = 11.1, 7.1 Hz, 1H), 2.90 (td, J = 13.7, 7.1 Hz, 1H), 2.77 

(dt, J = 7.3, 3.6 Hz, 2H), 2.07 – 1.98 (m, 12H) ppm. 

ESI-TOF MS (m/z): calculated m/z of [C31H35ClN2O11S+Na]+ adduct ion is 701.154; 

found;701.154 

 

1-N-(2-methacryloyloxy-3-chloroprop-1-yl)-amino-5-isocyanonaphthalene (MACAIN) 

Into a 250 ml round-bottom flask charged with 1-N-(3-chloro-2-hydroxyprop-1-yl)-amino-5-

isocyanonaphthalene (1.00 g, 3.84 mmol) and triethyl amine (2.14 ml, 15.3 mmol) dissolved in 

tetrahydrofuran (150 ml) methacryloyl chloride (740 μl, 7.68 mmol) was added dropwise at 0 °C, 

then stirred with a magnetic stirrer for 12 hours. The solvent was removed on a rotary evaporator 

and the crude product was purified on a column filled with normal-phase silica gel, using 

dichloromethane as eluent. Yield: 0.28 g, 22 % (orange crystals). 

1H NMR (360 MHz, CDCl3) δ = 7.83 (d, J = 8.6 Hz, 1H), 7.62 – 7.48 (m, 3H), 7.39 (t, J = 7.9 Hz, 

1H), 6.81 (d, J = 7.4 Hz, 1H), 6.21 (s, 1H), 5.67 (t, J = 1.4 Hz, 1H), 5.39-5.51 (s, 1H), 4.86 (s, 1H), 

3.84 (d, J = 4.8 Hz, 2H), 3.60-3.74 (m, 2H), 1.98 (s, 3H). ppm. 

13C NMR (95 MHz, CDCl3) δ = 13C NMR (91 MHz, CDCl3) δ 167.17 (CNC, CC=O), 143.23 (C9,10), 

135.69 (C5), 129.20 (C1), 128.92 (C3), 127.05 (CMethacryl CH2), 124.69 (C7), 123.84 (CMethacryl C), 

123.74 (C6), 121.79 (C8), 112.67 (C2), 106.00 (C4), 71.76 (CCHO), 45.34 (CCH2), 43.87 (CCH2Cl), 

18.25(CMethacryl CH3).  

ESI-TOF MS (m/z): calculated m/z of [C18H17ClN2O2+Na]+ adduct ion is 351.087; found; 351.087 

 

1-N-(2-chloroacryloyloxy-3-chloroprop-1-yl)-amino-5-isocyanonaphthalene (CACAIN) 

Into a 50 ml round-bottom flask charged with 1-N-(3-chloro-2-hydroxyprop-1-yl)-amino-5-

isocyanonaphthalene (500 mg, 1.92 mmol), 4-N,N-dimethylaminopyridine (26.0 mg, 0.210 mmol) 

and 2-chloroacrylic acid (225 mg, 2.11 mmol) dissolved in dichloromethane (15 ml) N,N-
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dicyclohexyl carbodiimide (435 mg, 2.11 mmol) dissolved in dichloromethane (5 ml) was added 

dropwise at 0 °C, then stirred with a magnetic stirrer for 2 days. The solvent was removed on a 

rotary evaporator and the crude product was purified on a column filled with normal-phase silica 

gel, using dichloromethane as eluent. Yield: 0.33 g, 49 % (pale yellow viscous oil). 

1H NMR (360 MHz, CDCl3) δ = 7.84 (d, J = 8.6 Hz, 1H), 7.65 – 7.46 (m, 3H), 7.41 (dd, J = 8.6, 

7.4 Hz, 1H), 6.83 (d, J = 7.5 Hz, 1H), 6.59 (d, J = 10.3 Hz, 1H), 6.09 (d, J = 10.2 Hz, 1H), 5.52 – 

5.40 (m, 1H), 4.77 (s, 1H), 3.86 (d, J = 4.8 Hz, 2H), 3.73 (t, J = 5.8 Hz, 2H) ppm. 

13C NMR (91 MHz, CDCl3) δ = 167.15 (CC=O), 161.75 (CNC), 142.91 (C9,10), 130.80 (C5), 129.19 

(C1), 128.88 (CChloroacryl CH2), 127.29 (CChloroacryl CH), 126.61 (C3), 124.80 (C7), 123.92 (C6), 121.73 

(C8), 113.01 (C2), 106.15 (C4), 73.56 (CCHO), 44.87 (CCH2), 43.38 (CCH2Cl) ppm. 

