
A. Erdős, J. Zákány, S. Oniga / Carpathian Journal of Electronic and Computer Engineering 9/2 (2016) 22-26 22

ISSN 1844 – 9689 http://cjece.ubm.ro

The Pathfinder Zybot: an Open Platform

Telepresence Robot

András Erdős

(1)
, József Zákány

(1)
, Stefan Oniga(1),(2)

University of Debrecen, Faculty of Informatics,
(1)

 Intelligent Embedded Systems Research Laboratory
(2)

Department of Informatics Systems and Networks

Debrecen, Hungary

erdos.andris@gmail.com, zjozsi891018@gmail.com, oniga.istvan@inf.unideb.hu

Abstract— This paper presents an Open Platform

Telepresence Robot developed by authors. The main goal was to

develop an Open Platform for development of telepresence or

assistive robots. The system has two main parts, a PC application

for the users of the robot, and the robot itself. A friendly GUI

was developed in order to control and track the machine. The

robot is built using an iRobot Roomba as the base platform. The

robot’s main component is an FPGA based ZYBO development

board that it is connected to a lot of peripherals. It runs an

Ubuntu Linux operating system, which provides a solid base for

the software. The PC application and the robot software are

communicating with each other, using a unique protocol

developed by authors. The robot also has a lot of useful features,

such as remote controlled or autonomous movement, obstacle

detection and avoidance, video streaming of the on board camera

images, etc. Such a robot it is intended to be used for daily life

assistance of older adults or persons with different type of

disabilities.

Keywords — Assistive-robot, navigation, mapping, autonomous,

Zybo, Debrecen

I. INTRODUCTION

A. Related works

The increasing number of the elderly population along with
increased costs related to assistance of their independent living
at home leads to extreme challenges that could be solved only
by using assistive technologies in general and assistive robots
in particular. In this way elderly citizens would need less
human assistance or they need human assistance at a much
later stage in their aging process. The acceptance of technology
still remains a delicate subject.

Major universities and research centers have research
related to assistive and telepresence robots [1] - [13]. A special
interest is related to Open Platform Telepresence Robots. For
example there the TurtleBot is a low-cost, personal robot kit
with open-source software. It has a Kobuki base, an ASUS
Xion Pro Live, a Netbook, a Kinect, and a ROS system which
can handle everything. Or another example is The Anybots QB
telepresence robot. It can be operated from a web browser, the
user can interact with other people through the robot as he
would there. And we can mention the TILR of RoboDynamics.
This robot is a video conferencing system on wheels. It can be

controlled remotely and it provides a video stream for the user.
There are many other robots, like Costai’s Jazz Connect robot,
The MantaroBot developed by Mantaro, and the VGo robot.

This research presents a work in progress, namely the
development of an assistive assembly consisting of an assistive
and telepresence robot platform together with the related
components and services

We aim to develop a complex autonomous robot as a part
of our assistive system for elderly local and remote assistance.
The robot must pay close attention to the elderly person, try to
learn his behavioral patterns, give him/her verbal advice, could
control the room temperature, and could alert the family or
doctor in case of the assisted person is not feeling well. An
important role of the robot is to entertain, playing the favorite
music, video or photo slideshow, or displaying favorite internet
sites. It can respond to question regarding calendar (day, month
and year), temperature indoor and outdoor, daily expected
events and meetings. It should behave like a sensitive family
member and react to the problems of the patient.

The main functions required for the assistive robot are:

 Manual control by keyboard or joystick

 Autonomous movement in patient’s home

 User identification using an RFID tag

 Easy to use GUI for simple usage

 Video streaming, with the camera on the robot

 Dynamic obstacle detection

 Map builder application

 Shortest path determination

A good example of designing a telepresence robot can be
found in [13]. This paper provides guidelines for designing a
telepresence robot with features like video, audio stream, user
interface and automated behaviors.

B. Our project

The project aims to design an Open Platform Telepresence
Robot. The robots basic function is to help people in some

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Debrecen Electronic Archive

https://core.ac.uk/display/161051636?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

