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Abstract

Let p be a prime number and K be the finite field of p elements, i.e. K =GF(p). Further

let G be an elementary abelian p-group of order pm. Then the group algebra K[G] is

modular. We consider K[G] as an ambient space and the ideals of K[G] as linear codes.

A basis of a linear space is called visible, if there exists a member of the basis with

the minimum (Hamming) weight of the space. The group algebra approach enables us

to find some linear codes with a visible basis in the Jacobson radical of K[G]. These

codes can be generated by “monomials” [3]. For p > 2, some of our monomial codes

have better parameters than the Generalized Reed-Muller codes. In the last part of the

paper we determine the automorphism groups of some of the introduced codes.
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1. Introduction and Notation

Reed-Muller codes were introduced as binary functions in [9]. Later the General-

ized Reed-Muller (GRM) codes were defined over an arbitrary finite field by Kasami,

Lin and Peterson in [6]. We will denote a cyclic group of p elements by Cp and Cm
p is

the direct product of m copies of Cp. The radical of K[Cm
p ] is denoted by Jp,m. It turned5

out that the powers of Jp,m coincide with the GRM-codes (see [1] for p = 2 and [2] for

arbitrary p). Landrock and Manz [7] showed that GRM-codes are ideals in modular
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group algebras. In the current paper, we give some new classes of monomial codes

which are ideals in modular group algebras but differ from the GRM-codes. If p > 2,

then some of our codes have better parameters than the GRM-codes. All of the intro-10

duced codes have a visible basis, i.e. their minimum distance can be obtained by the

minimum distance of such a basis.

This paper is organized as follows. In this section we summarize the algebraic concepts

and introduce our notations. In Section 2 we construct monomial codes which have at

least one visible basis and in Section 3 we determine the automorphism groups of some15

of the codes given previously for p = 2.

Throughout the paper p will denote a prime number and K = GF(p) denotes

the Galois-field of p elements. Further let G be an elementary abelian p-group of order

pm for some positive integer m. Thus the group algebra K[G] is modular.

Let n = pm and g1,g2, . . . ,gn be a basis of K[G]. The elements of K[G] are the formal

sums
n

∑
i=1

αigi, where αi ∈ K.

We use the usual operations in K[G] (see [1] for more details).20

The Jacobson radical of K[G] is the kernel of the augmentation map
n
∑

i=1
αigi 7→

n
∑

i=1
αi. It is obvious that this map is an algebra homomorphism. We will refer to the

Jacobson radical shortly as radical. Since K[G] is local, its radical is unique.

Between K[G] and Kn there exists a map

ϕ : K[G]→ Kn

such that

ϕ

(
n

∑
i=1

αigi

)
= (α1,α2, . . . ,αn) =: c.

It can be easily verified that this map is an isomorphism, thus K[G] and Kn are iso-

morphic as vector spaces. The ambient space of the linear codes we consider in this25

paper is ϕ(K[G]). The Hamming weight of codes in Jp,m can be obtained from the basis

formed by the elements of G i.e. the Hamming weight is the number of nonzero αi’s in

c.

2



Given a basis gi1 ,gi2 , . . .gim , (1 ≤ i j ≤ pm,1 ≤ j ≤ m) of the elementary abelian

p-group G, we can consider the algebra isomorphism

µ : K[G]→ K[x1, . . .xm]/〈xp
1 −1, . . .xp

m−1〉, with gi j 7→ x j.

Applying µ we may write any element gi ∈ G as

gi = ga1
i1

ga2
i2
. . .gam

im = xa1
1 xa2

2 . . .xam
m , 0≤ a j < p,

thus we obtain

K[G]∼= K[x1,x2, . . . ,xm]/〈xp
1 −1,xp

2 −1, . . .xp
m−1〉, (1.1)

where K[x1,x2, . . . ,xm] denotes the algebra of polynomials in m variables with coeffi-

cients in K.30

The following set of monomial functions{
m

∏
i=1

(xi−1)ai , where 0≤ ai ≤ p−1 and
m

∑
i=1

ai ≥ 1

}
forms a linear basis of the radical Jp,m due to (1.1) (see [5] for more details).