ESI-TOF MS (m/z): calculated m/z of [C17H14Cl2N2O2-H]- ion is 346.036; found; 346.036 

 

 

Lysyl-alanyl-cysteine (KAC) 

The KAC tripeptide with terminal amino and amide functionalities (see Figure 2) was synthesized 

by solid phase peptide synthesis using a microwave-assisted Liberty 1 Peptide Synthesizer (CEM, 

Matthews, NC). Fmoc-protected amino acid derivatives were introduced according to the 

Fmoc/tBu technique and the TBTU/HOBt/DIEA strategy. Cleaving on the α-amino protecting 

group of amino acids and resin was performed by 30 Watts microwave power for 180 s at 80 °C 

using 20 V/V% piperidine and 0.1 M HOBt·H2O in DMF. Four times excess of amino acids and 

30 Watts microwave power for 300 s was used for coupling at 80 °C in the presence of 0.5 M HOBt 

and 0.5 M TBTU in DMF as activator and 2 M DIPEA in NMP as activator base. After building 

up the peptide sequences, Fmoc group was removed similarly while the side chain protecting 

groups were cleaved with the treatment of TFA/TIS/H2O/ 2,2’-(ethylenedioxy)diethanethiol 

(94/2.5/2.5/1 V/V) mixture, simultaneously with the removal of the peptide from the resin, at room 

temperature for 2 h. The resin was filtered from the trifluoracetic acid solution of the peptide which 

was precipitated in cold diethyl ether. The crude product was also washed using this solvent and 

dried after separation followed by dissolution in water and freezing for lyophilization.  

The purity of the prepared products was checked by analytical rp-HPLC using a Jasco instrument 

equipped with a Jasco MD-2010 plus multiwavelength detector monitoring the absorbance at 222 

nm.  
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Gradient elution was carried out using solvent A (0.1 V/V% TFA in acetonitrile) and solvent B 

(0.1 V/V% TFA in water) at a flow rate of 0.8 ml/min. From 1 min to 15 min 0 to 25% of A, from 

15 min to 16 min 25% of A and from 16 min to 20 min 25 to 0% of A was applied and a 

Teknokroma Europa Peptide C18 chromatographic column (250 x 4.6 mm, 120 Ǻ pore size, 5 μm 

particle size) was used.  

Chemicals and solvents used for synthetic purpose were purchased from commercial sources in the 

highest available purity and used without further purification. Rink Amide AM resin, 2-(1-H-

benzotriazole-1-yl)-1,1,3,3-tetramethyluronium tetrafluoroborate (TBTU) and all N-

fluorenylmethoxycarbonyl (Fmoc)-protected amino acids (Fmoc-Cys(Trt)-OH, Fmoc-Lys(Boc)-

OH and Fmoc-Ala-OH) are Novabiochem (Switzerland) products. 2-methyl-2-butanol, N-

hydroxybenzotriazole (HOBt), N-methyl-pyrrolidone (NMP), 2,2’-(ethylenedioxy)diethanethiol 

(DODT) and triisopropylsilane (TIS) were purchased from Sigma-Aldrich Co., while N,N-

diisopropyl-ethylamine (DIEA) and trifluoroacetic acid (TFA) were Merck Millipore Co. products. 

Peptide-synthesis grade N,N-dimethylformamide (DMF) and acetic anhydride (Ac2O) were from 

VWR International and piperidine, dichloromethane (DCM), diethyl ether (Et2O), acetic acid 

(AcOH) and acetonitrile (ACN) were from Molar Chemicals Ltd. 

 

 

Methods 

 

NMR 

1H and 13C-NMR spectra were recorded in CDCl3 and DMSO-d6 at 25 ºC on a Bruker Avance 

DRX-400 and a Bruker AM 360 spectrometer at 400 MHz and 360 MHz, respectively with 

tetramethylsilane as the internal standard. 

