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Ab initio prediction of the vibration-rotation-tunneling spectrum
of HCl– „H2O…2

P. E. S. Wormer, G. C. Groenenboom, and A. van der Avoird
Institute of Theoretical Chemistry, NSR/RIM, University of Nijmegen, Toernooiveld, 6525 ED Nijmegen,
The Netherlands
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Quantum calculations of the vibration-rotation-tunneling~VRT! levels of the trimer HCl–~H2O!2

are presented. Two internal degrees of freedom are considered—the rotation angles of the two
nonhydrogen-bonded~flipping! hydrogens in the complex—together with the overall rotation of the
trimer in space. The kinetic energy expression of van der Avoirdet al. @J. Chem. Phys.105, 8034
~1996!# is used in a slightly modified form. The experimental microwave geometry of Kisielet al.
@J. Chem. Phys.112, 5767~2000!# served as input in the generation of a planar reference structure.
The two-dimensional potential energy surface is generatedab initio by the iterative coupled-cluster
method based on singly and doubly excited states with triply excited states included noniteratively
@CCSD~T!#. Frequencies of vibrations and tunnel splittings are predicted for two isotopomers. The
effect of the nonadditive three-body forces is considered and found to be important. ©2001
American Institute of Physics.@DOI: 10.1063/1.1388203#

I. INTRODUCTION

Detailed information on the pair and three-body interac-
tions in water can be obtained from the high-resolution spec-
tra of the water dimer, trimer, and larger clusters.1–16 Dy-
namical calculations17,18 are needed to extract this
information from these spectra. Especially the far-infrared
and microwave spectra of such clusters, which measure the
frequencies of the intermolecular vibrations and tunneling
splittings, turn out to be extremely sensitive to the shape of
the intermolecular potential surface.19–22

Another interesting problem is the solvation of HCl in
water. Also this process, and the HCl–water interactions by
which it is determined, can be investigated by studying the
internal dynamics and the corresponding spectra of small
HCl–water clusters. It is known that HCl is a strong acid that
dissociates easily into H1 and Cl2 when dissolved in excess
water. As such the HCl–water clusters are of interest in the
study of acidity and the kinetics of proton transfer. The HCl–
water clusters have been studied extensively, too, because of
the role they play in the ozone depletion cycle. The Cl radi-
cal catalytically converts ozone to oxygen.23 This radical
may be formed from HCl adsorbed on the surface of hexago-
nal water ice clusters that appear in polar stratospheric
clouds.24,25Because of this role the HCl–water clusters have
drawn much attention of molecular dynamicists26–29 and
experimentalists.30–34

In this work we study the trimer HCl–~H2O!2 and one of
its isotopomers. This trimer is similar to the water trimer in
that it is also strongly hydrogen-bonded. The interactions and
internal motions in the water trimer received much
attention.21,35–65It is the general conclusion of these papers
that only the nonhydrogen-bonded hydrogens in the water
trimer show large amplitude motions and tunnel through the
plane of the semirigid hydrogen-bonded network. The vibra-
tions of the network are much stiffer than of the three

nonhydrogen-bonded~external! hydrogens. It is likely that
HCl–~H2O!2 will show similar behavior. That is, the hydro-
gen bonds will form a rather rigid and almost planar network
and the two external hydrogens will show large amplitude
motions and tunnel through this plane. From the microwave
observations of rotational spectra67 it is deduced that the
hydrogen-bonded part of the present complex is indeed
nearly planar. Since to date no experimental~far-!infrared
results are available for this complex, the assumption that the
two external hydrogen atoms tunnel appreciably through the
plane, is not yet proven experimentally. However, one of the
main purposes of the present work is to investigate whether
this is the case. Further we will compute the vibration-
rotation-tunneling~VRT! spectrum as a guide to future spec-
troscopic studies.

Even more than in the water trimer, the three-body ef-
fects are considerable66 in the very polar system
HCl–~H2O!2 . Consequently, the results of a study on the
trimer will be useful for larger clusters, as the most important
interactions, the pair- and the three-body interactions, are
present in the trimer.

In this study of the internal motions in HCl–~H2O!2 we
apply a dynamical model that is very similar to the one that
was developed earlier for the water trimer53,54,61in order to
interpret and understand the high-resolution far-infrared
spectra.11,12An important difference with the water trimer is
that the present complex does not have three equal mono-
mers on the vertices of an equilateral triangle. So, in this
paper we will have to modify the earlier model somewhat.
Again we considerJÞ0 states and Coriolis coupling be-
tween the internal motions and the overall rotation of the
trimer. The VRT energy levels will be presented. As far as
we are aware, the vibration-tunneling levels have not yet
been measured or calculated earlier. Kisielet al.67 measured
recently the rotational spectrum of HCl–~H2O!2 and several
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of its isotopomers and extracted the Cartesian coordinates of
the atoms from the rotational constants. A small modification
of these coordinates yields a planar reference geometry,
which is essential to our model.