Now we define Xi := xi−1, where i = 1, . . . ,m. Then we have

K[G]∼= K[X1,X2, . . . ,Xm]/〈X p
1 ,X

p
2 , . . .X

p
m〉. (1.2)

For k ∈ {0, . . . ,m(p−1)} the k-th power of the radical Jp,m is defined as

Jk
p,m = 〈

m

∏
i=1

(Xi)
ai |

m

∑
i=1

ai ≥ k ,0≤ ai ≤ p−1〉. (1.3)

It is well-known that Jk
p,m = GRM(m(p−1)− k,m).

One can choose coset representations of Jk
p,m/Jk+1

p,m of the form:{
m

∏
i=1

Xai
i , where 0≤ ai ≤ p−1 and

m

∑
i=1

ai = k

}
. (1.4)

2. Monomial codes with visible bases

Definition 1 ([3]). Let C be an ideal of K[G] and a subspace of Jp,m. We say that C is

a monomial code if it can be generated by some monomials of the form

Xa1
1 Xa2

2 . . .Xam
m , where 0≤ ai ≤ p−1, and i = 1, . . . ,m.
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Definition 2. Let C be a linear code of length n over K = GF(p), i.e. we consider C

as a subspace of the vector space Kn. We say that C has a visible basis if at least one35

member of the basis has the same Hamming weight as C has. Further C will be denoted

as an [n,k,d]-code, where n is the code length, k is its dimension and d is its minimum

(Hamming) weight.

It is known (Prop. 1.8 in [3]) that for p= 2 every monomial code has a visible basis.

Remark 1. This definition of codes with visible bases is different from the definition40

of visible codes by Ward in [11]. He defined a set V to be visible, if each subspace

generated by a non-empty subset of V has the same weight as the generator set, i.e.

the weight of at least one member of the basis equals the weight of the generated code.

Obviously, if a code is visible in the sense of Ward, then it also has a visible basis.

We construct monomial codes with at least one visible basis. The next theorem is45

a special case of Corollary 3.3 in [8].

Theorem 1. Let p be an arbitrary prime. Then the principal ideal

C = 〈Xa1
1 Xa2

2 . . .Xam
m | 0≤ ai ≤ p−1 ,

m

∑
i=1

ai ≥ 1 , i = 1,2, . . . ,m〉

determines a cyclic code. The set

B =

{
m

∏
i=1

Xki
i | ai ≤ ki ≤ p−1

}
is a visible basis of C.

We have C ⊆ Jp,m and C is a [pm,(p− a1) · (p− a2) · · · · · (p− am),d]-code, where

d =
m
∏
i=1

(ai +1).

Proof. Let Cx j denote the ideal 〈Xa j
j 〉 = 〈(x j−1)a j〉 in the ring K[x j]/(x

p
j −1) for

1 ≤ j ≤ m. Then C is a tensor product C ∼= CX1 ⊗CX2 ⊗ ·· · ⊗CXm (Cor. 3.3 in [8]),

where CX j = 〈X
a j
j 〉 (1 ≤ j ≤ m) is a cyclic code. Each code CX j has a visible basis,

which is the set

{Xk j
j | a j ≤ ki ≤ p−1}

with minimal distance a j + 1. By the theorem of Ward [11], the tensor product C is50

visible. Thus, it has a visible basis. �
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Remark 2. The codes defined in Theorem 1 coincide with the GRM-codes only in the

one-dimensional case, since

C ∼= Jk⇔ k = m(p−1) and C = 〈∏Xai
i | ai = p−1 ∀i〉.

