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Jahn–Teller effect in van der Waals complexes: Ar–C 6H6
¿ and Ar–C 6D6

¿

Ad van der Avoirda) and Victor F. Lotrichb)

Institute of Theoretical Chemistry, NSRIM, University of Nijmegen, Toernooiveld,
6525 ED Nijmegen, The Netherlands

~Received 15 January 2004; accepted 3 March 2004!

The two asymptotically degenerate potential energy surfaces of argon interacting with theX̃ 2E1g

ground state benzene1 cation were calculatedab initio from the interaction energy of the neutral
Ar–benzene complex given by Kochet al. @J. Chem. Phys.111, 198 ~1999!# and the difference of
the geometry-dependent ionization energies of the complex and the benzene monomer computed by
the outer valence Green’s function method. Coinciding minima in the two potential surfaces of the
ionic complex occur for Ar on theC6v symmetry axis of benzene1 ~thez axis! at ze53.506 Å. The
binding energyDe of 520 cm21 is only 34% larger than the value for the neutral Ar–benzene
complex. The higher one of the two surfaces is similar in shape to the neutral Ar–benzene potential,
the lower potential is much flatter in the (x,y) bend direction. Nonadiabatic~Jahn–Teller! coupling
was taken into account by transformation of the two adiabatic potentials to a two-by-two matrix of
diabatic potentials. This transformation is based on the assumption that the adiabatic states of the
Ar–benzene1 complex geometrically follow the Ar atom.Ab initio calculations of the nonadiabatic
coupling matrix element between the adiabatic states with the two-state-averaged CAS-SCF~5,6!
method confirmed the validity of this assumption. The bound vibronic states of both Ar–C6H6

1 and
Ar–C6D6

1 were computed with this two-state diabatic model in a basis of three-dimensional
harmonic oscillator functions for the van der Waals modes. The binding energyD05480 cm21 of
the perdeuterated complex agrees well with the experimental upper bound of 485 cm21. The ground
and excited vibronic levels and wave functions were used, with a simple model dipole function, to
generate a theoretical far-infrared spectrum. Strong absorption lines were found at 10.1 cm21 ~bend!
and 47.9 cm21 ~stretch! that agree well with measurements. The unusually low bend frequency is
related to the flatness of the lower adiabatic potential in the (x,y) direction. The van der Waals bend
mode ofe1 symmetry is quadratically Jahn–Teller active and shows a large splitting, with vibronic
levels ofA1 , E2 , andA2 symmetry at 1.3, 10.1, and 50.2 cm21. The level at 1.3 cm21 leads to a
strong absorption line as well, which could not be measured because it is too close to the monomer
line. The level at 50.2 cm21 gives rise to weaker absorption. Several other weak lines in the
frequency range of 10 to 60 cm21 were found. ©2004 American Institute of Physics.
@DOI: 10.1063/1.1714793#

I. INTRODUCTION

The argon–benzene complex is a prototype van der
Waals complex bound by dispersion forces. A series of ex-
perimental and theoretical studies has been devoted to this
complex, both in the electronic ground state and in the low-
est excited singlet and triplet states.1–8 Highly accurate three-
dimensional intermolecular potential surfaces for all of these
states were obtained fromab initio calculations6–8 by the
coupled cluster method with singly and doubly excited states
and the noniterative inclusion of triples@CCSD~T!#. The fre-
quencies of the van der Waals modes of the complex were
computed on these potentials and their comparison with
spectroscopic data2–5 has shown that theab initio potentials
are accurate indeed.