We end the introduction with an outline of the work. It
consisted of the following consecutive steps: First, a planar
reference geometry of the trimer was obtained from the not
completely planar experimental coordinates. Then an atomic
orbital basis set was chosen and used to generate by the
CCSD~T! ~coupled cluster single and double with nonitera-
tive triples! method a two-dimensional potential energy sur-
face ~PES!. This surface was fitted and applied in the solu-
tion of the nuclear motion problem. The form of the kinetic
energy operator appearing in this problem is similar, but not
identical, to the operator used in the water trimer, which is
why we sketch briefly its form. Finally the Hamilton matrix
was diagonalized and the rovibrational states were obtained.
They are discussed in the one but last section of this paper.
The last section contains the conclusions.

II. THEORY

In Fig. 1 we show a planar reference geometry of the
trimer, which is close to the geometry proposed by Kisiel
et al.67 on the basis of their measured rotational spectra. Be-
low we will discuss how we obtained this reference geom-
etry from the experimental geometry. We see a hydrogen-
bonded water dimer inside the complex with the first water
molecule acting as hydrogen donor to the second. Further the
HCl monomer donates a hydrogen to the first water mol-
ecule, while the second water molecule donates a hydrogen
to the HCl molecule. The latter hydrogen bond is strongly
bent and much weaker than the other two bonds.67 In anal-
ogy to the case of the water trimer53,54we expect that the two
nonbonded hydrogens~H1,2 and H2,2) can tunnel through the
plane of the trimer. In this section we describe a model for
this tunneling motion in which the hydrogen-bonded network
is kept rigid and the free hydrogens H1,2 and H2,2 rotate, see
Fig. 1. A free hydrogen rotates around the axis pointing from
the center of mass of its water molecule to its hydrogen-

bonded hydrogen atom. Before discussing the choice of the
planar reference geometry we first review the form of the
kinetic energy operator for this motion, because it dictates to
some extent the choice of the reference geometry.

A. Kinetic energy operator

We follow closely the derivation given in Ref. 53 for the
water trimer. The hydrogen-bonded trimers~H2O!3 and
~D2O!3 are oblate symmetric tops due to the averaging over
six symmetry equivalent minima in a three-dimensional po-
tential energy surface. The three degrees of freedom of this
surface are rotation angles of the nonhydrogen-bonded hy-
drogen atoms. During their rotation the three hydrogen nu-
clei flip through the plane of the hydrogen-bonded skeleton
and the system tunnels from one equivalent minimum to an-
other. In previous articles from our group53,54 a Hamiltonian
was derived describing this three-dimensional tunneling mo-
tion. The overall rotation of the trimer was also included in
the model, so that states with total angular moment quantum
numberJÞ0 could be studied. At first the model was applied
to the symmetric, isotopically pure, trimers and later to some
less symmetric isotopomers.61 The model gives a consistent
assignment of all bands measured to date.

Since in the water trimerthreeprotons are tunneling and
since this trimer is a symmetric top, while the present trimer
is an asymmetric top, we must adapt the derivation some-
what. The derivation of Ref. 53 starts by introducing internal
and external~Euler! angles as generalized coordinates. Then
the metric tensor of these coordinates is derived and the ana-
lytic inverse of this tensor is substituted into the Podolsky
form68 of the kinetic energy. The three external Euler angles
are designateda, b, andg. The first two are the spherical
polar angles of thez-axis ~perpendicular to the plane of the
trimer! with respect to the lab frame. The third angle,g gives
a rotation of the trimer around thez-axis. The internal angles
x1 and x2 are the rotation angles of the free hydrogens
around the axes described above—the dashed lines in Fig. 1.

In order to present the kinetic energy operator, we must
introduce some auxiliary quantities. The vectorvn is the po-
sition vector of the center of mass of monomern in the
frame shown in Fig. 1. The mass of monomern is mn . We
approximate the exact operator in the same way as in Ref. 53
@Eq. ~A37!# and assume that the partI n

eff of the inertia tensor
of the trimer may be neglected. This neglect does not affect
at all the dominant term in the Hamiltonian@~the first term of
H int in Eq. ~5! below# and has a small effect on the other
kinetic energy terms. Accordingly we write this tensor as

~ I M !kl[ (
n51

3

mn~dklvn
22vn,kvn,l !, ~1!

where vn is the length ofvn . Note that I M is the inertia
tensor of a system of three ‘‘pseudo’’ particles that have
monomer masses and are positioned at the mass centers of
the monomers. We will choose our reference geometry such
that the tensorI M is diagonal.

