On monomial codes in modular group algebras

Carolin Hannusch ${ }^{1}$
Institute of Mathematics, University of Debrecen, Hungary

Abstract

Let p be a prime number and K be the finite field of p elements, i.e. $K=G F(p)$. Further let G be an elementary abelian p-group of order p^{m}. Then the group algebra $K[G]$ is modular. We consider $K[G]$ as an ambient space and the ideals of $K[G]$ as linear codes. A basis of a linear space is called visible, if there exists a member of the basis with the minimum (Hamming) weight of the space. The group algebra approach enables us to find some linear codes with a visible basis in the Jacobson radical of $K[G]$. These codes can be generated by "monomials" [3]. For $p>2$, some of our monomial codes have better parameters than the Generalized Reed-Muller codes. In the last part of the paper we determine the automorphism groups of some of the introduced codes.

Keywords: Error-correcting codes, modular group algebras, monomial codes, automorphism group

2010 MSC: 94B05, 11T71, 20C05, 20B25

1. Introduction and Notation

Reed-Muller codes were introduced as binary functions in [9]. Later the Generalized Reed-Muller (GRM) codes were defined over an arbitrary finite field by Kasami, Lin and Peterson in [6]. We will denote a cyclic group of p elements by C_{p} and C_{p}^{m} is the direct product of m copies of C_{p}. The radical of $K\left[C_{p}^{m}\right]$ is denoted by $J_{p, m}$. It turned out that the powers of $J_{p, m}$ coincide with the GRM-codes (see [1] for $p=2$ and [2] for arbitrary p). Landrock and Manz [7] showed that GRM-codes are ideals in modular

[^0]group algebras. In the current paper, we give some new classes of monomial codes which are ideals in modular group algebras but differ from the GRM-codes. If $p>2$, of the codes given previously for $p=2$.

Throughout the paper p will denote a prime number and $K=G F(p)$ denotes the Galois-field of p elements. Further let G be an elementary abelian p-group of order p^{m} for some positive integer m. Thus the group algebra $K[G]$ is modular.
Let $n=p^{m}$ and $g_{1}, g_{2}, \ldots, g_{n}$ be a basis of $K[G]$. The elements of $K[G]$ are the formal sums

$$
\sum_{i=1}^{n} \alpha_{i} g_{i}, \text { where } \alpha_{i} \in K
$$

We use the usual operations in $K[G]$ (see [1] for more details).
The Jacobson radical of $K[G]$ is the kernel of the augmentation map $\sum_{i=1}^{n} \alpha_{i} g_{i} \mapsto$ $\sum_{i=1}^{n} \alpha_{i}$. It is obvious that this map is an algebra homomorphism. We will refer to the Jacobson radical shortly as radical. Since $K[G]$ is local, its radical is unique.

Between $K[G]$ and K^{n} there exists a map

$$
\varphi: K[G] \rightarrow K^{n}
$$

such that

$$
\varphi\left(\sum_{i=1}^{n} \alpha_{i} g_{i}\right)=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right)=: \mathbf{c}
$$

It can be easily verified that this map is an isomorphism, thus $K[G]$ and K^{n} are isomorphic as vector spaces. The ambient space of the linear codes we consider in this paper is $\varphi(K[G])$. The Hamming weight of codes in $J_{p, m}$ can be obtained from the basis formed by the elements of G i.e. the Hamming weight is the number of nonzero α_{i} 's in c.

Given a basis $g_{i_{1}}, g_{i_{2}}, \ldots g_{i_{m}},\left(1 \leq i_{j} \leq p^{m}, 1 \leq j \leq m\right)$ of the elementary abelian p-group G, we can consider the algebra isomorphism

$$
\mu: K[G] \rightarrow K\left[x_{1}, \ldots x_{m}\right] /\left\langle x_{1}^{p}-1, \ldots x_{m}^{p}-1\right\rangle, \text { with } g_{i_{j}} \mapsto x_{j} .
$$

Applying μ we may write any element $g_{i} \in G$ as

$$
g_{i}=g_{i_{1}}^{a_{1}} g_{i_{2}}^{a_{2}} \ldots g_{i_{m}}^{a_{m}}=x_{1}^{a_{1}} x_{2}^{a_{2}} \ldots x_{m}^{a_{m}}, 0 \leq a_{j}<p
$$

thus we obtain

$$
\begin{equation*}
K[G] \cong K\left[x_{1}, x_{2}, \ldots, x_{m}\right] /\left\langle x_{1}^{p}-1, x_{2}^{p}-1, \ldots x_{m}^{p}-1\right\rangle \tag{1.1}
\end{equation*}
$$

where $K\left[x_{1}, x_{2}, \ldots, x_{m}\right]$ denotes the algebra of polynomials in m variables with coefficients in K.