The class of maximal monomial codes Id in the group algebra K[G] was defined by

Drensky and Lakatos in [3] as

Id = 〈
m

∏
i=1

Xai
i |

m

∏
i=1

(ai +1)≥ d,0≤ ai ≤ p−1〉.

The minimum distance of Id is d = min{
m
∏
i=1

(ai +1)}. Thus Id has a visible basis.

For p > 2 some of the maximal monomial codes are better than the GRM-codes

with the same minimum distance. For example if d = 5, then dim(Id) = dim(GRM) +(m
2

)
+
(m

3

)
+m(m−1).55

Theorem 2. Let Cm,k be a monomial code generated by the set

Bm,k = {∏(Xi)
ai |

m

∏
i=1

ai ≥ k, where 0≤ ai < p, 0 < k ≤ (p−1)m}.

Then Bm,k is a visible basis of Cm,k.

Proof.

The proof is similar to the proof of Lemma 1.9 in [1]. We use induction on the

numbers of direct factors in the elementary abelian group G.

For m = 1 the statement follows from Theorem 1.1 in [1]. Suppose that the statement60

is true for m = i and we prove it for the case m = i+1.

Let

x = ∑
a1,...,am

λa1,...,am(x1−1)a1 · · ·(xm−1)am , (2.1)

where λa1,...,am ∈ K. If each λa j = 0 or a j = 0 for all j ∈ {1, . . . ,m}, then Theorem 2

holds. Thus we may assume, that x contains terms with λa j 6= 0 and a j 6= 0 for some

j ∈ {1, . . . ,m}. Let (xm−1)lm be the lowest power of the element (xm−1) in x.

Then we have

x = (xm−1)lm(Llm +Llm+1(xm−1)+Llm+2(xm−1)2 + . . .Llm+t(xm−1)t), (2.2)
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where 0 ≤ t ≤ min(p− 1, k
lm
), L j ∈ K[H], lm ≤ j ≤ lm + t, H = 〈x1〉 × 〈x2〉 × · · · ×

〈xm−1〉. Since Llm is an element of the radical of K[H], we can write it in the form

Llm = ∑
j1, j2,..., jm−1

γ j1, j2,..., jm−1(x1−1) j1 . . .(xm−1−1) jm−1 6= 0 ,(1≤ ji ≤ p−1). (2.3)

Then we have
m−1

∏
i=1

ji ≥
k
lm
, where 0 < k ≤ (p−1)m

for each term in the equation of the right hand side of (2.3). By the induction hypothesis

there exists a basis element (x1−1)a1 . . .(xm−1−1)am−1 in Cm−1, k
lm

such that

dm = wt((x1−1)a1(x2−1)a2 . . .(xm−1−1)am−1)≤ wt(Lim),

where wt(y) denotes the Hamming weight of the codeword y∈Cm,k. Express Llm in the

monomial basis of K[H], i.e.

Llm = ∑
i1,...im−1

µi1,i2,...,im−1xi1
1 . . .xim−1

m−1.

Thus for the element x in (2.2) we have

x=(xm−1)lm

(
∑

i1,i2,...,im−1

µi1,i2,...,im−1 +µ
(1)
i1,i2,...,im−1

(xm−1)+ · · ·+µ
(t)
i1,i2,...,im−1

(xm−1)t

)
·

·xi1
1 . . .xim−1

m−1 = (xm−1)lm ∑
i1,i2,...,im−1

Γi1,i2,...,im−1xi1
1 . . .xim−1

m−1,

where Γi1,i2,...,im−1 ∈K[Hm] and Hm = 〈xm〉. By Theorem 1.1 of Berman [1], there exists

an element (xm−1)r such that r ≥ lm and

wt((xm−1)lmΓi1,i2,...,im−1)≥ wt(xm−1)r.

It follows that

wt(x)≥ dmwt(xm−1)r = wt ((xm−1)r(x1−1)a1(x2−1)a2 . . .(xm−1−1)am−1) ,

while

r
m−1

∏
i=1

(ai)≥ r
k
lm
≥ k.