The kinetic energy operator containsJ5(Jx ,Jy ,Jz),
which is the total angular momentum operator. It has the
usual form of a body-fixed rigid rotor angular momentum
operator satisfying anomalous commutation relations.

FIG. 1. Planar reference geometry. The rotation axes are dashed and the
direction of positive rotation is given. The two water molecules are charac-
terized byr OH50.9650 Å and/HOH5104.784°, whiler HCl51.2839 Å. A
distance of 1 Å is marked on the axes to give an indication of the bond
lengths. The numerical values of the coordinates are listed in Table I.
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Further we designate the unit vectors along the water
rotation axes—the dashed lines in Fig. 1—byhn

5(cosjn ,sinjn,0)T. From Table I it is easy to getj1

558.827° andj25154.650°. The water inertia tensor on
basis of principal monomer axes is diag(I b ,I a ,I c). We rotate
the principal axis frames of both monomers around their re-
spectivec-axes~perpendicular to the plane of the molecule!
over an anglef, which is the angle between theb-axis ~the
bisector of the molecule! and the vectorhn . From the coor-
dinates in Table I we obtainf555.623°. In the rotated
frame the water monomer inertia tensor becomes

S I xx I xy 0

I xy I yy 0

0 0 I zz
D [Rz~2f!S I b 0 0

0 I a 0

0 0 I c
D Rz~f!,

~2!

whereRz(f) is a rotation matrix representing an active ro-
tation around thez-axis overf. We will see that the energy
eigenvalues are dominated by the magnitude of the tensor
elementI xx ; it is the moment of inertia corresponding to
rotation around hn . Its numerical value is given by
1/(2I xx)521.1135 cm21 ~for the protonated trimer!.

We introduce the angular momentum operatorj n , which
generates the rotation aroundhn ,

j n[2
i

I xxS I xx cosjn2I xy sinjn cosxn

I xx sinjn1I xy cosjn cosxn

I xy sinxn
D ]

]xn
,

n51,2. ~3!

These operators are non-Hermitian due to the presence of
cosxn and sinxn in their definition. We writej[ j11 j2 . As
the last auxiliary quantity we introduce the Hermitian opera-
tor jH[ j1 j†.

In terms of these auxiliary quantities the Hamiltonian
becomes finally53

H5H rot1HCor1H int ~4!

with

H rot5AJx
21BJy

21CJz
2,

HCor52A Jx j x
H2B Jy j y

H2C Jz j z
H , ~5!

H int52
1

2 (
n51

2
1

I n,xx

]2

]xn
2

1A jx
† j x1B jy

† j y1C jz
† j z

1V~x1 ,x2!.

The sum overn runs over the two water molecules and we
attached the indexn to I n,xx to allow for different isotopes.
Observe that this tensor element occupies the position of the
mass in the usual kinetic energy operators, which explains its
importance. The potentialV(x1 ,x2) will be introduced be-
low.

B. Reference geometry

The geometry of the hydrogen-bonded system
HCl–~H2O!2 was determined by Kisiel and co-workers.67

They measured microwave spectra of different isotopomers
in different rotational states and extracted atomic coordinates
from their spectra. The complex was found to be almost, but
not completely, planar, the main exception being the two
water protons that do not participate in a hydrogen bond.
One proton was found above the plane of the complex and
the other below it. The other atoms are close to thexy plane,
but not in it, see Table II. In our model we assume a rigid
planar hydrogen-bonded network Cl–H–M1– H1,1–
M2– H2,1, where M1 and M2 are the centers of mass of the
water monomers 1 and 2. The free hydrogens are rotated out
of this plane by rotations overx1 andx2 , but also the oxy-
gens move slightly out of the plane by these rotations. We
extracted from the experimental data a planar structure of the
hydrogen-bonded framework and the anglesx1 andx2 of the
external hydrogens that give optimum rotational constants.
In doing this we first computed the rotational constants from
the experimental coordinates,Aexp56853.6, Bexp53187.5,
and Cexp52185.8 MHz, where we used the masses H:
1.007 825 2 u,16O: 15.994 915 0 u, and35Cl: 34.968 851 0 u.
We put the index ‘‘exp’’ to these constants because they are
calculated from the experimental coordinates; we do not im-
ply that these constants were directly observed. To obtain the
planar reference structure we minimized the root mean
square error~RMS!: R[ 1

3@DA21DB21DC2#1/2, whereDA
stands for the difference between the experimental and ourA
rotational constant and likewise forB and C. The optimum
rotational constants, which occur for the anglesx1530.8°

TABLE I. Planar reference geometry~Å!. The axes are principal axes of the
tensorI M @Eq. ~1!# with rotational constants: 1/(2I M)xx5A57112.62 MHz,
1/(2I M)yy5B53250.18 MHz, 1/(2I M)zz5C52230.80 MHz. The coordi-
nates are depicted in Fig. 1.