The following set of monomial functions

$$
\left\{\prod_{i=1}^{m}\left(x_{i}-1\right)^{a_{i}}, \text { where } 0 \leq a_{i} \leq p-1 \text { and } \sum_{i=1}^{m} a_{i} \geq 1\right\}
$$

forms a linear basis of the radical $J_{p, m}$ due to (1.1] (see [5] for more details).
Now we define $X_{i}:=x_{i}-1$, where $i=1, \ldots, m$. Then we have

$$
\begin{equation*}
K[G] \cong K\left[X_{1}, X_{2}, \ldots, X_{m}\right] /\left\langle X_{1}^{p}, X_{2}^{p}, \ldots X_{m}^{p}\right\rangle \tag{1.2}
\end{equation*}
$$

For $k \in\{0, \ldots, m(p-1)\}$ the k-th power of the radical $J_{p, m}$ is defined as

$$
\begin{equation*}
J_{p, m}^{k}=\left\langle\prod_{i=1}^{m}\left(X_{i}\right)^{a_{i}} \mid \sum_{i=1}^{m} a_{i} \geq k, 0 \leq a_{i} \leq p-1\right\rangle \tag{1.3}
\end{equation*}
$$

It is well-known that $J_{p, m}^{k}=\operatorname{GRM}(m(p-1)-k, m)$.
One can choose coset representations of $J_{p, m}^{k} / J_{p, m}^{k+1}$ of the form:

$$
\begin{equation*}
\left\{\prod_{i=1}^{m} X_{i}^{a_{i}}, \text { where } 0 \leq a_{i} \leq p-1 \text { and } \sum_{i=1}^{m} a_{i}=k\right\} \tag{1.4}
\end{equation*}
$$

2. Monomial codes with visible bases

Definition 1 ([3]). Let C be an ideal of $K[G]$ and a subspace of $J_{p, m}$. We say that C is a monomial code if it can be generated by some monomials of the form

$$
X_{1}^{a_{1}} X_{2}^{a_{2}} \ldots X_{m}^{a_{m}}, \text { where } 0 \leq a_{i} \leq p-1, \text { and } i=1, \ldots, m
$$

Definition 2. Let C be a linear code of length n over $K=G F(p)$, i.e. we consider C as a subspace of the vector space K^{n}. We say that C has a visible basis if at least one member of the basis has the same Hamming weight as C has. Further C will be denoted as an $[n, k, d]$-code, where n is the code length, k is its dimension and d is its minimum (Hamming) weight.

It is known (Prop. 1.8 in [3]) that for $p=2$ every monomial code has a visible basis.
40 Remark 1. This definition of codes with visible bases is different from the definition of visible codes by Ward in [11]. He defined a set V to be visible, if each subspace generated by a non-empty subset of V has the same weight as the generator set, i.e. the weight of at least one member of the basis equals the weight of the generated code. Obviously, if a code is visible in the sense of Ward, then it also has a visible basis. a special case of Corollary 3.3 in [8].

Theorem 1. Let p be an arbitrary prime. Then the principal ideal

$$
C=\left\langle X_{1}^{a_{1}} X_{2}^{a_{2}} \ldots X_{m}^{a_{m}} \mid 0 \leq a_{i} \leq p-1, \sum_{i=1}^{m} a_{i} \geq 1, i=1,2, \ldots, m\right\rangle
$$

determines a cyclic code. The set

$$
B=\left\{\prod_{i=1}^{m} X_{i}^{k_{i}} \mid a_{i} \leq k_{i} \leq p-1\right\}
$$

is a visible basis of C.
We have $C \subseteq J_{p, m}$ and C is $a\left[p^{m},\left(p-a_{1}\right) \cdot\left(p-a_{2}\right) \cdots \cdots\left(p-a_{m}\right), d\right]$-code, where $d=\prod_{i=1}^{m}\left(a_{i}+1\right)$.

