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1. Introduction

Exactly solvable quantum mechanical potentials proved to be invaluable tools in the

understanding of many fundamental quantum mechanical concepts. In particular, they

give insight into complex phenomena, like the symmetries of quantum mechanical

systems, and they allow the investigation of transitions through critical parameter

domains. Besides this, analytical solutions serve as a firm basis for the development

of numerical techniques.

The one-dimensional Schrödinger equation

−ψ′′(x) + V (x)ψ(x) = Eψ(x) (1)

occurs in many applications. Here the potential function and the energy eigenvalue

are defined such that they contain reduced mass m and h̄ as V (x) = 2mv(x)/h̄2 and

E = 2mǫ/h̄2, so their physical dimension is distance−2. In the simplest case (1) is

defined on the full x axis, i.e. x ∈ (−∞,∞), while for spherical potentials defined in

higher, typically three dimension, Eq. (1) can be obtained after the separation of the

angular variables, if only the s-wave (l = 0) solutions are considered. In this case the

problem is defined on the positive half axis, r ∈ [0,∞), and the x variable is denoted by

r. Besides these options, (1) can also be defined on finite sections of the real x axis, or

even on more complicated trajectories of the complex x plane, but we shall not consider

these in the present work.

Being a second-order ordinary differential equation, (1) has two independent

solutions, and the physical solutions can be obtained as linear combination of these,

satisfying the appropriate boundary conditions. Due to normalizability, bound states

have to vanish at the boundaries (i.e. x = ±∞ in one dimension, and r = 0 and

r = ∞ in the radial case). Unbound solutions, e.g. scattering and resonance solutions

also have to satisfy asymptotic boundary conditions, depending on the nature of the

potential. If V (x) vanishes exactly or exponentially for x → ±∞, then these solutions

of the one-dimensional problem have exponential asymptotic components exp(±ikx),

where E = k2. In the radial case the same asymptotics are valid for r → ∞, while for

r = 0 these solutions have to vanish.

There are some potentials that are defined both as one-dimensional and as radial

problems, e.g. the harmonic oscillator. The bound-state solutions of these two problems

are related to each other in a special way: the odd wave functions of the one-dimensional

potential, which vanish at x = 0, are identical for x ≥ 0 to the s-wave (l = 0) radial

wave functions, and the energy eigenvalues are also identical.

A rather effective way for the unified discussion of bound, scattering and resonance

solutions is the application of the transmission coefficient T (k) (in one dimension) and

the s-wave S matrix S0(k) (in the radial case). These quantities can be constructed

from the asymptotic solutions, and their poles correspond to the bound, anti-bound

and resonance states. From the exact solutions of these problems T (k) and S0(k) can

also be expressed in closed analytic form.
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Here we dicuss the Scarf II potential as a radial problem. This potential has two

independent terms and belongs to the shape-invariant [1] subclass of the Natanzon

potential class [2], which contains problems with bound-state solutions written in terms

of a single hypergeometric function. The first reference to potential (2) in the English

literature occurred in 1983 in Ref. [1], so it is sometimes referred to as the Gendenshtein

potential. However, it was already mentioned a year before in a Russian monograph

[3]. Its detailed description was presented later, e.g. the normalization coefficients of

its bound-state solutions have been calculated only recently [4]. The transmission and

reflection coefficients have been given in Ref. [5], with corrections added in Ref. [6].

It has been a favourite toy model in PT -symmetric quantum mechanics, where it was

used to demonstrate the breakdown of PT symmetry [7, 8]. Further studies concerned

its algebraic [9, 6] and scattering aspects [6], the combined effects of SUSYQM and

PT symmetry [10], the pseudo-norm of its bound states [4], the handedness (chirality)

effects in scattering [11], spectral singularities [12], unidirectional invisibility [13] and

the accidental crossing of its energy levels [14].

Despite its prominent status as a one-dimensional quantum system, the Scarf II

potential has not been considered yet as a radial problem. Here we fill this gap by

introducing a lower cut at a certain x = r0 value and prescribing the appropriate

boundary conditions. We construct the S-matrix for the s-wave solutions, S0(k), and

determine its poles on the complex k plane to identify its bound, anti-bound and

resonance solutions. This will be done in Sec. 3, following the discussion of the one-

dimensional problem for reference in Sec. 2 In Sec. 4 the analogy with the case of the

generalized Woods–Saxon and the Rosen–Morse II potentials will be outlined, finally

the results are summarized in Sec. 5.

