
PDF hosted at the Radboud Repository of the Radboud University

Nijmegen
 

 

 

 

This full text is a publisher's version.

 

 

For additional information about this publication click this link.

http://hdl.handle.net/2066/13892

 

 

 

Please be advised that this information was generated on 2014-11-11 and may be subject to

change.

http://hdl.handle.net/2066/13892


Spectrum and vibrational predissociation of the HF dimer.
II. Photodissociation cross sections and product state distributions

G. W. M. Vissers, G. C. Groenenboom, and A. van der Avoirda)

Institute of Theoretical Chemistry, NSRIM Center, University of Nijmegen, Toernooiveld, 6525 ED Nijmegen,
The Netherlands

~Received 30 December 2002; accepted 2 April 2003!

We study vibrational predissociation of the HF dimer both by a full coupled channels treatment as
well as in the Fermi golden rule approximation. Photodissociation cross sections, linewidths, and
rotational state distributions are computed for excitations from the ground state with rotational
quantum numbersJ51, K50 to monomer stretch excited states withJ5K50, both for even and
odd permutation symmetry. The resonances investigated include excitation of the hydrogen bond
donor and acceptor stretches, as well as combinations of one of these modes with the dimer stretch
and dimer geared-bending modes. We find that dissociation is sufficiently slow for the Fermi golden
rule approximation to be valid. The resonance positions and line strengths are compared with
quasibound state calculations. The agreement with experimental data is fairly good for the
photofragment angular distributions that were determined from the rotational state distributions, less
good for some of the linewidths. Since we carefully checked that the results are converged with
respect to the number of vibrational and rotational channels included, the remaining discrepancies
are almost certainly due to small deficiencies in the SO-3 potential used in the calculations. ©2003
American Institute of Physics.@DOI: 10.1063/1.1577112#

I. INTRODUCTION

Excitation of the vibrational mode of one of the mono-
mers in (HF)2 results in states that lie well above the disso-
ciation limit of the dimer. Since these states are rather long-
lived, one can approximate them as bound states. This was
the approach taken in the preceding paper1 ~hereafter called
Paper I!, and for (HF)2 this results in a set of vibrational
frequencies that are in good agreement with experimental
data. However, for a better description of the system one
should treat the dissociation process.

Much experimental effort has gone into the study of vi-
brational predissociation of the HF dimer, resulting in mea-
surements of the predissociation linewidth,2–13 and photo-
fragment angular distributions.14–16The first computation of
the vibrational predissociation of the HF dimer was done by
Halberstadtet al.,17 who performed a three-dimensional cal-
culation in the Fermi golden rule~FGR! approximation, in
which one of the molecules was treated as an atom and the
monomer bond length of the other molecule was kept fixed.
Later calculations by Zhanget al.18–20extended this to four-
dimensional FGR calculations in which both monomer bond
lengths were kept fixed. The only full-dimensional~six-
dimensional! calculations to date have been reported by
Zhang, Wu, and Zhang,21 who calculated vibrational predis-
sociation lifetimes for the HF–DF complex using a time-
dependent golden rule approach.

In this paper we present the results of full-dimensional
coupled channels calculations on the vibrational predissocia-
tion of (HF)2 for excitations from theJ51, K50 ground
state to monomer stretch excited states withJ5K50. We

calculated photodissociation cross sections and rotational
state distributions upon excitation of the donor or the accep-
tor stretch, and combinations of these with excitations in the
dimer stretch or dimer geared bend mode. From the cross
sections we obtained lifetimes for the resonances investi-
gated. From the calculated rotational state distributions we
determined the photofragment angular distributions.15,16,22

No calculations were done on dissociation into scattering
states with higherJ, since experimentally it is shown that for
given K the lifetimes and product state distributions are in-
dependent ofJ.12,13,16

Since dissociation is relatively slow for the HF dimer,
we also calculated lifetimes and rotational state distributions
using a FGR expression. All calculations were done for both
even and odd permutation symmetry.