 

Electrospray Quadrupole Time-of-Flight MS/MS (ESI-Q-TOF) 

The MS and MS/MS measurements were carried out by a MicroTOF-Q type Qq-TOF MS 

instrument (Bruker Daltonik, Bremen, Germany). The instrument was equipped with an 

electrospray ion source where the spray voltage was 4 kV. N2 was utilized as drying gas. The 

temperature of the drying gas was 200 °C and the flow rate was 4.0 L/min. For the tandem MS 

measurements collision gas was nitrogen. The precursor ions for MS/MS were selected with an 
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isolation width of 4 m/z units. The mass spectra were recorded by means of a digitizer at a sampling 

rate of 2 GHz. The mass spectra were calibrated externally using the exact masses of cluster ions 

of sodium trifluoracetate [(NaTFA)n+Na]+ generated under electrospray condition. In the case of 

the BSA and BSA derivatives the collision RF of the quadrupole analyzer was set to 700. The 

spectra were evaluated with the DataAnalysis 3.4 software from Bruker. The samples were 

introduced by a syringe pump (Cole-Parmer Ins. Co., Vernon Hills, IL, USA) at a flow rate of 10 

μL/min. For the mass spectrometric measurements the samples were dissolved in methanol in the 

concentration of 0.1 mM. In order to generate the protonated adduct ions in the case of the BSA 

and BSA derivatives samples low amount of formic acid was added (cacid=0.01 M). 

 

UV-vis 

The UV-vis spectra were recorded on an Agilent Cary 60 spectrophotometer (Agilent, Santa Clara, 

CA, USA) in a quartz cuvette of 1.00 cm optical length. 3.00 cm3 solution was prepared from the 

sample. 

 

Fluorescence measurements  

Steady-state fluorescence measurements were carried out using a Jasco FP-8200 fluorescence 

spectrophotometer equipped with a Xe lamp light source. The excitation and emission spectra were 

recorded at 20 °C, using 2.5 nm excitation, 5.0 nm emission bandwith, and 200 nm/min scanning 

speed. Fluorescence quantum yields were calculated by using quinine-sulfate in 0.1 mol/L sulfuric 

acid as the reference absolute quantum efficiency (Φn = 55%). 

For UV-vis and fluorescence measurements the investigated compounds were dissolved in 

acetonitrile at a concentration of 1.19 mM and was diluted to 2.38x10-5 M and 4.76x10-6 M in the 

solvents in interest. 

 

Density Functional Theory (DFT) calculations  

All calculations were performed using the Gaussian09 C.01 software package [34]. We employed 

DFT and TDDFT for geometry optimizations at the ground and excited states respectively. The 

chosen functional was the M06 [35] with the TZVP basis set [36] because it is able to describe 

some amount of the dispersion forces in contrast to B3LYP [37] and CAM-B3LYP [38] which was 
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found to be necessary to properly optimize π-stacked structures [33]. The calculations were done 

using the IEF-PCM solvent model [39-42]. 

 

Acknowledgment  

This work was financially supported by the grant K-116465 given by OTKA (National Found for 

Scientific Research Development, Hungary). This work was partially supported by the European 

Union and the European Social Fund through project Supercomputer, the National Virtual Lab, 

grant no.: TÁMOP-4.2.2.C-11/1/KONV-2012-0010. The authors also would like to express their 

thanks to Ms. Katalin Várnagy for providing the KAC tripeptide sample. 

 

Supporting Information 

Copies of NMR, MS and optical spectra, computational details and derivation of equations. 

  



31 

 

 

References 

 

[1] Nair DP, Podgórski M, Chatani S, Gong T, Xi W, Fenoli CR, Bowman CN. Chem Mater 

2014;26:724–744 

[2] Kolb HC, Finn MG, Sharpless KB. Angew Chem Int Ed 2001;40:2004–2021. 

[3] Baskin JM, Bertozzi CR, QSAR Comb Sci 2007;26:1211–1219. 

[4] Nwe K, Brechbiel MW. Cancer Biother Radio 2009;24:289-302. 

[5] Wang SQ, Wu QH, Wang HY, Zheng XX, Shen SL, Zhang YR, Miao JY, Zhao BX, Biosens 

Bioelectron 2014;55:386–390. 

[6] Hoyle CE, Lowe AB, Bowman CN. Chem Soc Rev 2010;39:1355-1387. 

[7] Li GZ, Randev RK, Soeriyadi AH, Rees G, Boyer C, Tong Z, Davis TP, Becer CR, Haddleton 

DM. Polym Chem 2010;1:1196–1204. 

[8] Matsumoto T, Urano Y, Shoda T, Kojima H, Nagano T. Org Lett 2007;9:3375-3377. 

[9] Lin W, Yuan L, Cao Z, Feng Y, Long L. Chem Eur J 2009;15:5096-5103. 

[10] Sun YQ, Chen M, Liu J, Lv X, Li JF, Guo W. Chem Commun 2011;47:11029-11031. 