2. The Scarf II potential in one dimension

A possible parametrization of this potential is [10]

V (x) = −
V1

cosh2(cx)
+
V2 sinh(cx)

cosh2(cx)
, (2)

where

V1 = c2
(

α2 + β2

2
−

1

4

)

V2 = ic2
β2 − α2

2
. (3)

This potential is real if α∗ = β holds, while it is PT -symmetric if α and β are real or

imaginary. In what follows we consider the real version only. Potential (2) is depicted

in Fig. 1 for some values of the parameters. It has a minimum x− and a maximum x+
at

x± = c−1 sinh−1





V1
V2

±

[

(

V1
V2

)2

+ 1

]1/2


 . (4)

The potential reflected by x = 0 can be constructed easily by considering V2 → −V2,

i.e. α↔ β.
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The bound-state wave functions are

ψn(x) = Cn(1− i sinh(cx))
α
2
+ 1

4 (1 + i sinh(cx))
β

2
+ 1

4P (α,β)
n (i sinh(cx)) , (5)

while the corresponding energy eigenvalues are written as

En = −c2
(

n +
α + β + 1

2

)2

. (6)

Normalizability of (5) requires

n < −
1

2
[Re(α+ β) + 1] . (7)

Cn in (5) was calculated for the real and the PT -symmetric version of the Scarf II

potential in Ref. [4]. In the former case it can be written as

Cn = 2−
α+β

2
−1

[

c
Γ(−α− n)Γ(−β − n)(−α − β − 2n− 1)n!

Γ(−α− β − n)π

]1/2

. (8)

Note that although α and β are complex, Cn is real due to α = β∗ and Eq. (7). It

can also be proven that the bound-state wave functions (5) are real for even n, and

imaginary for odd n: this can be demonstrated by expressing the complex conjugate of

(5), which turns out to be [ψn(x)]
∗ = (−1)nψn(x), due to Eq. 22.4.1 of Ref. [15].

With a reparametrization, the notation of Ref. [6] can be obtained, in which the

scattering aspects of the one-dimensional Scarf II potential have been discussed. Taking

α = −s−
1

2
− iλ , β = −s−

1

2
+ iλ (9)

one obtains

V1 = c2[s(s+ 1)− λ2] V2 = c2(2s+ 1)λ (10)

in Eq. (2). According to (9), the Scarf II potential will be real for real values of s

and λ. Note that this potential remains invariant if the signs of s + 1/2 and λ are

reversed simutaneously. This means that without the loss of generality one can require

s > −1/2. Condition (7) is now n < Re(s) = s, so in order to obtain normalizable

states one needs s > 0. It is notable that En in (6) depends only on s = −(α+β+1)/2,

and is independent of λ = i(α− β)/2.

In Ref. [6] the general solutions of the Schrödinger equation with the potential (2)

and (10) are expressed in terms of hypergeometric functions as

F1(x) = (1− i sinh(cx))−
s+iλ

2 (1 + i sinh(cx))−
s−iλ

2

×2 F1(−s− ik,−s+ ik; iλ− s+ 1/2; (1 + i sinh(cx))/2) (11)

and

F2(x) = A(1− i sinh(cx))−
s+iλ

2 (1 + i sinh(cx))
s+1−iλ

2

×2 F1(1/2− iλ− ik, 1/2− iλ+ ik; s+ 3/2− iλ; (1 + i sinh(cx))/2) . (12)

Note that (12) is obtained from (11) by Eq. 15.5.4 of Ref. [15], where A = 2iλ−s−1/2.
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Figure 1. The structure of the one-dimensional Scarf II potential for V1 = 13.4 and

V2 = 18.92 corresponding to c = 1, α = −4.3 − 2.2i = β∗, s = 3.8 and λ = 2.2.

This potential has four bound states at E0 = −14.44, E1 = −7.84, E2 = −3.24 and

E3 = −0.64. The vertical lines at x = r0 = −0.4965, −2.017825 (abbreviated in the

plot) and −6.0 define three radial potentials (see Sec. 3) with different location of the

origin. In the first case r0 = x−, while the second r0 corresponds to the first node of

ψ2(x) in (5).