II. THEORY

The dimer stretch and angular basis functions that were
used are described in Paper I. The monomer stretch basis
functions in Paper I are eigenfunctions of a rotation-
independent reference Hamiltonian, and the total basis is a
direct product of the angular basis, the dimer stretch and the
monomer stretch bases. In photodissociation calculations,
matching the total wave function against plane waves re-
quires a basis of fragment eigenfunctions. Hence, in order to
obtain the correct boundary conditions for this system, we
now choose monomer stretch functionsxvXj X

(r X), X5A,B
that are eigenfunctions of the total monomer Hamiltonian

ĥX52
\2

2mX

1

r X
2

]2

]r X
2 r X1
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2mXr X
1VX~r X!, ~1!
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wheremX is the reduced mass of the monomer, andVX is the
monomer potential. The associated eigenvalues are denoted
as evXj X

. Note that these functions are no longer solely de-
pendent on the vibrational quantum numbervX , but also on
the rotational quantum numberj X .

In the same way as in Paper I, the Hamiltonian is split
into two parts,Ĥ5Ĥ01VI(R,rA ,rB), whereVI is the inter-
action potential and whereĤ0 contains the monomer Hamil-
tonians and the dimer kinetic energy operator:

Ĥ05ĥA1ĥB2
\2

2m

1

R

]2

]R2 R1
Ĵ21 ĵ AB

2 22ĵAB"J

2mR2 . ~2!

The R dependence of the wave function is represented on a
grid in the photodissociation calculations instead of being
expanded in a dimer stretch basis. Thanks to the use of
monomer eigenfunctions in the monomer stretch basis, the
expression for theR-dependent matrix elements ofĤ0 be-
comes simpler:

^vA8vB8 ~ j A8 j B8 ! j AB8 K8;JMuĤ0uvAvB~ j Aj B! j ABK;JM&

5dvA8vA
dvB8vB

d j
A8 j A

d j
B8 j B

d j
AB8 j AB

3H dK8KFevAj A
1evBj B

1
\2

2mR2 @J~J11!

1 j AB~ j AB11!22K2#G2
\2

2mR2 @dK8,K11Cj ABK
1 CJK

1

1dK8,K21Cj ABK
2 CJK

2 #J , ~3!

where the Coriolis coupling termsClK
6 are defined in Paper I.

Since the effect of these terms is very small for low values of
J, they are ignored in the calculations, so thatĤ0 is diagonal
in K. The matrix elements of the potential in the body fixed
basis are the same as in Paper I, except that the radial part no
longer contains an integral overR, and has become depen-
dent on the monomer rotational quantum numbers. Hence the
factor ^n8vA8vB8 ucLALBLunvAvB& should be replaced by

^vA8 j A8vB8 j B8 ucLALBLuvAj AvBj B&.
The partial integral photodissociation cross section for a

transition from an initial~bound! stateu i & to a scattering state
with monomer rotational quantum numbers (j A , j B) in the
coupled channels~CC! calculations can be written as23

s j Aj B

(J) ~v!5 (
j ABlM

pv

ce0
u^ i ue"m̂ucJM

(2) j Aj Bj ABl
&u2, ~4!

wheree is a unit vector in the direction of the electric field of
the laser beam, andm̂ is the transition dipole moment opera-
tor of the system. Since the resonances investigated are very
narrow, the dissociating states have a well-definedJ quantum
number. In this paper we only look at excitations from the
J51, K50 ground state toJ50 dissociating states. There-
fore, theJ label on the cross section will henceforth be omit-
ted. To be able to write the energy normalized scattering
wave functioncJM

(2) j Aj Bj ABl in terms of analytically known
functions, it is expanded here in a space fixed basis
uvAvB( j Aj B) j ABl ;JM&SF, where we have introduced the end-

over-end angular momentum quantum numberl . This space
fixed basis is related to the body fixed basis in which the
calculations were performed, via a unitary transformation:

uvAvB~ j Aj B! j ABl ;JM&SF5(
K

uvAvB~ j Aj B! j ABK;JM&

3A2l 11

2J11
^JKu j ABK; l0&. ~5!