A. Erdős, J. Zákány, S. Oniga / Carpathian Journal of Electronic and Computer Engineering 9/2 (2016) 22-26 23

ISSN 1844 – 9689 http://cjece.ubm.ro

ways. During the development we concentrated on functions
like mapping, controlling, and navigating the robot and
autonomous behavior. The project has two different parts. The
first part is the robot including the hardware and the software,
the second is the PC application. We can control the robot
manually by keyboard or a joystick. For the autonomous
movements, the robot needs a predefined map. The operator of
the robot can upload a map (Fig. 2) of the room where he/she
wants to use the robot in. It is a simple hand drawn image file,
with black and white elements. The robot processes the picture
and it creates a simple matrix from it, which will be used as a
map. The user can use the GUI to put the robot on the map, and
also determine a goal position. When the robot has the map and
the goal position it will start moving. First, it uses an A*
algorithm to assign the shortest route avoiding all the objects
drawn on the map. All actions of the Zybot can be seen on the
graphical user interface on the PC. We can follow the
movements using the camera on the top of the robot. It is a
simple video stream towards the user. If the robot got lost, we
can use remote control function. Thanks to the RFID reader on
the bottom of the robot, we can define reference points for
orientation. If the robot finds an RFID card on the floor it can
refresh its coordinates and it will know where exactly it is.

We used a Zybo as the central control unit of the robot. All
the peripherals including the Roomba platform are connected
to it. We also used a Wifly WiFi module and a unique protocol
system to communicate with the PC.

II. PC SOFTWARE

A. Communication between a PC and the Robot

The data changing method between the Zybo’s WiFi
module and the PC is a simple UART communication. To
describe the messages, we use a specific internal protocol
system.

B. Graphical User Interface

During the development of the application, we focused on
the user. Software included important features, which are the
following:

 The application user interface is very easy to use.

 It has a graphical display surface that allows maps
creation.

 It makes possible the management of the maps: save
maps, load maps, modify maps.

 The application is expandable easily with new
developments and functionalities. Because of this it
includes general planning samples and models.

 The representation, the model, and the controller are
totally independent parts.

 The application has a common protocol system with the
robot.

 It provides an interface for the robot, through which it is
able to insure two-way communication.

The graphical user interface (Fig. 1) is a windows-like
surface, we have tiles for every function, for example sensor

stream, video stream and logs. These are the information,
which we acquire from the robot.

Fig. 1 – The Graphical User Interface of the PC application

There are tiles what we can use for controlling, driving the
robot. The Manual control tile can be used as a remote control
option. We can drive the robot from the keyboard of the PC or
we can use a joystick.

The robot is able to act on its own. For the autonomous
movements we have to use the Map builder and the Route
tracking tiles.

C. Map builder

The map builder tile starts an application that helps to
create maps. If we have a pre-made map or picture, we can just
simple drag the picture and drop to the map builder window.
We can draw extra objects on the map easily if we want to. We
have placed several map editor tools in this window.

We can operate on the uploaded map by navigating to the
route tracking tile. After that, we can put the robot on the map.
If we are done, we can start the map upload to the robot.

The map builder (Fig. 2) slices the image to small
rectangles (nodes) and the map becomes a grid. We can define
the node size on the map and on the room. Those parameters
will determine the resolution of the slicing. We can also define
the size of the robot. The software will upload the map node by
node to the robot.

Fig. 2 - The Map Builder function of the PC application

A. Erdős, J. Zákány, S. Oniga / Carpathian Journal of Electronic and Computer Engineering 9/2 (2016) 22-26 24

ISSN 1844 – 9689 http://cjece.ubm.ro

D. Route Tracking

The size of the nodes is user defined. These parameters will
determine the resolution of the grid. When the user uploads a
map (which is an image), and set a goal point, the A* algorithm
determines the shortest path. This process called the upper
operation because the robot is not moving during the
calculations. The lower operation is to try to navigate the robot
to a specified location, and try to detect barriers, meanwhile it
is moving.

Before The GUI sends out the image of the map, preprocess
it. It slices the image into small nodes and send the nodes to the
robot with the specified protocol.

The robot software collects all the information about the
nodes (in which position, which node is empty) and the start
position.

Calculating the robot’s speed, and determining the robot’s
location is easier if we handle the robot as a material point of
the grid. Our robot is circle based with 350 mm diameter. So
the robot size is much bigger, than the node size. We can
handle the robot, as a material point, if we fatten all the object
on the map with the robot’s radius. The method needs the
following parameters: robot radius, node width, node height.
First, we need to find the edges of the objects, after that we
need to extend them. This will be our real map, which will be
the world for the robot.

In the route tracking tile (Fig. 3) we can see what the robot
see from the uploaded map. We can define a goal position for
the robot - the red x.

The robot will determine the shortest route from its position
to the goal and will send back the coordinates of the path. And
finally, the robot will start moving by its own fallowing the
path. To calculate the shortest route on this grid based map, we
used an A* algorithm.

Fig. 3 - The Route Tracking function of the PC application

III. HARDWARE CONFIGURATION

 We have chosen an iRobot Roomba vacuum cleaner robot
as the platform for our system. We have removed the parts we
did not need and we have built a holder part for the system on
the top.