x y z

O1 1.151 15 21.466 67 0.0
H1,1 1.696 41 20.670 48 0.0
H1,2 1.781 85 22.197 04 0.0
O2 1.707 32 1.259 21 0.0
H2,1 0.859 92 1.720 86 0.0
H2,2 2.369 92 1.960 76 0.0
Cl 21.490 27 0.182 72 0.0
H 20.499 98 20.634 41 0.0

TABLE II. Coordinates obtained by rotating the two water molecules in the
reference geometry of Table I overx1530.8° andx25240.0°, respec-
tively. The experimental coordinates of Ref. 67 are given in the last three
columns. Units: Å.

Rotated Experiment

O1 1.1577 21.4706 20.0279 1.0921 21.5357 20.0429
H1,1 1.6964 20.6705 0.0000 1.6425 20.7434 20.0178
H1,2 1.6777 22.1340 0.4420 1.5711 22.1851 0.4863
O2 1.7128 1.2707 0.0350 1.7739 1.1944 0.0404
H2,1 0.8599 1.7209 0.0 0.9136 1.6313 0.0511
H2,2 2.2835 1.7784 20.5547 2.3373 1.7728 20.4881
Cl 21.4903 0.1827 0.0 21.4815 0.1630 0.0009
H 20.5000 20.6344 0.0 20.5446 20.7145 20.0228
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and x25240.0°, are A56853.6, B53187.4, and C
52185.7 MHz withR50.05 MHz. The corresponding Car-
tesian coordinates are given in Table I.

At this point we note already that the surface has anab
initio minimum for x1557° andx25226°. The rotational
constants for these angles areA56841.4, B53185.5, and
C52187.3 MHz which have a RMS of 4.1 MHz5 1.4
31024 cm21.

After having found the reference geometry, we per-
formed an overall rotation of the system in thexy-plane by
means of the eigenvectors ofI M @Eq. ~1!#. This rotation gives
reference coordinates that diagonalizeI M . The correspond-
ing rotational constantsA, B, andC ~given in the caption of
Table I! deviate 3.6%, 1.9%, and 2.0% from the valuesAexp,
Bexp, andCexp, respectively. These percentages give an in-
dication of the error introduced by neglectingI n

eff in the total
inertia tensor.

III. CALCULATION AND FIT OF THE POTENTIAL
ENERGY SURFACE

A. Calculation

All our ab initio calculations were done by the CCSD~T!
method. They were performed with the aid of the program
MOLPRO.69 By defaultMOLPRO excites from the highest four
occupied~valence! molecular orbitals for the HCl monomer
as well as for the H2O monomer. We used this default. In the
case of the trimer this means that excitations are from the
highest twelve occupied orbitals, while for the dimers exci-
tation is from highest eight. We computed the following
CCSD~T! interactions:

E~1,3!5EA1EB1EC ,

E~2,3!5EAB1EBC1ECA22E~1,3!, ~6!

E~3,3!5EABC2E~1,3!2E~2,3!,

where E(N,3) denotes theN-body term in the trimer. All
seven CCSD~T! energiesEA , . . . ,EABC are computed in the
trimer basis, thus correction for basis set superposition errors
is automatically assured. HereA, B, andC label the mono-
mers. Unless stated differently we will describe the potential
energy surface~PES! by the sum of the pair interactions
E(2,3) plus the nonadditive termE(3,3). Below we will
show that the surface is symmetric under (x1 ,x2)→(2x1 ,
2x2), which is due to the inversion symmetryE* .

It is important for a reliable prediction of the tunneling
splittings that barrier heights and widths in the PES are com-
puted correctly. A good atomic orbital basis is crucial for
this. In finding the basis we proceeded in two rounds. In the
first round we scanned the surface with the moderately sized
aug-cc-pVDZ basis.70 In this basis we found the equilibrium
to be close to (x1 ,x2)5(60°,230°) and we expect a tun-
neling from this minimum to (x1 ,x2)5(260°,30°) through
a barrier which has its maximum at (x1 ,x2)5(0°,0°). The
barrier height in this small basis is 348.9 cm21. The same
basis gives the lower barrier of 331.3 cm21 in the second-
order Møller–Plesset~MP2! approximation, which is why
we did not use MP2 in our calculations.