The asymptotic behavior of (11) and (12) can be obtained by applying 15.3.4, 15.3.5

and 15.3.6 of Ref. [15], and the results are

lim
x→∞

F1(x) = a1+ exp(ikx) + b1+ exp(−ikx) (13)

lim
x→−∞

F1(x) = a1− exp(ikx) + b1− exp(−ikx) (14)

lim
x→∞

F2(x) = a2+ exp(ikx) + b2+ exp(−ikx) (15)

lim
x→−∞

F2(x) = a2− exp(ikx) + b2− exp(−ikx) , (16)

where

a1+ = D12
−s−2ik/ceπ(k/c−λ−is)/2 b1+ = C12

−s+2ik/ceπ(−k/c−λ−is)/2 (17)

a1− = b1+e
π(k/c+λ+is) b1− = a1+e

π(−k/c+λ+is) (18)

a2+ = D22
−s−2ik/ceπ(k/c+λ+i(s+1))/2 b2+ = C22

−s+2ik/ceπ(−k/c+λ+i(s+1))/2(19)

a2− = b2+e
π(k/c−λ−i(s+1)) b2− = a2+e

π(−k/c−λ−i(s+1)) , (20)

and

C1 =
Γ(iλ+ 1/2− s)Γ(−2ik/c)

Γ(iλ+ 1/2− ik/c)Γ(−s− ik/c)
D1 =

Γ(iλ+ 1/2− s)Γ(2ik/c)

Γ(iλ+ 1/2 + ik/c)Γ(−s+ ik/c)
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(21)

C2 =
Γ(−iλ + 3/2 + s)Γ(−2ik/c)

Γ(s+ 1− ik/c)Γ(−iλ+ 1/2− ik/c)
D2 =

Γ(−iλ + 3/2 + s)Γ(2ik/c)

Γ(s+ 1 + ik/c)Γ(−iλ + 1/2 + ik/c)

(22)

For a wave traveling to the right the transmission and reflection coefficients are

expressed as [5, 6]

T (k) =
a1+b2+ − b1+a2+
a1−b2+ − b1+a2−

=
Γ(−s− ik/c)Γ(s+ 1− ik/c)Γ(iλ+ 1/2− ik/c)Γ(−iλ + 1/2− ik/c)

Γ(−ik/c)Γ(1 − ik/c)Γ2(1/2− ik/c)

(23)

R(k) =
b1−b2+ − b1+b2−
a1−b2+ − b1+a2−

= T (k)

(

cos(πs) sinh(πλ)

cosh(πk/c)
+ i

sin(πs) cosh(πλ)

sinh(πk/c)

)

.

(24)

The poles of T (k) are located at −n = −s − ik/c, −n = s + 1 − ik/c, −n =

−iλ+ 1/2− ik/c and −n = iλ+ 1/2− ik/c. The first choice corresponds to the energy

eigenvalues

En = −c2(s− n)2 (25)

in accordance with (7), and converts F1(x) in (11) into (5) (up to the constant factor

(−1)nn!Γ(β +1)[Γ(β + n+ 1)Cn]
−1) after applying Eqs. 15.3.6 and 22.5.42 of Ref. [15].

The second one stands for anti-bound or virtual states with k located on the negative

imaginary axis, while the last two poles correspond to non-normalizable complex-energy

states, i.e. resonances with En = k2 = −c2(n− 1/2± iλ)2.

3. The Scarf II potential as a radial problem

In this case the general wave function is constructed from the linear combination of the

two independent solutions (11) and (12) with boundary condition that it should vanish

at the origin. The position of the origin need not be chosen at x = 0, rather one can

cut the one-dimensional potential (2) at an arbitrary finite value. Let us thus define

x = r + r0, where r ∈ [0,∞), i.e. x ∈ [r0,∞). Figure 1 displays three possible radial

Scarf II potential with origin corresponding to various values of x = r0.

The general solution

ψ(r) = F1(x) + CF2(x) (26)

should vanish at x = r0, which defines the constant C as

C = −F1(r0)/F2(r0) . (27)
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The asymptotic behavior of the solution has to be inspected only for r → ∞, and the

S-matrix for l = 0 can be obtained from

lim
r→∞

ψ(r) = exp(−ikr)− S0(k) exp(ikr) . (28)

Making use of Eqs. (13) and (15) of the one-dimensional problem the S-matrix can be

constructed as

S0(k) = −
a1+ + Ca2+
b1+ + Cb2+

(29)

After some straightforward algebra one obtains

S0(k) = − 2−4ik/c exp(πk/c)
Γ(2ik/c)

Γ(−2ik/c)

×

[

Γ(iλ+ 1/2− s)

Γ(iλ+ 1/2 + ik/c)Γ(−s + ik/c)
+ iC

Γ(−iλ + 3/2 + s) exp(π(λ+ is))

Γ(s+ 1 + ik/c)Γ(−iλ+ 1/2 + ik/c)

]

×

[

Γ(iλ+ 1/2− s)

Γ(iλ+ 1/2− ik/c)Γ(−s− ik/c)
+ iC

Γ(−iλ + 3/2 + s) exp(π(λ+ is))

Γ(s+ 1− ik/c)Γ(−iλ+ 1/2− ik/c)

]−1

(30)

where

C = −
(1 + i sinh(cr0))

−s+iλ−1/2
2F1(−s− ik/c,−s+ ik; iλ− s+ 1/2; (1 + i sinh(cr0))/2)

A2F1(1/2− iλ− ik/c, 1/2− iλ+ ik/c; s+ 3/2− iλ; (1 + i sinh(cr0))/2)
(31)

The S-matrix of Ref. [16] is recovered in the special case of c = 1, λ = 0 and

r0 = 0. In that case the radial wave functions are obtained from the odd-n solutions of

the one-dimensional problem that vanish at the origin.