The expansion of the scattering wave functions can then be
written as

cJM
(2) j Aj Bj ABl

~R,rA ,rB!5 (
vA8vB8 j A8 j B8

j AB8 l 8

R21f
vA8vB8 j

A8 j
B8 j

AB8 l 8

j Aj Bj ABl
~R!

3uvA8vB8 ~ j A8 j B8 ! j AB8 l 8;JM&SF, ~6!

where theJ label on the expansion coefficients is omitted.

The upper indices of thef
vA8vB8 j

A8 j
B8 j

AB8 l 8

j Aj Bj ABl
label the different

solutions to the Schro¨dinger equation for energyE5\v,
whereas the lower indices label the basis functions. The so-
lutions are not labeled withvA andvB , because in the dis-
sociating function only channels withvA5vB50 are open.
The photodissociation boundary conditions for largeR read

f
vA8vB8 j

A8 j
B8 j

AB8 l 8

j Aj Bj ABl
~R!

5
1

A2p\
@vvA8vB8 j

A8 j
B8 l 8~R!dvA80dvB80d j

A8 j A
d j

B8 j B
d j

AB8 j AB
d l 8 l

2uvA8vB8 j
A8 j

B8 l 8~R!SvA8vB8 j
A8 j

B8 j
AB8 l 8,00j Aj Bj ABl

* #, ~7!

whereS is the scattering matrix.24 The flux normalized out-
going waves vvAvBj Aj Bl(R) and incoming waves
uvAvBj Aj Bl(R) are given by

vvAvBj Aj Bl~R!5 iAmkvAvBj Aj B

\
Rhl

(1)~kvAvBj Aj B
R!, ~8!

uvAvBj Aj Bl~R!52 iAmkvAvBj Aj B

\
Rhl

(2)~kvAvBj Aj B
R!

5vvAvBj Aj Bl~R!* , ~9!

wherehl
(1) andhl

(2) are spherical Hankel functions of the first
and second kind,25 respectively, and where the wave num-
berskvAvBj Aj B

are defined as

kvAvBj Aj B
5A2m~E2evAj A

2evBj B
!

\2 . ~10!

Just as the potential, the components of the dipole mo-
ment are expanded in terms of angular basis functions
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m̂m5 (
LALBLk

dLALBLk~R,r A ,r B!Dmk
(1)~a,b,0!*

3 (
MAMB

CMA

(LA)
~uA ,fA!CMB

(LB)
~uB ,fB!

3^LAMALBMBuLk&. ~11!

Using this expansion, the matrix elements ofm̂m in the body
fixed basis become

^vA8vB8 ~ j A8 j B8 ! j AB8 K8;J8M 8um̂muvAvB~ j Aj B! j ABK;JM&

5@ j A8 #@ j B8 #@ j AB8 #@J8#@ j A#@ j B#@ j AB#@J#

3~21! j A1 j B1 j AB2M8S J8 1 J

2M 8 m MD
3(

k
S J8 1 J

2K8 k KD (
LALBL

@L#~21!2LA2LB1L

3^vA8 j A8vB8 j B8 udLALBLkuvAj AvBj B&

3S j A8 LA j A

0 0 0
D S j B8 LB j B

0 0 0
D S j AB8 L j AB

2K8 k K
D

3H j A8 LA j A

j B8 LB j B

j AB8 L j AB

J , ~12!

where @ l #[A2l 11. Since the transition dipole moment of
the HF molecule is large, we only include the effect of the
transition dipole moments of the monomers in the expansion,
so that the coefficients can be approximated by26

dLALBLk~R,r A ,r B!5mHF~r A!dLA1dLB0dLAL

1mHF~r B!dLA0dLB1dLBL . ~13!

Assuming the integral over these coefficients to be indepen-
dent of the monomer rotational quantum number, we get

^vA8 j A8vB8 j B8 udLALBLkuvAj AvBj B&

5^1umHFu0&dvA80dvB80@dvA1dvB0dLA1dLB0dLAL

1dvA0dvB1dLA0dLB1dLBL#. ~14!