In the second round we started by first computing the
barrier height in the rather large aug-cc-pVTZ basis70 and
searched for smaller, more economical, bases that could re-
produce this height. The different heights obtained in differ-
ent basis sets are shown in Table III. Assuming that the value
of 311.0 cm21 obtained in the largest~i.e., the aug-cc-pVTZ!
basis is the best approximation to the true value, we find that
the 156-dimensional basis: EZPPBF on water and 63111
1G(2d,2p)1 f on Cl gives a good price/performance ratio.
The water part of this basis is due to the van Duijneveldts.71

The letters EZ refer to the extended zeta set (10s,6p/5s,3p)
on O and (4s/2s) on H. The letters PP refer to two polariza-
tion functions on H and O. The letter B refers to ans andp
orbital (as5ap50.6) in the three hydrogen bonds, i.e., half-
way the Cl–H2,1, H–O1, and H1,1–O2 bonds. The letter F
refers to a singlef orbital on O. We used the same basis for
the HCl hydrogen as for the water hydrogens. The chlorine
part of the basis is the 631111G(2d,sp) basis from Ref.
72 augmented with an f orbital with exponenta50.7. We
used this basis to compute the PES on 50 points in the range
from 2110° to 110°. Theseab initio pointsare made avail-
able via EPAPS.73

B. Fit

We fitted the total interactionE(2,3)1E(3,3) as well as
only the two-body interactionE(2,3), cf. Eq.~6!. Writing V
for either potential we note that because of symmetry
V(x1 ,x2)5V(2x1 ,2x2). We used for the fit the reproduc-
ing kernel Hilbert space interpolation method of Ho and
Rabitz,74 which we slightly modified to build in the symme-
try. In order to use the reproducing kernel~r.k.! proposed by
these workers for anglelike variables we define the scaled
and shifted coordinatesx(x1)5 1

2(x1 /xmax11) and y(x2)
5 1

2(x2 /xmax11), with xmax5110° such that 0<x,y<1.
The potential is expanded as

V~x1 ,x2!5(
i 51

50

ci@q2
n~x,xi !q2

n~y,yi !

1q2
n~12x,xi !q2

n~12y,yi !#, ~7!

TABLE III. CCSD~T! barriers~cm21) as a function of basis. The barrier is
defined asV(x1560°,x25230°)2V(x150°,x250°), where V is the
two- plus three-body interaction.

Basis Dimension Barrier

aug-cc-pVDZa 118 348.9
aug-cc-pVTZa 257 311.0
cc-pVTZa 164 285.0
631111G(2d,2p) a 139 327.1
aug-cc-VDZ1 bondb 184 328.6
EZPPBF~water!/aug-cc-pVTZ~Cl! c 174 313.3
EZPPBF~water!/631111G(2d,2p)~Cl! d 156 308.1

aFrom Ref. 70.
bFrom Ref. 70, plus bond orbitals in hydrogen bond,s, p: a50.9,0.3,0.1,d:
a50.6,0.2.

cWater from Ref. 71 plus extrad (a50.6) on oxygen; chlorine from Ref.
70.

dWater from Ref. 71; chlorine from Ref. 70, plus extraf (a50.7) on chlo-
rine.
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where the r.k.q2
n(x,x8) is the polynomial of degree 2n21

for x,x8 and of degreen21 for x.x8 as defined in Eq.
~23! of Ref. 74. We find thatn53 gives a sufficiently
smooth fit. The coordinatesxi andyi are related to the coor-
dinates of the 50ab initio points by xi[x(x1i) and yi

5y(x2i). The 50 expansion coefficientsci are obtained as
the solutions of the linear equations that arise from the con-
ditions Vi5V(x1i ,x2i), where the valuesVi are the
CCSD~T! interaction energies. Since the condition number of
the set of linear equations is about 531013, we do not need
to use a regularization method as discussed in section 2C of
Ref. 74.

The second term in Eq.~7! enforces the symmetry since
x(2x1)512x(x1) and y(2x2)512y(x2). Initially we
tried to obtain a fit of the correct symmetry by simply adding
the symmetry related points to theab initio data, while fitting
without the second term in Eq.~7!. However, this yields a fit
which is only approximately symmetric.

See Fig. 2 for a contour diagram of the fitted potential.
The valueDe of the depth of the well atx1557° andx2

5226° is 4164.26 cm21. The value for the saddle point
x15x250° is 23851.73 cm21, thus the barrier height is
312.53 cm21. The minimum in the two-body potential is at
x1554° andx25226°. Its depthDe is 3629.17 cm21 and
its value atx15x250° is 23378.41 cm21, which makes
for a two-body barrier height of 250.76 cm21. This height is
about 62 cm21 lower than the height in the total two- plus
three-body PES.

IV. THE NUCLEAR MOTION PROBLEM

We start this section by discussing the computation of
the matrix of the Hamiltonian in a product basis of sinc and
rigid rotor functions. Under the condition that the total iner-
tia tensor does not depend onx1 andx2 , the volume element
associated withx1 and x2 is constant and only the usual
weight sinb must be included in the integrations, whereb is

the second of the three Euler angles describing the overall
rotation. In the solution of the nuclear motion problem we
use a basis of WignerD-matrix elements75 DMK

(J) (a,b,g)*
times a productjn(x1)jm(x2) of discrete variable represen-
tation ~DVR! sinc functions. A DVR sinc function has the
form,76,77

jn~x!5D21/2
sinp~x/D2n!

p~x/D2n!
. ~8!