The poles of the S-matrix displayed for the various r0 used in Fig. 1 are shown in

Fig. 2.

The solutions of the one-dimensional and the radial problems can be related to each

other by various ways. First, if r0 is defined to be at a node of a particular wave function

ψn(x) of the one-dimensional problem, then Eq. (26) implies that ψn(r0) = 0 can occur

only for C = 0, i.e. the solution of the radial problem will be the corresponding solution

of the one-dimensional problem, defined for x ≥ r0. Furthermore, the energy eigenvalues

(and k) will also be the same. This scenario is illustrated by the E3 excited state of

the one-dimensional problem in Table 1: r0 = −2.017825 coincides with the first of the

three nodes of ψ3(x) in (5), so this function will also act as the second excited state

(n = 2) of the radial problem with the same energy eigenvalue (E2 = −0.64), since it

has two more nodes. The unnormalized bound-state wave functions of this potential are

displayed in Fig. 3. Obviously, the remaining solutions of the radial problem cannot

be calculated in the same way. The situation is analogous to the case of the harmonic

oscillator, where some solutions of the radial problem can be generated from those of

the one-dimensional problem.
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Figure 2. The poles of S0(k) for the parameters used in Fig. 1. Poles located on

the positive and negative imaginary axis correspond to bound and anti-bound states,

respectively, while those appearing symmetrically in the third and fourth quadrant

represent resonance states.
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Figure 3. Modulus of the unnormalized l = 0 bound-state wave functions of the radial

Scarf II potential for r0 = −2.017825. The remaining parameters are the same as those

used in Fig. 1. The second (n = 2) excited wave function with two nodes coincides

with the wave function of the one-dimensional problem belonging to the same energy

eigenvalue, −0.64 (see Table 1). For the normalization of the wave functions, integrals

containing the product of hypergeometric functions defined on x ∈ [r0,∞) would have

to be calculated using numerical methods.

Another relation follows in situations when r0 is defined at a large enough negative

value, where the bound-state wave functions of the one-dimensional problem are close
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to zero. In this case the boundary condition at r0 implies that the second term of (26)

should also be small in magnitude (C will be small), so the solution will be dominated

by F1(x), i.e. the bound-state solution of the one-dimensional problem. This also means

that the energy eigenvalues of the radial problem will also be close to those of the one-

dimensional problem. A simple test for some parameters is displayed in Table 1. It is

seen that the energy eigenvalues match reasonably well, and the agreement gets better

with r0 → −∞ and for lower values of the n quantum number, i.e. in situations when

the magnitude of ψn(r0) is smaller.

Table 1. Bound-state energies of the one-dimensional Scarf II potential and those of

the radial one defined with various r0 in Fig. 1.

1D case r0 = −0.4965 r0 = −2.017825 r0 = −6.0

E0 −14.44 −5.69802 −14.41825 −14.44000

E1 −7.84 – −7.34803 −7.84000

E2 −3.24 – −0.64000 −3.23998

E3 −0.64 – – −0.61366

Considering that the resonance solutions do not vanish asymptotically, the same

argumentation cannot be applied to them. Consequently, the resonance energies of the

one-dimensional and the radial Scarf II potential differ from each other significantly.

Possible applications of the radial Scarf II potential can be envisaged in nuclear

physics, for example. The barrier in Fig. 1 can simulate the effects of the Coulomb

barrier that occurs when charged particles (e.g. protons or α-particles) interact with

a nucleus. The situation is qualitatively similar to the case of the generalized Woods–

Saxon potential, which has a similar barrier, and the difference occurs within the nucleus,

where the latter potential is constant, while the radial Scarf II potential has a clear

minimum, and depending on r0 it can increase close to the origin.

It is also possible to shift the barrier inside the nucleus by formally reflecting

the potential curve in Fig. 1 about x = 0 and defining the origin near the potential

maximum. Staying with the original formalism, this corresponds to considering V2 < 0,

i.e. taking α ↔ β in (3) or λ → −λ in (10). Potentials with such shape occur in

hypernuclei, where the interaction of Λ particles with α particles or nucleons requires

the presence of a soft repulsive core with variable heigth [17].