The Roomba system contains two wheels driven directly by
motors. It can be controlled by an UART interface with simple
commands. Since we are not familiar with the mechanics, the
Roomba system has proved to be a simple and good choice.

On this platform, we have built a system that can control
and drive the robot. This system contains a CPU, several
peripherals and the parts for the power supply. The central
control unit is a Zybo board, on which we installed a Linux
Ubuntu 15.04 operating system.

A. Operating system

In order to install the operating system, we have created
two partitions on the SD card. One of them is the BOOT
partition, which is a simple 100Mb FAT32 system. The other
one is the ROOT_FS partition that is an ext4 file system and
uses the rest of the space on the card.

The first file we made was the BOOT.bin. This file was
created from three previously made files, the fsbl.elf (first stage
boot loader) what we create with the SDK, the
system_wrapper.bit which is the product of building the block
design in the Vivado and finally the u-boot.elf what is the
second stage bootloader, and we get it by compiling the u-boot
system provided by Digilent.

The second file is the device tree, which contains the
definitions of the peripherals. We had to add our modifications
to the zynq-zybo.dts file and compile it to a .dtb (device tree
blob) file.

The final part of the first partition is the uImage, which is
technically the compiled kernel image.

On the second partition, we have to create a standard Linux file
system. In our case, we used the Linaro file system. It can be
downloaded from the Linaro’s home page as a compressed file.
We have to extract that file and synchronize all the files in it to
the ROOT_FS partition of the SD card. (Fig. 4)

Fig. 4 - The architecture of the partitions and files on the SD card.

A. Erdős, J. Zákány, S. Oniga / Carpathian Journal of Electronic and Computer Engineering 9/2 (2016) 22-26 25

ISSN 1844 – 9689 http://cjece.ubm.ro

B. Hardware on the FPGA

We have created a block design (Fig. 5) for the ZYNQ
processor that can operate with a Linux operating system.

Fig. 5 - The Hardware architecture for the FPGA

In the design we used different peripherals. For example,
we needed a lot of UARTs, so we created thirteen pieces of
UartLites. The interrupts of the UARTs are connected with a
logical OR module that is connected to the interrupt input pin
of the ZYNQ. We also used the peripherals in the ARM part of
the ZYNQ processor. UART1 is used as the serial terminal of
the Linux, and the I2C-0 bus is controlling the magnetometer
module. We had to enable these peripherals in the kernel menu
config. For example, we had to find and enable the Uartlite, the
I2C, and the ARM UART modules then compile the kernel
with all of them.

IV. ROBOT SOFTWARE

A. Software design

The robot software is written in C++. We chose this
language, because it is really fast, easy to write drivers and
describe hardware close parts in it. The software itself is
vertically divided, from the hardware layer to the artificial
intelligent layer (Fig. 6).

The software describes strongly parallel operations. Each

module has an own thread, and between the modules the

communication take place via messages. The program

essential features and the functionality are presented in bellow.

 If a sensor sends data, the Zybo is able to receive it,
anytime.

 On the driver level, we can keep as many data as we need.

Fig. 6 - The layers and structure of the software of the Zybot

 If any higher level operation needs data, it is available
anytime.

 It is easy to expand our system with new modules.

The threads describe a parallel functionality.

The driver level (Fig. 7) describes an abstract layer, through

which our program interacts with the sensors. All the drivers

have the same structure. This means, that if we want to add a

new physical module to our project, we need to write a driver.

We have a driver sample, so we can do it easily. When we

create a new driver, we pass to it an object id and a port name.

The port contains a serial port name (described by OS,

example: ttyUL0), or an I2C bus address (example: /dev/i2c-

0). The object id ensures, that every driver is unique and there

is no other object that is identical with it. For example, if we

want to handle 5 ultrasonic range finder, we can do it with one

MaxSonar driver, and yet all the range finder drivers can be

identified. The driver tries to open a socket on the specific

channel. If it succeeds, the OS gives back a port id. With this

ID, we are able to read/write across the socket. At the same

time, the driver creates a thread. This thread periodically

observes the communication channel. If a new data is

available, the thread read it, and save it to a specific container.

The driver provides interfaces to the outside through event

handler functions.