These functions have the DVR property,jn(mD)
5D21/2dn,m and are located on an equidistant grid with
spacingD, which we take to be the same for the two angles
throughout this paper. The indexn counts the points on the
grid. The potential energy matrix elements are approximated
by a quadrature on this grid. As a result the potential energy
matrix is diagonal

^jn8~x1!jm8~x2!uV~x1 ,x2!ujn~x1!jm~x2!&

5dn8ndm8mV~nD,mD!. ~9!

All multiplicative ~local! operators are evaluated in this ap-
proximation.

Since the sinc functions are orthonormal it follows that

K jn8~x1!jm8~x2!U ]2

]x1
2 Ujn~x1!jm~x2!L

5dm8mK jn8~x1!U ]2

]x1
2 Ujn~x1!L , ~10!

and a similar expression for]2/]x2
2. The second derivatives

are given analytically by76,77

K jn8U ]2

]x2 UjnL 55 2
p2

3D2
for n85n

2
2~21!n82n

~n82n!2D2
for n8Þn.

~11!

The matrix elements of the operatorsj n i
† j n i , (i 5x, y, z) can

be computed by substitution of a resolution of identity in the
sinc basis between functions and differential operators. To
show this we write brieflyj nx52 i (a]/]x1b cosx]/]x),
where the constantsa andb are given by Eq.~3!. The opera-
tor j nx

† j nx can be rewritten in different ways. Since the reso-
lution of the identity in the sinc basis is an approximation,
the best results are obtained by an expression with the local
functions sinx and cosx on the outside. This is because local
functions are diagonal in the sinc basis, so that only one term
of the resolution of identity survives. Further we require the
expression to be manifestly Hermitian. Thus, we write

FIG. 2. Contour diagram of the interaction energy (cm21) V(x1 ,x2).
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j nx
† j nx52a2

]2

]x2
2b2S cosx

]2

]x2
cosx2sin2 x

2sinx
]

]x
cosx1cosx

]

]x
sinx D

2abS cosx
]2

]x2
1

]2

]x2
cosx2sinx

]

]x
1

]

]x
sinx D .

~12!

The expression forj ny
† j ny is completely analogous, and for

j nz
† j nz we have

j nz
† j nz5b2S sinx

]2

]x2
sinx2cos2 x1cosx

]

]x
sinx

2sinx
]

]x
cosx D . ~13!

The local functions sinx and cosx are diagonal,

^jn8~x!ucosxujn~x!&

5dn8n cos~nD! and ^jn8~x!usinxujn~x!&

5dn8n sin~nD!. ~14!

The derivatives are given by76,77

K jn8U ]

]x UjnL 5H 0 for n85n

~21!n82n

~n82n!D
for n8Þn.

~15!

As in the theory of the asymmetric rotor we will find it
convenient in the computation of matrix elements to write
H rot in terms ofJz andJ6[Jx7Jy ~this definition is due to
the anomalous commutation relations satisfied by theJi!,
thus

H rot5 1
2 ~A1B!J21@C2 1

2 ~A1B!#Jz
2

1 1
4 ~A2B!~J1

2 1J2
2 !. ~16!

The numerical values: (A1B)/250.173 cm21, C2(A
1B)/2520.098 cm21, and (A2B)/450.032 cm21. We
write hereH rot as the Hamiltonian of a rigid rotor close to an
oblate top for whichA5B, as we did for the water trimer,
i.e., K[Kc . Although in this caseB is closer toC than toA,
we find it convenient to have thez-axis perpendicular to the
plane of the trimer rather than along thex-axis (a-axis! of
Fig. 1, what we would have to do if we wrote the Hamil-
tonian in a form close to the prolate limit. Note that, since
C2(A1B)/2 is negative and (A2B)/4 is fairly small, the
eigenvalues ofH rot may be expected to increase with de-
creasing eigenvalues ofJz

2 .
After the Hamilton matrix is computed in the manner

just described, we determine its lowest eigenvectors and ei-
genvalues by means of the routineDSPEVX in the LAPACK

library.78

V. RESULTS AND DISCUSSION

No symmetry was used in the calculations other than in
choosing theab initio points on the PES and the fit of this
surface. In order to understand the results it is necessary to
say first a few words on the symmetry of the problem.