Proof. Let $C_{x_{j}}$ denote the ideal $\left\langle X_{j}^{a_{j}}\right\rangle=\left\langle\left(x_{j}-1\right)^{a_{j}}\right\rangle$ in the ring $K\left[x_{j}\right] /\left(x_{j}^{p}-1\right)$ for $1 \leq j \leq m$. Then C is a tensor product $C \cong C_{X_{1}} \otimes C_{X_{2}} \otimes \cdots \otimes C_{X_{m}}$ (Cor. 3.3 in [8]), where $C_{X_{j}}=\left\langle X_{j}^{a_{j}}\right\rangle(1 \leq j \leq m)$ is a cyclic code. Each code $C_{X_{j}}$ has a visible basis, which is the set

$$
\left\{X_{j}^{k_{j}} \mid a_{j} \leq k_{i} \leq p-1\right\}
$$

${ }_{50}$ with minimal distance $a_{j}+1$. By the theorem of Ward [11], the tensor product C is visible. Thus, it has a visible basis.

Remark 2. The codes defined in Theorem 1 coincide with the GRM-codes only in the one-dimensional case, since

$$
C \cong J^{k} \Leftrightarrow k=m(p-1) \text { and } C=\left\langle\prod X_{i}^{a_{i}} \mid a_{i}=p-1 \forall i\right\rangle .
$$

The class of maximal monomial codes I_{d} in the group algebra $K[G]$ was defined by Drensky and Lakatos in [3] as

$$
I_{d}=\left\langle\prod_{i=1}^{m} X_{i}^{a_{i}} \mid \prod_{i=1}^{m}\left(a_{i}+1\right) \geq d, 0 \leq a_{i} \leq p-1\right\rangle
$$

The minimum distance of I_{d} is $d=\min \left\{\prod_{i=1}^{m}\left(a_{i}+1\right)\right\}$. Thus I_{d} has a visible basis.
For $p>2$ some of the maximal monomial codes are better than the GRM-codes with the same minimum distance. For example if $d=5$, then $\operatorname{dim}\left(I_{d}\right)=\operatorname{dim}(\mathrm{GRM})+$ 55 $\quad\binom{m}{2}+\binom{m}{3}+m(m-1)$.

Theorem 2. Let $C_{m, k}$ be a monomial code generated by the set

$$
B_{m, k}=\left\{\prod\left(X_{i}\right)^{a_{i}} \mid \prod_{i=1}^{m} a_{i} \geq k, \text { where } 0 \leq a_{i}<p, 0<k \leq(p-1)^{m}\right\}
$$

Then $B_{m, k}$ is a visible basis of $C_{m, k}$.

Proof.

The proof is similar to the proof of Lemma 1.9 in [1]. We use induction on the numbers of direct factors in the elementary abelian group G.

For $m=1$ the statement follows from Theorem 1.1 in [1]. Suppose that the statement is true for $m=i$ and we prove it for the case $m=i+1$.

Let

$$
\begin{equation*}
\mathbf{x}=\sum_{a_{1}, \ldots, a_{m}} \lambda_{a_{1}, \ldots, a_{m}}\left(x_{1}-1\right)^{a_{1}} \cdots\left(x_{m}-1\right)^{a_{m}} \tag{2.1}
\end{equation*}
$$

where $\lambda_{a_{1}, \ldots, a_{m}} \in K$. If each $\lambda_{a_{j}}=0$ or $a_{j}=0$ for all $j \in\{1, \ldots, m\}$, then Theorem 2 holds. Thus we may assume, that \mathbf{x} contains terms with $\lambda_{a_{j}} \neq 0$ and $a_{j} \neq 0$ for some $j \in\{1, \ldots, m\}$. Let $\left(x_{m}-1\right)^{l_{m}}$ be the lowest power of the element $\left(x_{m}-1\right)$ in \mathbf{x}.

Then we have

$$
\begin{equation*}
\mathbf{x}=\left(x_{m}-1\right)^{l_{m}}\left(L_{l_{m}}+L_{l_{m}+1}\left(x_{m}-1\right)+L_{l_{m}+2}\left(x_{m}-1\right)^{2}+\ldots L_{l_{m}+t}\left(x_{m}-1\right)^{t}\right) \tag{2.2}
\end{equation*}
$$

where $0 \leq t \leq \min \left(p-1, \frac{k}{l_{m}}\right), L_{j} \in K[H], l_{m} \leq j \leq l_{m}+t, H=\left\langle x_{1}\right\rangle \times\left\langle x_{2}\right\rangle \times \cdots \times$ $\left\langle x_{m-1}\right\rangle$. Since $L_{l_{m}}$ is an element of the radical of $K[H]$, we can write it in the form

$$
\begin{equation*}
L_{l_{m}}=\sum_{j_{1}, j_{2}, \ldots, j_{m-1}} \gamma_{j_{1}, j_{2}, \ldots, j_{m-1}}\left(x_{1}-1\right)^{j_{1}} \ldots\left(x_{m-1}-1\right)^{j_{m-1}} \neq 0,\left(1 \leq j_{i} \leq p-1\right) \tag{2.3}
\end{equation*}
$$