The complex of argon with ionized benzene is expected
to be drastically different from the neutral species. Binding

in cationic complexes is typically an order of magnitude
stronger than in the corresponding neutral systems.9,10 Ex-
periments revealed, however, that the binding of the ionic
complex in this case is not much stronger. The binding en-
ergiesDe and D0 are 387 and 328 cm21 in neutral argon–
benzene according to theab initio calculations6 and slightly
less according to experiment,11 while it is known from ion-
ization energies12 that D0 is only 170 cm21 larger in the
ionic complex. We will show further on in this paper that in
both the ionic and neutral systems the equilibrium position of
the Ar atom is located on the sixfold symmetry axis of ben-
zene and that the equilibrium distanceRe is only slightly
smaller in the ionic complex. Still, there is an important dif-
ference with the neutral species caused by the fact that the
electronic ground state of the benzene1 cation is twofold
degenerate at theD6h symmetric geometry. This cation is a
well-known13–17 and well-studiedE^ e Jahn–Teller system.
The most advanced experimental and theoretical study of the
Jahn–Teller effect in both isotopomers C6H6

1 and C6D6
1 is

by Applegate and Miller.17 Their paper also summarizes the
previous work. The benzene1 cation undergoes distortion of
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theD6h symmetry by linear Jahn–Teller coupling with three
of the four normal modes ofe2g symmetry and quadratic
coupling with the modes ofe1g , e1u , e2g , ande2u symme-
try. This distortion causes a static energy lowering of 717
cm21, but the threefold barrier in the moat around theD6h

structure that would lead to symmetry breaking of the vibra-
tionally averaged structure is very low. Barriers on the order
of 10 cm21, at most, occur for the individual modes,15,17and
the positive and negative contributions of different modes
nearly cancel each other.17 The vibrational zero-point levels
in the Jahn–Teller active modes that would break the sym-
metry are several hundreds of cm21 above these barriers and
the vibronic ground state of benzene1 has nearly perfectD6h

symmetry. This is confirmed by a recent rotationally resolved
ZEKE photoelectron study18 that finds perfectD6h symmetry
of both C6H6

1 and C6D6
1 .

The Ar–benzene1 complex has been studied spectro-
scopically by Dopferet al.,19 by Neusser and coworkers,20,21

and by Meijer and co-workers.11,22 The first paper concerns
the intramolecular C–H stretch modes; the latter four studies
involve also the intermolecular or van der Waals modes of
the complex. In the present paper we describe a theoretical
study of the Ar–benzene1 complex that considers these van
der Waals modes and, in particular, the effect of the nonadia-
batic Jahn–Teller coupling on these modes. We assumed that
the van der Waals modes, because of their very low fre-
quency, may be separated adiabatically from the intramo-
lecular modes of benzene1. The standard treatment of van
der Waals complexes implies then that the geometry of the
monomers will be frozen, preferably at their vibrationally
averaged geometry.23 In line with the above
considerations,15,17,18 we took this frozen geometry for
benzene1 to be ofD6h symmetry. The Jahn–Teller effect that
we studied is entirely due to the van der Waals forces be-
tween the Ar atom and the benzene1 cation, and we believe
this investigation to be the first that considers such an inter-
molecular Jahn–Teller effect in detail. Later, it may be ap-
propriate to include also the coupling between the intra- and
intermolecular Jahn–Teller effects.

A phenomenon occurring in open-shell systems that may
interfere with the Jahn–Teller effect is spin–orbit coupling.
The electronic2E1g ground state of benzene1, in D6h sym-
metry, has a substantial electronic orbital angular momentum
about the sixfold axis, but it has been known for a long time
from EPR~electron paramagnetic resonance! studies24,25 that
spin–orbit coupling is very small. High-resolution optical
spectra26–28gave an upper bound of 0.01 cm21 for the spin–
orbit splittings in C5H5 and it is expected that they are of
similar small size in benzene1. We therefore neglected spin–
orbit coupling in our calculations.