The total cross sections tot(v) is obtained by summing
the partial cross sections over allj A and j B . In the neighbor-
hood of a resonance,s tot(v) takes the form of a Lorentzian

s tot~v!5 f
G/2

~v2v r !
21~G/2!2 , ~15!

centered around the resonance frequencyv r , whereG is the
full width at half maximum~FWHM! of the line, andf is a
proportionality constant. The linewidthG is inversely propor-
tional to the lifetimet of the system,G51/t, so that by
calculating the cross section at a number of frequencies
around a certain resonance, and fitting these to a Lorentzian
function, we obtain the lifetime of the system for this par-
ticular resonance. The fit can also be used in calculating the
line strengthS for the transition, which is given by

S5 (
j Aj Bj ABl

E u^ i ue"m̂ucJM
(2) j Aj Bj ABl

&u2dE. ~16!

SinceG is very small compared tov r , we can reduce this to

S5
\ce0

pv r
E s tot~v!dv5

\ce0

v r
f . ~17!

The dissociation process is slow for this system, so that the
linewidth can also be calculated directly in a Fermi golden
rule ~FGR! approximation:

G5 (
j Aj B

G j Aj B
5 (

j Aj Bj ABlM

2p

\
u^cbuV10ucJM

(2) j Aj Bj ABl
&u2,

~18!

whereV10 is the vibrational coupling potential between ex-
cited (vA1vB51) and ground state (vA5vB50) functions.
This coupling potential consists of̂ vA8vB8 uVI uvAvB&
5^10uVI u00& and ^01uVI u00& matrix elements. The quasi-
bound stateucb& in these calculations is an eigenstate of the
Hamiltonian in a basis without the ground state monomer
stretch functions. The scattering wave function, which is cal-
culated at the energy ofucb&, is in this approximation ex-
panded in a basis with ground state stretch functions only.

For the CC calculations, the angular state distribution is
obtained by taking the fractions of the partial cross sections
with respect to the total cross section, and is calculated at the
resonance energy:

Pj Aj B
5

s j Aj B
~v r !

s tot~v r !
. ~19!

A similar expression involvingG j Aj B
andG was used in the

FGR calculations. From these angular state distributions, the
theoretical angular distributions were reconstructed, using
the program that Bohacet al.16,22 used to fit an angular state
distribution to their experimental data.

III. COMPUTATIONAL DETAILS

Since we found in Paper I that the SO-3 potential energy
surface by Klopperet al.27 is of very high quality when com-
puting ~quasi!bound states, this is the potential with which
all calculations were performed.

The coupled channels calculations were performed in a
basis with j A

max5jB
max513 andvA1vB<2, leading to a total

of 3150 channels, of which between 175 and 232 channels
were open in the investigated energy range. In the Fermi
golden rule calculations, basis sets with the same vibrational
basis andj A

max513 and 16 were used, where the latter basis
contained approximately 5500 channels in total. All calcula-
tions were done in the helicity decoupled approximation, ne-
glecting Coriolis coupling off-diagonal inK.

The scattering wave function was propagated outwards
using the renormalized Numerov28 propagator, on an equally
spaced grid of 263 points in the range 2 – 18a0 , which was
tested to be sufficient to converge the calculated properties.
The integral was built up in parallel to the propagation, using
a method similar to that described by Gade´a et al.29 In the
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propagation we used the body fixed basis; the unitary trans-
formation to the space fixed basis@Eq. ~5!# was not per-
formed until the matching.

The FGR calculations would normally be performed at
the energy of the quasibound state used. However, we found
that this approximation is not a very good one, especially in
the calculation of the angular distributions. Since the
(vA ,vB)5(0,0) channels are left out of the basis in the cal-
culation of this quasibound state, the computed eigenvalues
will generally be too low. In some cases this led to situations
where channels of high internal energy were closed in the
FGR approximation, simply because the energy at which the
calculation was performed was too low. Therefore, the FGR
calculations have been made at the quasibound state energy

of the predissociating state involved~see Paper I!, which is a
good approximation of the true resonance energy.