A. Symmetry considerations

In our model, where we have differentfixed anglesj1

and j2 and fixed monomer positions, the two water mol-
ecules are distinguishable. Furthermore the model does not
allow for the intramolecular permutations of the protons. In
other words, the identityE and inversionE* are the only
symmetry operations left of all the elements in the complete
permutation-inversion group. Inversion with respect to the
center of mass of the trimer sends the Euler angleg to g
1p, and givesx1°2x1 andx2°2x2 . When we neglect
HCor the exact eigenfunctions are products of eigenfunctions
of H rot ~asymmetric top functions! and ofH int. The symme-
try of the total eigenfunctions is an outer product of the sym-
metries of the eigenfunctions of both operators. When we do
include Coriolis interaction, in principle only the symmetry
of the total wave function is determined. We will find, how-
ever, that this interaction is small and that the symmetries
imposed byH int and H rot separately are still clearly recog-
nizable in the wave functions.

B. JÄ0 states

The lowest 10 energies for theJ50 states are given in
Table IV. We tested grid spacings and grid sizes and found
that the lowest four states have converged to within 0.01
cm21, while from the fifth state onward the errors are slowly
increasing, with a largest error of 0.4 cm21 for the tenth
state. Hence we conclude that a grid spacing of 10° and a
grid with x1 and x2 ranging from2110° to 110° is suffi-
ciently accurate for our purpose. The zero point vibrational
energyDe2D0 is 195.53 cm21. Note also the importance of
three-body effects in the potential on the tunnel splitting. In
Table IV we see that neglect of these effects in the PES

TABLE IV. The lowest tenJ50 excitation energies. All energy units are
cm21. The first column gives the symmetry of the state underE* . Column
two is for the protonated trimer and is computed from a potential including
the pair potential only, cf. Eq.~6!. The third column includes the nonadditive
three-body effects. The last column is for the deuterated trimer and is ob-
tained from the pair plus three-body potential. Absolute values of zero point
energiesD0 for the protonated species are 3449.68~pair! and 3968.78~to-
tal!. The correspondingDe values are 3629.17 and 4164.26. For the deuter-
ated species,D054014.04.

Sym. H2O~pair! H2O~total! D2O~total!

A1 0.00 0.00 0.00
A2 14.40 8.94 1.39
A2 125.91 129.19 95.07
A1 136.41 135.78 95.73
A1 181.00 196.58 162.92
A2 258.95 270.72 192.36
A1 270.87 277.35 197.66
A2 282.17 283.99 198.81
A2 324.95 334.75 255.06
A1 382.03 392.28 271.76
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increases the splitting from 8.94 to 14.40 cm21, which is
consistent with the fact, noted above, that the barrier height
in the two-body potential is 62 cm21 lower than in the total
potential. See Fig. 3 for theA1 ground state and the firstA2

tunneling state, which is 8.94 cm21 higher than the ground
state.

The first excitedA1 vibrational state is shown at the top
of Fig. 4. We determined a one-dimensional force constant
by fitting a parabola through the PES as a function ofx2 at
fixed x1557°. The harmonic energy obtained by this force
constant is 136.75 cm21. This value agrees well with the
energy 135.78 cm21 of the state at the top of Fig. 4. We
conclude that this state resembles the first excited state of a
harmonic oscillator moving in thex2 direction. The tunnel

splittedA2 counterpart is also shown in Fig. 4. Its energy is
6.59 cm21 lower. The overtones of this motion are shown in
Fig. 5. Here the antisymmetric state is 6.78 cm21 above the
symmetric one.

We see here that the system separates reasonably well in
a x1 and ax2 dependent part. The motion in thex2 direction
has a zero point energy of approximately 135.78/2'68
cm21. The zero point energy for the perpendicular motion in
the x1 direction is then 195.53268'128 cm21, so that
states with energies larger than;185 cm21 are above the
barrier. The motion that crosses the barrier is predominantly
in the x1 direction.

In the top part of Fig. 6 we show a wave function of

FIG. 3. Contour diagrams of the ground state wave function and the first
excited tunneling state as a function of the anglesx1 and x2 . The second
state has an energy 8.94 cm21 above the first.

FIG. 4. Contour diagram of the first excited vibrational wave function and
its tunnel splitted counterpart as a function of the anglesx1 and x2 . The
energies are 135.78 and 129.19 cm21, respectively. The tunnel splitting is
6.59 cm21.
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energy 196.58 cm21 that has two distinct nodal planes par-
allel to thex2 axis, i.e., it oscillates in thex1 direction. It is
heavily modified by tunneling, as also follows from the large
tunnel splitting of 74.18 cm21. Finally we note that the as-
signment of the antisymmetric functions shown in Figs. 6
and 5 is not unambiguous. The two states mix heavily, since
they are in the same energy regime.