With these assumptions the Ar–benzene1 complex has
two adiabatic intermolecular potential surfaces that correlate
with the X̃ 2E1g ground state of benzene1. These potentials
depend on three coordinates: the components (x,y,z) of the
vectorR that point from the center of mass of benzene1 to
the Ar nucleus. When Ar is on the sixfold symmetry axis of
benzene1, which we take as thez axis of our coordinate
system, the complex hasC6v symmetry, its electronic ground
state is degenerate, and the two potentials coincide. This

electronic degeneracy leads to a quadratic intermolecular
Jahn–Teller coupling with the van der Waals bend orx, y
mode ofe1 symmetry. There is no linear coupling because
that would require a mode ofe2 symmetry and the only other
van der Waals mode, the stretch orz mode, hasa1 symmetry.
These van der Waals modes have large amplitudes and they
cannot be classified with respect to theC6v point group of
the equilibrium geometry. Instead, one may use the
permutation-inversion group PI(C6v), also called molecular
symmetry groupC6v(M ),29 which is isomorphic to the point
group in this case. Thea1 , e1 , ande2 symmetry labels of the
van der Waals modes refer to the PI group.

For the ab initio calculation of the adiabatic potential
energy surfaces we applied a special method for cationic
complexes9,10 that is both convenient and efficient. In Sec. II
of this paper we describe this calculation, the analytic fit, the
scaling procedure to ensure the correct long-range behavior,
and some characteristics of the two potentials. In Sec. III we
treat the nonadiabatic coupling and diabatization of the po-
tential, and in Sec. IV the nuclear motion problem on the
coupled diabatic potential surfaces. The results, vibronic en-
ergy levels, wave functions, and some simulated spectra, are
discussed in Sec. V. In Sec. VI we present the conclusions.

II. ADIABATIC POTENTIAL SURFACES

A. Ab initio calculations

The intermolecular potential surfaces of the
Ar–benzene1 complex were computed by a special method
that we developed for cationic~open-shell! complexes,9

which we call the IP method. This IP method implies that the
interaction energy of a cationic complex A–B1 is calculated
as the sum of the interaction energyEint

(0) of the neutral
~closed-shell! complex A–B and a quantityD int that is the
difference

D int5I AB2I B ~1!

between the ionization energy of the complex A–B and the
ionization energy of monomer B. The~geometry-dependent!
ionization energiesI AB andI B can be efficiently computed by
the outer valence Green’s function~OVGF! method.30 The IP
method was tested on the Rg–CO1 complexes with Rg5He,
Ne, Ar9 and on the He–HF1 complex10 by comparison with
direct calculations of the interaction energy of the ionic com-
plexes by the RCCSD~T! method, a partially spin-restricted
version of the CCSD~T! method developed31,32 for open-
shell systems. The main contribution to the geometry-
dependent part of the ionization energyI AB is the induction
energy due to the polarization of monomer A by the charge
and multipole moments of B1. In the tests on Rg–CO1 and
He–HF1, it turned out that the interaction energy of A–B1

obtained from the IP method is quite accurate in the short
range, but much less accurate for the long-range induction
energy. Apparently, the OVGF method is not sufficiently ac-
curate to represent the correlation effects in the properties of
the interacting subsystems, at long range. The relevant prop-
erties here are the polarizability of A and the multipole mo-
ments of B1. It is easy to compute these monomer properties
at a high level of electron correlation and to scale the long-
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range coefficients in the induction energy that contain these
properties. This scaling implies that the coefficients obtained
in an analytic fit of the long-range induction energy com-
puted by the IP method are replaced by the corresponding
values obtained from accurate monomer polarizabilities and
multipole moments. With this scaling, the interaction poten-
tials given by the IP method agree with the RCCSD~T! val-
ues to within a few percent for all distances.9,10 Also, un-
scaled versions of the IP method have been applied,33–35

however. As was shown10 on the example of He–HF1, the
method can also be applied to open-shell monomers with
degenerate electronic states, HF1(X 2P) in this case, to ob-
tain multiple asymptotically degenerate potential surfaces.
The two potentials in this example correspond to electronic
states of the complex withA8 and A9 symmetry. All one
needs to do in such cases is to compute not only the first but
also higher ionization energies of the complex A–B. For the
Ar–benzene1 complex two asymptotically degenerate poten-
tial surfaces are required that correlate with the2E1g ground
state of benzene1.