IV. RESULTS AND DISCUSSION

The results of the calculations of the linewidths are
given in Table I. Shown there are the FWHM linewidths
obtained by coupled channels calculations in a basis with
j A , j B<13, and golden rule calculations in the same basis, as
well as in a basis withj A , j B<16. The resonances studied
involve excitation of the acceptor stretch (n1) or donor
stretch (n2), and combinations of one of these modes with
an excitation in the dimer stretch (n4) or dimer geared bend
(n5) mode. All calculations have been done for scattering
states of even (A1) and odd (B2) symmetry with respect to
exchange, see Paper I for details on the symmetry labeling.
We see that the calculated linewidths from FGR and CC
calculations agree reasonably well with each other, indicat-
ing that the golden rule approximation is valid for the reso-
nances under investigation. Furthermore, we find from the
FGR calculations that increasing the rotational basis from
j A
max513 to 16 does not lead to a significant change in the

TABLE I. Vibrational predissociation linewidths for (HF)2 ~in MHz!. Val-
ues are obtained from coupled channels~CC! and Fermi golden rule~FGR!
calculations, in a basis withvA1vB<2 andj A , j B< j A

max, and for even (A1)
and odd (B2) scattering states with respect to monomer exchange. The ex-
perimental linewidths are from Ref. 13.

CC
j A
max513

FGR
13

FGR
16 Expt.

A1

n1 4.00 4.31 6.35 6.4
n11n4 15.73 17.03 18.15 25
n11n5 12.83 14.28 14.00 20

n2 42.81 50.77 43.60 330
n21n4 77.79 90.23 82.25
n21n5 48.08 53.65 47.75 270

B2

n1 3.72 3.91 4.79 9.5
n11n4 10.55 10.61 11.02 40
n11n5 9.09 8.99 11.25 45

n2 37.41 44.54 47.85 330
n21n4 63.34 74.60 73.33 300
n21n5 36.78 41.26 46.52 270

TABLE II. Peak positionsEr5\v r of the resonances from quasibound state
calculations~QBS!, and coupled channels calculations~CC! on the SO-3
potential. All values are in cm21, relative to theA1 ground state of
21061.73 cm21.

A1 B2

QBS CC QBS CC

n1 3929.17 3929.22 3929.01 3929.03
n11n4 4056.93 4056.92 4055.56 4055.55
n11n5 4096.22 4096.21 4094.15 4094.14

n2 3867.09 3867.15 3867.26 3867.32
n21n4 4000.50 4000.51 4001.39 4001.40
n21n5 4043.22 4043.23 4045.44 4045.45

TABLE III. Overview of the most important contributions to the fragment rotational state distributions for
scattering states ofA1 symmetry. Values are percentages, and are taken from FGR calculation with rotational
basis up toj A

max5jB
max516. The last two lines show the distribution~in %! of the excess energy over fragment

rotational (Erot) and translational energy (Etrans).

( j A , j B) n1 n11n4 n11n5 n2 n21n4 n21n5

~7, 5! 0.35 0.89 1.37 3.79 5.75 0.42
~9, 3! 1.87 4.14 5.42 1.15 2.58 3.16
~8, 5! 5.81 10.37 8.17 3.95 4.63 4.61
~9, 4! 4.09 11.62 6.00 14.68 13.38 2.64
~8, 6! 9.91 7.17 5.71 8.38 8.60 12.88
~10, 2! 1.07 0.56 3.26 7.59 9.68 0.98
~9, 5! 14.15 10.00 11.43 5.18 5.74 24.95
~10, 3! 5.09 1.28 1.30 4.23 2.23 2.61
~8, 7! 7.20 5.30 3.54 2.48 2.62 3.72
~10, 4! 9.26 6.97 10.48 8.06 11.94 9.59
~11, 0! 0.35 0.29 0.13 10.11 2.52 0.26
~9, 6! 8.43 3.59 11.75 9.21 4.23 6.06
~11, 1! 6.39 8.39 1.89 2.86 2.18 3.02
~11, 2! 1.87 4.84 5.96 4.50 0.51 4.99
~10, 5! 10.75 3.62 5.71 0.00 3.95 4.76

Erot 85.67 79.23 80.29 85.13 78.88 82.13
Etrans 14.33 20.77 19.71 14.87 21.12 17.87
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linewidths. The experimental linewidths are reproduced rea-
sonably well for then1 scattering states ofA1 symmetry. The
much larger linewidths of then2 states are not reproduced
quite so well, although also the calculated line widths forn2

excited states are larger than theirn1 counterparts. The ex-
perimental trend of increase in linewidth of then1 states
when going from even to odd exchange symmetry is not
found in the calculations.