This completes the proof. �65
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Remark 3. Let Pr1,...,ri
m denotes the number of permutations on m elements with r1, . . . ,ri

repititions. If k = l1 · · · lm, then

dim(Cm,k) = ∑

li≤p−1

l1···lm≥k

Pr1,...,ri
m .

3. Automorphism groups in the binary case

In this section we will consider the codes C defined in Theorem 1 for p = 2. We

will determine their automorphism groups by using a combinatorial method which was

introduced in [10]. Let GC denote a generator matrix of C and Sn the symmetric group

on n elements. It is well-known that if the length of C is n, then Aut(C)≤ Sn.70

Theorem 3. Let p= 2 and m be an arbitrary positive integer. Let C be the code defined

in Theorem 1 and

C = 〈X1 · · ·Xt〉,

where 1 ≤ t ≤ m. Then C is a [2m,λ ,d]-code, where λ = 2m−t and d = 2t . Then the

automorphism group of C can be written as the semidirect product

Aut(C) = Sλ
d oSλ .

Proof. Since C is an ideal in GF(2)[G], we can use the identity

x j(xi−1) = (x j−1)(xi−1)+(xi−1) = X jXi +Xi.

We use the basis B of the code C, which was also introduced in Theorem 1:

B= {X1X2 . . .Xt ,X1X2 . . .XtXt+1,X1X2 . . .XtXt+2, . . . ,X1X2 . . .XtXt+1Xt+2 . . .Xm−2Xm−1Xm} .

Let x1, . . . ,xm be a basis of the elementary abelian 2-group G. We construct a gen-

erator matrix GC according to the basis B in lexicographical order, which means that

for bi,ci ∈ {0,1} and 1≤ i≤ m we have

xb1
1 xb2

2 . . .xbm
m < xc1

1 xc2
2 . . .xcm

m ⇐⇒
m

∑
j=1

b j2 j−1 <
m

∑
j=1

c j2 j−1.
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Keeping in mind that Xi = xi−1, we can write GC as the following binary matrix.

GC =



1 1 1 1 . . . 1 0 . . . 0 0 . . . 0 . . . 0 . . . 0 . . . 0 . . . 0 0 . . . 0 0 . . . 0

1 1 1 1 . . . 1 1 . . . 1 0 . . . 0 . . . 0 . . . 0 . . . 0 . . . 0 0 . . . 0 0 . . . 0

1 1 1 1 . . . 1 0 . . . 0 1 . . . 1 . . . 0 . . . 0 . . . 0 . . . 0 0 . . . 0 0 . . . 0

1 1 1 1 . . . 1 1 . . . 1 1 . . . 1 . . . 0 . . . 0 . . . 0 . . . 0 0 . . . 0 0 . . . 0

.

.

.

1 1 1 1 . . . 1 0 . . . 0 0 . . . 0 . . . 1 . . . 1 . . . 0 . . . 0 0 . . . 0 0 . . . 0

1 1 1 1 . . . 1 1 . . . 1 0 . . . 0 . . . 1 . . . 1 . . . 0 . . . 0 0 . . . 0 0 . . . 0

1 1 1 1 . . . 1 0 . . . 0 1 . . . 1 . . . 1 . . . 1 . . . 0 . . . 0 0 . . . 0 0 . . . 0

1 1 1 1 . . . 1 1 . . . 1 1 . . . 1 . . . 1 . . . 1 . . . 0 . . . 0 0 . . . 0 0 . . . 0

.

.

.