In most ionic complexes the binding is much stronger
than in the corresponding neutral complexes and the equilib-
rium intermolecular separation is considerably smaller. This
implies that one needs to know the potential of the neutral
complex for very small intermolecular distances, in order to
obtain a complete potential surface of the ionic complex by
the IP method. In the Introduction we already mentioned that
the interaction in Ar–benzene1 is not much stronger than the
interaction in the neutral Ar–benzene complex, however, and
that the equilibrium distances are not very different. Another
problem that may occur is that the geometry of the monomer
that is ionized changes drastically upon ionization. The ge-
ometry of benzene1 is very similar to the geometry of neu-
tral benzene,18 so we avoid this complication. Finally, we
were fortunate because the interaction energy of neutral Ar–
benzene is accurately known from CCSD~T! calculations by
Koch et al.6 The potential energy surface obtained from
these calculations was tested by a computation of the fre-
quencies of the van der Waals modes of the Ar–benzene
complex and a comparison with experiment,4,5 and was
found to be very accurate indeed. Hence, we already know
the potentialEint

(0) and we need to compute only the quantity
D int , i.e., the ionization energies of Ar–benzene and ben-
zene, to obtain the intermolecular potentials of
Ar–benzene1.

The first and second ionization energy of Ar-benzene and
the ionization energy of benzene that yieldD int

(1) and D int
(2)

were computed by the OVGF method with the program
GAUSSIAN 98.36 The geometry of the benzene molecule was
chosen to be the same as used by Kochet al. to compute the
neutral interaction energy, with nearest neighbor C–C and
C–H distances of 1.397 and 1.080 Å, respectively. In the
dynamical calculations~see below!, benzene1 is frozen at
the ground state geometry withD6h symmetry; hence, the
intermolecular potential depends only on the Cartesian com-
ponents (x,y,z) of the vectorR that points from the nuclear
center of mass of benzene1 to the Ar nucleus. Thexy plane
is the plane of the benzene1 monomer and thex axis bisects
the vector between two neighboring carbon atoms. Some-

times we find it convenient to express the vectorR in polar
coordinates: the lengthR, the angleu betweenR and thez
axis and the anglef between the projection ofR onto thexy
plane and thex axis. The ionization energy of the complex
was corrected for the basis set superposition error by means
of the Boys–Bernardi counterpoise procedure.

Ionization energiesI AB were computed for a series of
geometries withR52.5, 3, 3.5, 4, 5, 6 Å,u50°, 10°, 20°,
30°, 45°, 60°, andf50°, 15°, 30°. Additional computations
were made in the range of the van der Waals minimum for
R53.2, 3.4, 3.6, 3.7, 3.8 Å with the sameu values as above
andf50, and forR52 and 4.5 Å withu5f50. Long-range
computations were performed forR510, 12, 14, 16 Å and
u50, 30, 60, 90°, withf50 only, because thef dependence
of the long-range energy was found to be extremely weak.

Several~augmented! correlation consistent polarized va-
lence n-zeta (aug-cc-PVnZ) basis sets from Refs. 37, 38
with n52 and 3 were tested for the computation of the ion-
ization energies; see Table I. The largest is an aug-cc-PVDZ
basis on both Ar and benzene. The ionization energy of ben-
zene computed in this basis is close to the experimental
value: the difference is only 0.04 eV. Ionization energies
computed in the smaller bases are always about 0.15 eV
lower, but the quantityD int5I AB2I B is clearly not as sensi-
tive to the basis. The nonaugmented bases yield reasonable
results at small to intermediate separations but fail for large
R, with an underestimate of the attraction by 30%–50%.
Augmentation of the Ar basis yields much better results in
the long range, the difference inD int with the computation in
the largest basis being only 4%. This can be understood as it
is the polarization of the Ar atom that yields the dominant
geometry-dependent~induction! contribution toD int and aug-
mentation of the basis is required to obtain accurate polariz-
abilities. Use of an aug-cc-PVTZ basis for Ar yields slightly
better results at small and intermediate separations. Compu-
tations in the largest basis were almost an order of magnitude
more expensive and we therefore performed all computations
in the aug-cc-PVTZ basis on Ar and the cc-PVDZ basis on
benzene.