C. JÅ0 states

We give a brief discussion of theJÞ0 states and inves-
tigate in particular the contribution of the Coriolis interaction
HCor, cf. Eq. ~4!. This contribution is given by

Eki
Cor5Eki

total2Ek
rot2Ei

int , ~17!

where the first term on the right hand side is an eigenvalue of
the total (2J11)Ngrid-dimensionalH-matrix. The second
term is obtained by diagonalizing the matrix ofH rot in a basis
of eigenfunctions ofJ2 and Jz , K52J, . . . ,J. The last
term is an eigenvalue ofH int obtained forJ50 in a basis of
Ngrid sinc functions. We considered a 10° grid spacing on the
interval @2110°,110°#, thus we haveNgrid52325529 sinc
functions. We computed only the lowest ten vibrational-
tunneling states. ForJ51 andJ52 the Coriolis interaction
Eki

Cor is very nearly the same for each of the vibrational-
tunneling states~at least fori<10) and depends only onk.
For J51 the values are20.0032, 20.0022, 20.0053
cm21, while for J52 they are 20.0015, 20.0054,
20.0150,20.0141, and20.0176 cm21. In both cases the

FIG. 5. Contour diagram of first overtone vibrational wave function and its
tunnel splitted counterpart as a function of the anglesx1 andx2 . The ener-
gies are 277.35 and 283.99 cm21, respectively. The tunnel splitting is 6.64
cm21.

FIG. 6. Contour diagrams of the symmetric wave function at 196.58 cm21

and its antisymmetric tunnel counterpart at 270.72 cm21 as a function of the
anglesx1 andx2 . The tunnel splitting is 74.14 cm21.
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Coriolis interactions are listed for increasing rigid rotor en-
ergy. Clearly, for lowJ quantum numbers this interaction is
small. However, in high-resolution spectroscopy even the
small Coriolis effects may be discerned. If these will be ob-
served in the future we will—guided by the experiments—
return to our calculations and compute the Coriolis interac-
tions with more accuracy. We can then also consider the
vibrational dependence of the rotational constants by com-
puting them as expectation values of the inverse inertia ten-
sor over different vibrational states.

D. The deuterated trimer

In order to obtain some insight in the effect of the atomic
masses and especially the masses of the rotating hydrogens
on the tunnel splitting, we replaced all protons~including the
one on HCl! by deuterons@mass 2.013 553 212 71 u, Ref.
79!#. This substitution changes the center of mass of the
trimer as well as of the monomers and accordingly a number
of the parameters other than the masses in the kinetic energy
expression will be changed, too. However, these changes will
be small compared to the doubling of the mass of the flipping
protons and hence we neglected them. We get new values for
I xx and I xy , where the former tensor element is the most
important quantity determining the spectrum; its numerical
value for the deuterated species is given by 1/(2I xx)
511.581 cm21. Using this value we find as the first tunnel
splitting 1.39 cm21 ~was 8.94 cm21), while the second tun-
nel splitting is 0.67 cm21, which was 6.59 cm21. The lowest
energy is at24014.04 cm21, so that the zero point energy
De2D0 is 150.22 cm21, about 45 cm21 lower than for the
protonated isotopomer. The first vibrational excitation is at
95.07 cm21, which may be compared with the correspond-
ing value of 129.19 cm21 for the protonated species. Evi-
dently, the doubling of the hydrogen masses has a drastic
effect on the VRT levels just as for the water trimer.54

VI. CONCLUDING REMARKS

We have made a first exploration of the VRT levels of
the system HCl–~H2O!2 . We took an experimental geometry
and computed anab initio potential energy surface as a func-
tion of two rotational angles. These angles describe the flip-
ping of the nonhydrogen-bonded hydrogens through the
plane of the trimer. Our results will be a useful guide for
future measurements of the VRT spectrum. We predict a tun-
nel splitting of 8.94 cm21. The transition from theA1 ground
state to theA2 tunnel splitted level is dipole allowed and
should be observable in the far-infrared. The deuterated spe-
cies has a corresponding tunnel splitting of 1.39 cm21,
which also should be observable. We computed vibrational
levels which are also tunnel splitted. The states excited in the
x2 direction show splittings of about 6.6 cm21, while the
first excited vibrational state in thex1 direction has the much
larger splitting of about 74 cm21.

We considered Coriolis interactions between the internal
motions and the overall rotation of the trimer. We found this
interaction to be very small. So, a good approximation of the
VRT levels for lowJ can be obtained from a separate diago-
nalization of the asymmetric rigid rotor Hamiltonian and the
internal Hamiltonian forJ50.

Finally, we found that three-body effects in the potential
are very important. Neglect of these effects changes the first
tunnel splitting from 8.94 to 14.40 cm21.
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41M. Schütz, T. Bürgi, S. Leutwyler, and H. B. Bu¨rgi, J. Chem. Phys.99,

5228 ~1993!.
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