The positions of the resonances, obtained from the
Lorentzian fit of the CC cross section, are given in Table II.
For comparison, the energy levels from the quasibound state
~QBS! calculations of Paper I are also given. The correspon-
dence between the two sets of numbers is very good: the
positions of resonances in the continuum agree to within
0.06 cm21 with the bound state levels, indicating that disso-
ciation is indeed slow.

Tables III and IV give an overview of the most important

contributions to the rotational state distributions for all cal-
culated scattering states. Also the distribution of the excess
energy over fragment rotation and translation is given. The
values in Tables III and IV are the results of the FGR calcu-
lations in the large (j A

max516) rotational basis, since we be-
lieve these numbers to be the most accurate. The amount of
excess energy that goes into fragment rotation ranges from
79% to 90%. Furthermore, Tables III and IV show that there
exist large variations in the rotational state distributions for
the different transitions. This is illustrated in Figs. 1 and 2,
where the rotational state distribution is plotted for then1

andn2 resonances of odd permutation symmetry. We see that
then2 distribution is sharply peaked with very strong contri-
butions from the~10,2!, ~10,4!, and ~11,0! channels. Other
channels dominate in then1 resonance, in which the contri-
butions are also distributed more equally.

For some of the calculated scattering states, angular dis-
tributions have been reconstructed from the calculated rota-
tional state distributions, to allow for a direct comparison

FIG. 1. Rotational state distribution of (J,K,G)5(1,0,B1)→(0,0,B2) n1

transition. Each probability is drawn at the energy of the corresponding
channel eigenvalue. The dashed line denotes the total amount of kinetic
energy available. FIG. 2. As in Fig. 1, for (1,0,B1)→(0,0,B2) n2 transition.

TABLE IV. As in Table III, for scattering states ofB2 symmetry.

( j A , j B) n1 n11n4 n11n5 n2 n21n4 n21n5

~9, 3! 0.26 0.24 0.23 3.49 5.96 0.54
~9, 4! 5.05 7.29 1.03 2.89 3.23 4.23
~10, 1! 1.31 1.64 0.28 6.70 7.94 0.62
~8, 6! 5.25 6.42 1.09 1.75 3.73 1.39
~10, 2! 8.24 5.86 1.28 23.82 21.91 1.37
~9, 5! 5.78 16.57 20.30 1.92 3.40 3.29
~10, 3! 10.97 10.78 7.76 4.79 11.69 10.28
~10, 4! 14.84 8.62 18.24 13.24 6.32 2.57
~11, 0! 0.20 0.09 0.36 14.93 3.19 0.25
~9, 6! 15.45 14.97 17.75 8.16 6.76 7.10
~11, 1! 1.54 0.57 2.25 1.28 4.59 11.48
~11, 2! 9.70 2.87 6.42 9.09 2.83 25.40
~10, 5! 8.93 4.91 3.43 0.00 5.31 5.21
~11, 3! 0.00 1.49 8.74 0.00 2.15 10.81
~9, 7! 0.00 4.50 7.20 0.00 0.00 10.55

Erot 88.21 83.35 87.03 88.56 82.68 90.33
Etrans 11.79 16.65 12.97 11.44 17.32 9.67
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with the experimental results obtained by Miller and
co-workers.15,22 These states are the acceptor stretch (n1)
and donor stretch (n2) excited states, and combinations of
these modes with dimer stretch (n4) and geared bend (n5)
excitation, all ofB2 symmetry. The results are shown in Figs.
3–6. As can be seen in Figs. 3–6, the positions of the dif-
ferent maxima in the angular distributions are reproduced
rather well by the calculations. The effect of the increase in
rotational basis fromj A

max513 to 16, which was only done
for the FGR calculations, is in most cases not very large. The
two main effects of this increase can be seen in Figs. 3 and 6,
where it causes two more peaks to appear which are not very
noticeable in thej A

max513 results. Although the calculated
peak positions agree reasonably well with the experimental
data, the intensities sometimes do not, most notably at small
angles, where the intensity is very sensitive to the rotational
state distribution.