TABLE I. Convergence ofD int
(1) from the first ionization energy and of the

total Ar–benzene1 interaction energy~in cm21! with a basis set: DZ is short
for cc-PVDZ, TZ for cc-PVTZ, first is the basis on benzene, second on Ar.
The interaction energyEint

(0) of neutral Ar–benzene was computed with the
potential of Kochet al. ~Ref. 6!. All calculations at~u,f!5~0,0!. I B is the
ionization energy of C6H6 in eV; the experimental value is 9.25 eV.

Basis DZ/DZ DZ/TZ DZ/aug-DZ DZ/aug-TZ aug-DZ/aug-DZ
I B 9.037 9.039 9.052 9.054 9.207

R52.5 Å
D int

(1) 2696.14 2638.42 2773.30 2762.59 2743.81
Eint

(0)1D int
(1) 5165.75 5223.47 5088.59 5099.30 5118.08

R53.5 Å
D int

(1) 2125.13 296.76 2111.98 2101.79 297.40
Eint

(0)1D int
(1) 2509.38 2481.01 2496.23 2486.04 2481.65

R55 Å
D int

(1) 220.71 234.71 245.81 249.04 247.02
Eint

(0)1D int
(1) 2116.29 2130.29 2141.39 2144.62 2142.60

10071J. Chem. Phys., Vol. 120, No. 21, 1 June 2004 Jahn–Teller effect
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B. Analytic fit of the potentials

The neutral Ar–benzene complex is a typical van der
Waals molecule bound by dispersion forces. The long-range
dispersion attraction decays asR26 with increasing intermo-
lecular distanceR. The potential of Kochet al.6 that we use
as theEint

(0) term in the potential of the Ar–benzene1 com-
plex is very accurate in the region of the van der Waals well,
but it was represented by an analytic model involving Morse
potentials that decay exponentially withR. Since the long-
range behavior of the potential may play a role in the bound
levels of the ionic complex we decided to make a new fit of
the potential of Kochet al. with slightly different analytic
functions that involveR26 terms. First we used the potential
of Koch et al. to compute 2551 interaction energy values on
a grid of points (x,y,z) within the range of theirab initio
computed points, as reported in Ref. 6. These energies were
then fit to a functional form that has the correct asymptotic
behavior. This functional form is largely identical to that of
Koch et al., who used the many-body expansion

Eint
~0!~x,y,z!5W0S (

k
V2~r k!1(

l ,k
V3~r k ,r l !

1 (
m, l ,k

V4~r k ,r l ,r m! D , ~2!

where

r k5@~x2Xk!
21~y2Yk!

21bz~z2Zk!
2#1/2 ~3!

is a modified distance between the Ar atom and thekth car-
bon atom located at (Xk ,Yk ,Zk), while bz and W0 are fit
parameters. The two-body contribution was taken by Koch
et al. to be a Morse-type expansion,

V2~r k!5w2~r k!1(
i 53

5

ciw
i~r k!1c6w̃6~r k!, ~4!

with

w~r k!512exp@2a~r k2r 0!#, ~5!

andw̃(r k)5w(r k) for r k>r 0 and 0 forr k,r 0 . Also, ci with
i 53,...,6,a, andr 0 are fit parameters. Our modification im-
plies that we chose

w~r k!5
g

r̃ k
3
2exp@2a~r k2r 0!#, ~6!

with the additional fit parameterg, wherer̃ k is the distance
between the Ar atom and thekth carbon atom. This ensures
that our potential decays asR26. Following Kochet al., the
three-body contributions are

V3~r k ,r l !5(
i 51

4

cii w
i~r k!w

i~r l !1(
i , j

4

ci j @wi~r k!w
j~r l !