[11] Lallana E, Sousa-Herves A, Fernandez-Trillo F, Riguera R, Fernandez-Megia E. Pharm Res 

2012;29:1–34. 

[12] Lowe AB. Polym Chem 2010;1:17-36. 

[13] Jones MW, Gibson MI, Mantovani G, Haddleton DM. Polym Chem 2011;2:572-574. 

[14] Loving GS, Sainlos M, Imperiali B. Trends Biotechnol 2009;28:73-83. 

[15] Sommer A, Gorges R, Kostner GM, Paltauf F, Hermetter A. Biochemistry 1991;30:11245–

11249. 

[16] Mims MP, Sturgis CB, Sparrow JT, Morrisett JD. Biochemistry 1993;32:9215–9220. 

[17] Flora K, Brennan JD, Baker GA, Doody MA, Bright FV. Biophys J 1998;75:1084-1096. 

[18] Baudier J, Glasser N, Duportail G. Biochemistry 1986;25:6934–6941. 

[19] Oztug Durer ZA, Kudryashov DS, Sawaya MR, Altenbach C, Hubbell W, Reisler E. 

Biophys J 2012;103:930-939. 

[20] Simard JR, Getlik M, Grütter C, Pawar V, Wulfert S, Rabiller M, Rauh D. J Am Chem Soc 

2009;131:13286–13296. 

[21] Bottari G, Leigh DA, Perez EM. J Am Chem Soc 2003;125:13360–13361. 



32 

 

 

[22] Lewis PA, Inman CE, Maya F, Tour JM, Hutchison JE, Weiss PS. J Am Chem Soc 

2005;127:17421–17426. 

[23] Saha S, Stoddart JF. Chem Soc Rev 2007;36:77-92. 

[24] Olofsson J, Önfelt B, Lincoln P. J Phys Chem A 2004;108:4391–4398. 

[25] Rácz D, Nagy M, Mándi A, Zsuga M, Kéki S. J Photoch Photobio A 2013;270:19–27. 

[26] Szajewski RP, Whitesides GM. J Am Chem Soc 1980;102:2011-2066. 

[27] Wilson JM, Wu D, Motiu-DeGrood R, Hupe DJ. J Am Chem Soc 1980;102:359-363. 

[28] Pedersen AO, Jacobsen J. Eur J Biochem 1980;106:291-295. 

[29] Noble DR, Williams DLH. J Chem Soc Perkin Trans 2001;2:13–17. 

[30] Yem AW, Epps DE, Mathews WR, Guido DM, Richard KA, Staite ND, Deibel MR Jr. J 

Biol Chem 1992;267:3122-3128. 

[31] Brown JR. Fed Proc Fed Am Soc Exp Biol 1975;34:591. 

[32] Hirayama K, Akashi S, Furuya M, Fukuhara K. Biochem Biophys Res Commun 

1990;173:639-646. 

[33] Nagy M, Rácz D, Lázár L, Purgel M, Ditrói T, Zsuga M, Kéki S. ChemPhysChem 

2014;15:3614–3625. 

[34] Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR. Gaussian 

09, revision A.02. Wallingford CT: Gaussian, Inc.; 2009. 

[35] Zhao Y, Truhlar DG. Theor Chem Acc 2008;120:215-241. 

[36] Schaefer A, Huber C, Ahlrichs RJ. Chem Phys 1994;100:5829-5835. 

[37] Becke AD. J Chem Phys 1993;98:1372-1377. 

[38] Yanai T, Tew D, Handy N. Chem Phys Lett 2004;393:51-57. 

[39] Tomasi J, Mennucci B, Cammi R. Chem Rev 2005;105:2999-3093. 

[40] Scalmani G, Frisch MJ. J Chem Phys 2010;11:114-110. 

[41] Tomasi J, Mennucci B, Cances E. THEOCHEM 1999;464:211. 

[42] Pascual-Ahuir JL, Silla E, Tunon I. J Comput Chem 1994;15:1127-1138. 

  



33 

 

 

Graphical Abstract 

 

 

 

Highlights 

 

 Acrylated isocyanonaphthalene based solvatochromic click reagent was prepared 

 Reacts easily and quantitatively with a range of different thiols 

 The emission intensity significantly increases during the hydrothiolation reaction 

 The biolabeling abilities were demonstrated using biomolecules with free thiol group 

 DFT calculations revealed an internal acryl-naphthalene electron transfer 