Then we have

$$
\prod_{i=1}^{m-1} j_{i} \geq \frac{k}{l_{m}}, \text { where } 0<k \leq(p-1)^{m}
$$

for each term in the equation of the right hand side of 2.3). By the induction hypothesis there exists a basis element $\left(x_{1}-1\right)^{a_{1}} \ldots\left(x_{m-1}-1\right)^{a_{m-1}}$ in $C_{m-1, \frac{k}{l_{m}}}$ such that

$$
d_{m}=w t\left(\left(x_{1}-1\right)^{a_{1}}\left(x_{2}-1\right)^{a_{2}} \ldots\left(x_{m-1}-1\right)^{a_{m-1}}\right) \leq w t\left(L_{i_{m}}\right),
$$

where $w t(y)$ denotes the Hamming weight of the codeword $y \in C_{m, k}$. Express $L_{l_{m}}$ in the monomial basis of $K[H]$, i.e.

$$
L_{l_{m}}=\sum_{i_{1}, \ldots i_{m-1}} \mu_{i_{1}, i_{2}, \ldots, i_{m-1}} x_{1}^{i_{1}} \ldots x_{m-1}^{i_{m-1}}
$$

Thus for the element \mathbf{x} in 2.2 we have

$$
\begin{gathered}
\mathbf{x}=\left(x_{m}-1\right)^{l_{m}}\left(\sum_{i_{1}, i_{2}, \ldots, i_{m-1}} \mu_{i_{1}, i_{2}, \ldots, i_{m-1}}+\mu_{i_{1}, i_{2}, \ldots, i_{m-1}}^{(1)}\left(x_{m}-1\right)+\cdots+\mu_{i_{1}, i_{2}, \ldots, i_{m-1}}^{(t)}\left(x_{m}-1\right)^{t}\right) . \\
\cdot x_{1}^{i_{1}} \ldots x_{m-1}^{i_{m-1}}=\left(x_{m}-1\right)^{l_{m}} \sum_{i_{1}, i_{2}, \ldots, i_{m-1}} \Gamma_{i_{1}, i_{2}, \ldots, i_{m-1}} x_{1}^{i_{1}} \ldots x_{m-1}^{i_{m-1}}
\end{gathered}
$$

where $\Gamma_{i_{1}, i_{2}, \ldots, i_{m-1}} \in K\left[H_{m}\right]$ and $H_{m}=\left\langle x_{m}\right\rangle$. By Theorem 1.1 of Berman [1], there exists an element $\left(x_{m}-1\right)^{r}$ such that $r \geq l_{m}$ and

$$
w t\left(\left(x_{m}-1\right)^{l_{m}} \Gamma_{i_{1}, i_{2}, \ldots, i_{m-1}}\right) \geq w t\left(x_{m}-1\right)^{r} .
$$

It follows that

$$
w t(\mathbf{x}) \geq d_{m} w t\left(x_{m}-1\right)^{r}=w t\left(\left(x_{m}-1\right)^{r}\left(x_{1}-1\right)^{a_{1}}\left(x_{2}-1\right)^{a_{2}} \ldots\left(x_{m-1}-1\right)^{a_{m-1}}\right)
$$

while

$$
r \prod_{i=1}^{m-1}\left(a_{i}\right) \geq r \frac{k}{l_{m}} \geq k
$$

This completes the proof.

Remark 3. Let $P_{m}^{r_{1}, \ldots, r_{i}}$ denotes the number of permutations on m elements with r_{1}, \ldots, r_{i} repititions. If $k=l_{1} \cdots l_{m}$, then

$$
\operatorname{dim}\left(C_{m, k}\right)=\sum_{m} P_{m}^{r_{1}, \ldots, r_{i}} .
$$

3. Automorphism groups in the binary case

In this section we will consider the codes C defined in Theorem 1 for $p=2$. We will determine their automorphism groups by using a combinatorial method which was introduced in [10]. Let G_{C} denote a generator matrix of C and S_{n} the symmetric group on n elements. It is well-known that if the length of C is n, then $\operatorname{Aut}(C) \leq S_{n}$.