Finally, the formalism can be extended to the case of optical potentials with complex

values of V1 and V2: the calculation of the wave functions, S-matrix, energy eigenvalues,

including that of the resonances will be the same.

4. Relation to the generalized Woods–Saxon potential

It can be noted that the radial Scarf II potential can be brought to a form that is

close to the notation of the generalized Woods–Saxon potential. Applying the variable
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transformation

x =
r − R

2a
(32)

in (2) with c = (2a)−1, the equivalent form

V (x) = − 4V1
exp((r −R)/a)

[1 + exp((r − R)/a)]2

+ 2V2

[

exp((r − R)/(2a))

1 + exp((r −R)/a)
− 2

exp((r − R)/(2a))

[1 + exp((r − R)/a)]2

]

(33)

is obtained. r0 corresponds to −R, so the radial version of the potential can be obtained

by defining the origin at the negative value of r0 = −R.

In fact, the same variable transformation relates the generalized Woods–Saxon

potential with the Rosen–Morse II potential [18]

V (x) = −
U1

cosh2(cx)
+ U2 tanh(cx) . (34)

After applying the (32) transformation one obtains

V (r) = −4U1
exp((r − R)/(a))

[1 + exp((r −R)/a)]2
− U2

2

1 + exp((r −R)/a)
+ U2 , (35)

which is the Woods–Saxon potential with a shifted energy scale. Note that the first

terms of (33) and (35) are the same.

It should be noted that the Rosen–Morse II potential is defined on the full real

x axis, so in order to obtain the Woods–Saxon potential from it, one should consider

r ∈ [0,∞) in (32). This means that the two solutions have to be matched at r = 0

in a way similar to that considered previously for the Scarf II potential. In fact, the

procedure applied there is the same as that described in the notable work of Bencze

[19], where the S matrix of the Woods–Saxon potential was constructed in an analytical

form. See also Ref. [20] as a more accessible source of the formulas.

Note that in the one-dimensional Rosen–Morse II potential the normalizable states

are expressed in terms of only one of the two independent solutions (similarly to the case

of the one-dimensional Scarf II potential), and they exist only for U1 > 0 [18]. In contrast

with this, in the radial problem, this “surface” term usually plays the role of a barrier,

i.e. U1 < 0, and the attractive component of the potential is represented by the “volume”

term with U2 > 0. The relation between the Rosen–Morse II and the generalized Woods–

Saxon potential has been pointed out in Ref. [21], where analytical expressions were

given for the l = 0 bound-state wave functions and the corresponding energy eigenvalues.

However, those wave functions do not vanish at the origin (their structure is similar to

the wave functions of the one-dimensional Rosen–Morse II potential), so that approach

can be considered as an approximation only.

5. Summary

Based on the results of the one-dimensional Scarf II potential, the radial version of this

potential was studied. For this, the origin was defined at an arbitrary value on the real
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x axis, and the s-wave solutions were constructed from the two independent solutions of

the one-dimensional Schrödinger equation, after prescribing the appropriate boundary

conditions. The asymptotic form of these solutions was used to construct the S0(k) S-

matrix. The poles of S0(k) were located, and were identified with the bound, anti-bound

and resonance solutions.

It was shown that by selecting the origin far enough from the potential minimum,

the bound-state energy eigenvalues and wave functions of the radial potential tended to

those of the one-dimensional potential. Furthermore, selecting the origin at the node

of some bound-state wave function of the one-dimensional potential, this wave function

appeared as a bound-state wave function of the radial potential with the same energy

eigenvalue.

With a slightly modified parametrization, the radial Scarf II potential could be

compared with the generalized Woods–Saxon potential, and it was shown that they share

a term (the “surface” term of the latter potential). In fact, it was demonstrated that the

radial Scarf II potential can be generated from the one-dimensional Scarf II potential

in the same way as the generalized Woods–Saxon potential is generated from the one-

dimensional Rosen–Morse II potential. The connection between the latter two potentials

has been known before [21], however, the bound-state wave functions generated from

this connection did not satisfy the appropriate boundary conditions.

Based on its similarity with the generalized Woods–Saxon potential, the radial

Scarf II potential could be applied in nuclear physics, for example. One possibility is

considering problems, which are characterized by a barrier at the surface of the nucleus,

but in which the flat potential inside the nucleus is replaced with a potential well with a

clear minimum. Another option is placing the barrier inside the nucleus near the origin,

simulating a repulsive interaction there. The formalism can be extended to the case of

complex values of V1 and V2, i.e. to optical potentials.
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