1 1 1 1 . . . 1 1 . . . 1 1 . . . 1 . . . 1 . . . 1 . . . 1 . . . 1 0 . . . 0 1 . . . 1

1 1 1 1 . . . 1︸ ︷︷ ︸
d

1 . . . 1︸ ︷︷ ︸
d

1 . . . 1︸ ︷︷ ︸
d

. . . 1 . . . 1︸ ︷︷ ︸
d

. . . 1 . . . 1︸ ︷︷ ︸
d

1 . . . 1︸ ︷︷ ︸
d

1 . . . 1︸ ︷︷ ︸
d



That means GC is of the form

 A 0

A A

 for some binary matrix A of size 2m−t−1×

2m−1. Thus GC is the tensor product of

 1 0

1 1

 and A.75

We can see that in GC there is one row of weight d = 2t , there are m− t rows of

weight 2t+1,
(m−t

2

)
rows with weight 2t+2, etc. Finally we have one row with weight

2m. Thus GC has 2m−t rows.

Each row of GC can be divided into d-tuples of 1-s and 0-s. The coordinates of

each of the d-tuples can be permuted by Sd and it is easy to verify that the number of80

d-tuples in one row is λ = 2m−t . Furthermore, the d-tuples can be permuted as d-tuples

by all elements of Sλ .

Now we will show that Sλ
d is normal in Aut(C). Let g ∈ Sλ

d and σ ∈ Aut(C) be

arbitrary. Then σ = (σ1, . . . ,σλ ,σµ), where σ1, . . . ,σλ ∈ Sd and σµ ∈ Sλ , further g =

(g1, . . . ,gλ ), where g1, . . . ,gλ ∈ Sd . We have

σ
−1gσ = (σ−1

1 g1σ1, . . . ,σ
−1
λ

gλ σλ )
σµ ,

which means that σ
−1
i giσi ∈ Sd and σµ acts on the elements of {σ−1

1 g1σ1, . . . ,σ
−1
λ

gλ σλ}

as permutation. Thus σ−1gσ ∈ Sλ
d .

We also show that Sλ is in general not normal in Aut(C). Let h ∈ Sλ and we take

again σ ∈ Aut(C) as previously. Further we will denote the d-tuples by a1, . . .aλ . Then

σ
−1hσ = (σ−1

1 a1σ1, . . . ,σ
−1
λ

aλ σλ )
σµ ,
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which means that σµ permutes the σ
−1
i aiσi. Since σ

−1
i aiσi 6= ai in general, this element85

cannot always be expressed as a permutation of a1, . . . ,aλ . Since Sλ
d and Sλ are both

subgroups of Aut(C), we have that the group Aut(C) is an outer semidirect product of

Sλ
d and Sλ .

We still have to show that there are no other automorphisms of C. Let us suppose

that there exists ψ 6∈ Sλ
d o Sλ , which is an automorphism of C. That means ψ does90

not only act on the coordinates of the d-tuples or on the set of d-tuples (which has

cardinality λ ). Thus ψ cuts apart at least one of the d-tuples. Thus, if GC is the

generator matrix of C, then the code generated by Gψ

C is not identical to the code C,

although they are permutation equivalent. This completes the proof. �

Definition 3. Let C be a monomial code in K[G] and c1,c2 ∈ C be two codewords.95

We say that c1 is orthogonal to c2 if their inner product is zero. The dual code of C

is denoted by C⊥ and it is the code containing all codewords which are orthogonal to

all codewords of C. We say that C is self-orthogonal if C ⊆ C⊥ and C is self-dual if

C =C⊥.

Corollary 4. Let p = 2 and C be a [2m,2k,d]-code defined in Theorem 1, where100

0≤ k≤m. Then C is always self-orthogonal and it is self-dual if and only if k = m−1.

Proof.

It is obvious by the construction of the generator matrix GC in the proof of Theo-

rem 3 that the difference of two arbitrary codewords has even weight. Thus all code-

words are orthogonal to each other. In the example of page 4 in [4] it is shown that105

if k = m− 1, then C is self-dual and it is a direct sum of [2,1,2]-codes. Further, the

dimension of C implies self-duality if and only if k = m−1. �
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