In their paper on the measurement of infrared spectra for
bands associated with then4 andn5 vibrations in combina-
tion with donor or acceptor stretch, Bohac and Miller22 indi-
cated there was a large difference in intensity between the
even and odd tunneling components. We have therefore
listed in Table V the calculated line strengths, both from

QBS and CC calculations, where the latter were obtained by
integrating the Lorentzian line shape of the resonance@see
Eq. ~17!#. An experimental value30 of 0.0388 ea0 was used
for the HF monomer transition dipole moment^1umHFu0&.

The agreement between the results of both calculations
is again very good. The relatively large differences between
QBS and CC line strengths of then1 resonance ofA1 sym-
metry and then21n4 state ofB2 symmetry are probably
explained by the fact that the contribution ofvA5vB50
functions in these calculated quasibound excited states is
large ~see Paper I!. Despite the agreement between CC and
QBS calculations, we were unable to reproduce the experi-
mental difference in line strength.

V. CONCLUSION

Photodissociation of the HF dimer has been studied in a
series of full coupled channels calculation, as well as in a
Fermi golden rule approximation. We have calculated line-
widths, rotational state distributions, and line strengths for
several transitions involving the excitation of the donor or
acceptor stretch, and for combinations of these excitations
with the dimer stretching and geared bend modes. For four of

FIG. 3. Angular distribution of the (1,0,B1)→(0,0,B2) n2 transition. The
experimental data are from Ref. 15.

FIG. 4. Angular distribution of the (1,0,B1)→(0,0,B2) n1 transition. The
experimental data are from Ref. 15.

FIG. 5. Angular distribution of the (1,0,B1)→(0,0,B2) n11n4 transition.
The experimental data are from Ref. 22.

FIG. 6. Angular distribution of the (1,0,B1)→(0,0,B2) n11n5 transition.
The experimental data are from Ref. 22.
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the calculated transitions we have reconstructed the angular
distributions from our calculated rotational state distribu-
tions, which allows for a direct comparison with the experi-
mental data.

The calculations show that the photodissociation of
(HF)2 is sufficiently slow for the Fermi golden rule approxi-
mation to be valid. This is supported by the fact that the
calculated lifetimes and angular distributions from the FGR
calculations are not very different from the results of the full
coupled channels calculations. Furthermore, the peak posi-
tions and line strengths from the scattering calculations agree
very well with results of quasibound state calculations,
which do not take dissociation into account.

The calculated angular distributions agree fairly well
with experimental data, although the relative intensities of
the peaks within the distributions are not perfect yet. The
experimental linewidths are not reproduced so well, with
some linewidths being off by a factor of 8.

Since the FGR calculations have shown that an increase
in the rotational basis does not improve the calculated line-
widths and only has a minor effect on the angular distribu-
tions, we believe that the remaining problems are most prob-
ably due to the SO-3 potential energy surface. The possibility
exists that an increase in the monomer stretch basis is re-
quired to describe the experimental findings better, but this
seems improbable since thevA1vB53 stretch functions are
very far away in energy from the resonances investigated.

Although the SO-3 potential is a huge improvement over
the older potentials, such as SQSBDE,31 it is not good
enough to reproduce all experimental data in a photodisso-
ciation process. Since many of the features studied in this
paper are very sensitive on the exact shape of the potential,
the challenge of creating a potential which describes them
better remains.
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2.

A1 B2

QBS CC QBS CC

n1 1.7982 1.9442 2.0106 2.0104
n11n4 0.0462 0.0470 0.1103 0.1123
n11n5 0.0330 0.0331 0.0451 0.0451

n2 3.9986 4.0730 4.0016 3.9994
n21n4 0.2409 0.2416 0.1575 0.1775
n21n5 0.1374 0.1370 0.0526 0.0545
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