Fig. 7 - The Driver level of the software

A. Erdős, J. Zákány, S. Oniga / Carpathian Journal of Electronic and Computer Engineering 9/2 (2016) 22-26 26

ISSN 1844 – 9689 http://cjece.ubm.ro

B. A* algorithm

The A* algorithm is able to calculate the shortest path
between two points (Fig. 8) on a map, with the given state-
space representation. Our map is a grid-based map, and the
robot center point is always at the center of a node of the grid.
The robot can move node to node. To calculate the shortest
route on this grid based map, we used A* algorithm.

Fig. 8 – The shortest path determined by the A* algorithm

We determine a heuristic for every node. We tried out
several types of them:

 Manhattan distance

 Diagonal distance

 Euclidean distance

 etc.
We count the Euclidean distance from the robot to the

given node and from the node to the goal position. The
heuristic is the sum of this two value (Fig. 9).

Fig. 9 – The calculations of the Heuristic

The A* algorithm has a set of opened and closed nodes.
The closed nodes are already visited, the opened nodes are
available to visit. The algorithm will always visit the node with
the lowest heuristic value. Every node has a parent. It means
that node from that we can reach the given node on the shortest
path. When it finds the goal node, it will go back step by step
to the start using the closed nodes’ parents. It collects every
node on the way back, and that will be the shortest path.

V. CONCLUSION

We achieved to develop an Open Platform for telepresence

or assistive robots on FPGA based ZYBO development board.

We have reached the first milestone for the development of a

robot that is able to move on its own and navigate on a map

which will be able to help people with special needs. The

robot can be remotely controlled and is capable of autonomous

movement, obstacle detection and avoidance.

ACKNOWLEDGEMENT

This work was made as a part of the ongoing research that
takes place in the Intelligent Embedded Systems Research
Laboratory at the University of Debrecen, Hungary, with the
aims to assist elderly or sick people everyday independent
activities using the latest assistive technologies.

Fig 10 - The Pathfinder Zybot

The project (Fig 10) was presented at Digilent Design
Contest Europe 2016, where won the third price.

REFERENCES

[1] A. Lago, "DOMEO, Domestic Robot For Elderly Assistance. First," in
AAL Forum, Lecce, Italy, 2011.

[2] V. Dupourqué, "DOMEO, an Open Robotic Platform for Cognitive and
Physical Personalized Homecare Services," in Workshop PAL, Sophia
Antipolis, France, 2011.

[3] E. Ackerman, "Suitable Technologies Introduces Beam Remote
Presence System," IEEE Spectrum Robotics News, 26 September 2012.

[4] A. Mataric, A. Okamura and H. Christensen, "A Research Roadmap for
Medical and Healthcare Robotics," Arlington, VA, 2008.

[5] A. Alexan, A. Osan and S. Oniga, "Personal assistant robot," in
Proceedings of 2012 IEEE 18th International Symposium for Design and
Technology in Electronic Packaging, Alba Iulia, Romania, 2012.

[6] A. Alexan, A. Osan and S. Oniga, "AssistMe robot, an assistance robotic
platform," Carpathian Journal of Electronic and Computer Engineering,
vol. 5, no. 1, pp. 1-4, 2012.

[7] I. Orha and S. Oniga, "Assistance and telepresence robots: a solution for
elderly people," Carpathian Journal of Electronic and Computer
Engineering, vol. 5, no. 1, pp. 87-90, 2012.

[8] J. Sütő and S. Oniga, "Remote controlled data collector robot,"
Carpathian Journal of Electronic and Computer Engineering, vol. 5, no.
1, pp. 117-120, 2012.

[9] D. Feil-Seifer and M. Mataric, "Human-robot interaction," in
Encyclopedia of Complexity and System Science, new York, Springer,
2009, pp. 4643-4659.

[10] M. Heerink, B. Kröse, V. Evers and B. Wielinga, "Assessing
Acceptance of Assistive Social Agent Technology by Older Adults: the
Almere Model," International Journal of Social Robotics, vol. 2, no. 4,
pp. 361-375, 2010.

[11] Ha M. Do, C. Mouser, W. Sheng “An Open Platform Telepresence
Robot with Natural Human Interface” Proceedings of the 2013 IEEE
International Conference on Cyber Technology in Automation, Control
and Intelligent Systems May 26-29, 2013, Nanjing, China

[12] F. Michaud, P. Boissy, D. Labonte, H. Corriveau, A. Grant, M. Lauria,
R. Cloutier, M.-A. Roux, D. Iannuzzi, M.-P. Royer : Telepresence Robot
for Home Care Assistance

[13] M. Desai, K. M. Tsui, H. A. Yanco, and C. Uhlik: “Essential Features of
Telepresence Robots Technologies for Practical Robot Applications”
(TePRA), 2011 IEEE Conference on, pp. 15-20, 2011.