Theorem 3. Let $p=2$ and m be an arbitrary positive integer. Let C be the code defined in Theorem 1 and

$$
C=\left\langle X_{1} \cdots X_{t}\right\rangle
$$

where $1 \leq t \leq m$. Then C is $a\left[2^{m}, \lambda, d\right]$-code, where $\lambda=2^{m-t}$ and $d=2^{t}$. Then the automorphism group of C can be written as the semidirect product

$$
\operatorname{Aut}(C)=S_{d}^{\lambda} \rtimes S_{\lambda}
$$

Proof. Since C is an ideal in $G F(2)[G]$, we can use the identity

$$
x_{j}\left(x_{i}-1\right)=\left(x_{j}-1\right)\left(x_{i}-1\right)+\left(x_{i}-1\right)=X_{j} X_{i}+X_{i} .
$$

We use the basis B of the code C, which was also introduced in Theorem 1 .
$B=\left\{X_{1} X_{2} \ldots X_{t}, X_{1} X_{2} \ldots X_{t} X_{t+1}, X_{1} X_{2} \ldots X_{t} X_{t+2}, \ldots, X_{1} X_{2} \ldots X_{t} X_{t+1} X_{t+2} \ldots X_{m-2} X_{m-1} X_{m}\right\}$.

Let x_{1}, \ldots, x_{m} be a basis of the elementary abelian 2-group G. We construct a generator matrix G_{C} according to the basis B in lexicographical order, which means that for $b_{i}, c_{i} \in\{0,1\}$ and $1 \leq i \leq m$ we have

$$
x_{1}^{b_{1}} x_{2}^{b_{2}} \ldots x_{m}^{b_{m}}<x_{1}^{c_{1}} x_{2}^{c_{2}} \ldots x_{m}^{c_{m}} \Longleftrightarrow \sum_{j=1}^{m} b_{j} 2^{j-1}<\sum_{j=1}^{m} c_{j} 2^{j-1}
$$

Keeping in mind that $X_{i}=x_{i}-1$, we can write G_{C} as the following binary matrix.

That means G_{C} is of the form $\left(\begin{array}{cc}A & 0 \\ A & A\end{array}\right)$ for some binary matrix A of size $2^{m-t-1} \times$ ${ }_{75} \quad 2^{m-1}$. Thus G_{C} is the tensor product of $\left(\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right)$ and A.

We can see that in G_{C} there is one row of weight $d=2^{t}$, there are $m-t$ rows of weight $2^{t+1},\binom{m-t}{2}$ rows with weight 2^{t+2}, etc. Finally we have one row with weight 2^{m}. Thus G_{C} has 2^{m-t} rows.

Each row of G_{C} can be divided into d-tuples of 1 -s and $0-\mathrm{s}$. The coordinates of ${ }_{80}$ each of the d-tuples can be permuted by S_{d} and it is easy to verify that the number of d-tuples in one row is $\lambda=2^{m-t}$. Furthermore, the d-tuples can be permuted as d-tuples by all elements of S_{λ}.

Now we will show that S_{d}^{λ} is normal in $\operatorname{Aut}(C)$. Let $g \in S_{d}^{\lambda}$ and $\sigma \in \operatorname{Aut}(C)$ be arbitrary. Then $\sigma=\left(\sigma_{1}, \ldots, \sigma_{\lambda}, \sigma_{\mu}\right)$, where $\sigma_{1}, \ldots, \sigma_{\lambda} \in S_{d}$ and $\sigma_{\mu} \in S_{\lambda}$, further $g=$ $\left(g_{1}, \ldots, g_{\lambda}\right)$, where $g_{1}, \ldots, g_{\lambda} \in S_{d}$. We have

$$
\sigma^{-1} g \sigma=\left(\sigma_{1}^{-1} g_{1} \sigma_{1}, \ldots, \sigma_{\lambda}^{-1} g_{\lambda} \sigma_{\lambda}\right)^{\sigma_{\mu}}
$$

which means that $\sigma_{i}^{-1} g_{i} \sigma_{i} \in S_{d}$ and σ_{μ} acts on the elements of $\left\{\sigma_{1}^{-1} g_{1} \sigma_{1}, \ldots, \sigma_{\lambda}^{-1} g_{\lambda} \sigma_{\lambda}\right\}$ as permutation. Thus $\sigma^{-1} g \sigma \in S_{d}^{\lambda}$.

We also show that S_{λ} is in general not normal in $\operatorname{Aut}(C)$. Let $h \in S_{\lambda}$ and we take again $\sigma \in \operatorname{Aut}(C)$ as previously. Further we will denote the d-tuples by $a_{1}, \ldots a_{\lambda}$. Then

$$
\sigma^{-1} h \sigma=\left(\sigma_{1}^{-1} a_{1} \sigma_{1}, \ldots, \sigma_{\lambda}^{-1} a_{\lambda} \sigma_{\lambda}\right)^{\sigma_{\mu}}
$$ cannot always be expressed as a permutation of $a_{1}, \ldots, a_{\lambda}$. Since S_{d}^{λ} and S_{λ} are both subgroups of $\operatorname{Aut}(C)$, we have that the group $\operatorname{Aut}(C)$ is an outer semidirect product of S_{d}^{λ} and S_{λ}.

We still have to show that there are no other automorphisms of C. Let us suppose
which means that σ_{μ} permutes the $\sigma_{i}^{-1} a_{i} \sigma_{i}$. Since $\sigma_{i}^{-1} a_{i} \sigma_{i} \neq a_{i}$ in general, this element

95 there exists $\psi \notin S^{\lambda} \rtimes S_{\lambda}$, which is an automorphism of C. That means ψ does not only act on the coordinates of the d-tuples or on the set of d-tuples (which has cardinality λ). Thus ψ cuts apart at least one of the d-tuples. Thus, if G_{C} is the generator matrix of C, then the code generated by G_{C}^{ψ} is not identical to the code C, although they are permutation equivalent. This completes the proof.

Definition 3. Let C be a monomial code in $K[G]$ and $c_{1}, c_{2} \in C$ be two codewords. We say that c_{1} is orthogonal to c_{2} if their inner product is zero. The dual code of C is denoted by C^{\perp} and it is the code containing all codewords which are orthogonal to all codewords of C. We say that C is self-orthogonal if $C \subseteq C^{\perp}$ and C is self-dual if $C=C^{\perp}$.

Corollary 4. Let $p=2$ and C be a $\left[2^{m}, 2^{k}, d\right]$-code defined in Theorem 1 where $0 \leq k \leq m$. Then C is always self-orthogonal and it is self-dual if and only if $k=m-1$.

Proof.

It is obvious by the construction of the generator matrix G_{C} in the proof of Theorem 3 that the difference of two arbitrary codewords has even weight. Thus all codewords are orthogonal to each other. In the example of page 4 in [4] it is shown that if $k=m-1$, then C is self-dual and it is a direct sum of [2,1,2]-codes. Further, the dimension of C implies self-duality if and only if $k=m-1$.
[1] Berman, S. D., On the theory of group codes, Kibernetika 3 (1), 31-39, (1967)
[2] Charpin, P., Codes cycliques étendus et idéaux principaux d'une algébre modulaire, C.R. Acad. Sci. Paris, 295 (1), 313-315, (1982)
[3] Drensky, V., Lakatos, P., Monomial ideals, group algebras and error correcting codes, Lecture Notes in Computer Science, Springer Verlag, 357, 181-188, (1989)
[4] Hannusch, C., Lakatos, P., Construction of self-dual binary $\left[2^{2 k}, 2^{2 k-1}, 2^{k}\right]$-codes,
[5] Jennings, S. A., The structure of the group ring of a p-group over modular fields, Trans. Amer. Math. Soc. 50, 175-185, (1941)
[6] Kasami, T., Lin, S., Peterson, W.W., New generalisations of the Reed-Muller codes, IEEE Trans. Inform. Theory II-14, 189-199, (1968)
[9] Muller, D. E., Application of boolean algebra to switching circuit design and to error detection IRE Transactions on Electronic Computers, 3, 6-12, (1954)
[10] Pless, V., A classification of self-orthogonal codes over GF(2). Discrete Mathematics 3, 209-246, (1972)
[11] Ward, H. N., Visible codes, Arch. Math. (Basel) 54 (3), 307-312, (1990)

[^0]: Email address: carolin.hannusch@science. unideb.hu (Carolin Hannusch)
 ${ }^{1}$ The author was partially supported by the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement no. 318202.