1wj~r k!w
i~r l !#, ~7!

and the four-body terms are represented by an analogous
sum of triple products ofw functions. A total of 24 linear and
4 nonlinear parameters were used in the fit. The potential
surface that we obtained from this refit is equal to the poten-
tial of Ref. 6 to within a few tenths of a percent~less than 1

cm21! in the region of the van der Waals well. In the region
with R larger than 6 Å~the interaction energy of neutral
Ar–benzene is about230 cm21 at R56 Å), our potential
decays slower than the potential of Kochet al. and the dif-
ference becomes larger, of course. The fit of Kochet al. os-
cillates in this region and adopts positive values, while our fit
is probably still reliable. The interaction energy of the ionic
complex in this long range region is dominated by the induc-
tion energy contained in the quantityD int , hence, the accu-
racy of the neutral potentialEint

(0) is not so critical. However,
its correct behavior is.

In order to obtain the two asymptotically degenerate po-
tentialsV(1)(R) and V(2)(R) of the ionic complex, we first
attempted to fitD int

(1) andD int
(2) separately. We found, however,

that a fit of the sumEint
(0)1D int

( i ) for i 51, 2 leads to better
results. Since we know that the van der Waals well of the
ionic complex is not very different from that of neutral Ar–
benzene and the functional form used by Kochet al. was
very successful in describing the potential surface of the lat-
ter complex~except for the asymptotics! we used this form
also for a fit of the two adiabatic potential surfaces of
Ar–benzene1. Explicit long-range interaction terms were
now added, however, and we ensured that the potentials
V(1)(R) andV(2)(R) coincide when the Ar atom is on thez
axis by writing

V~1!~R!5S~R!1
1

2
P2,1~u!D~R!1L~R!,

~8!

V~2!~R!5S~R!2
1

2
P2,1~u!D~R!1L~R!,

whereP2,1(u) is an associated Legendre functionPl ,m with
l 52 and m51 that equals zero foru50. Note that the
choice of P2,1(u) to make the difference potentialV(1)(R)
2V(2)(R) vanish foru50 does not imply that this difference
potential indeed behaves asP2,1(u) when Ar is displaced
from thez axis. We will see below that it actually behaves as
a quadratic function of sinu or, sinceP2,1(u) is linear in sinu
for small u, that the functionD(R) is also linear in sinu for
small values ofu. The functionsS(R) andD(R) were writ-
ten in the same form as Eq.~2! with w(r k) given by Eq.~5!,
as we now have separate long-range termsL(R) that ensure
the correct asymptotic behavior. These long-range terms are
expressed in polar coordinates,

L~R,u!5 (
n54

10

(
l 50

n24

Cn,l Pl~cosu!R2nDn~bR!, ~9!

wherePl(cosu) are Legendre polynomials andDn(bR) are
Tang–Toennies damping functions.39 Only terms with even
values ofn andl occur in this expansion, because of theD6h

symmetry of benzene1 and the spherical symmetry of the Ar
atom. The expansion does not contain the anglef because it
was found that the potentials in the long range are very
nearly independent off. The ionization energy calculations
were not sufficiently accurate to differentiate between
V(1)(R) andV(2)(R) for R.10 Å. The long-range behavior
of both potentials is therefore determined by the same func-
tion L(R,u). In order to obtain the long-range expansion

10072 J. Chem. Phys., Vol. 120, No. 21, 1 June 2004 A. van der Avoird and V. F. Lotrich
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coefficientsCn,l the energies computed forR>10 Å were fit
to the functional form of Eq.~9! with the damping functions
Dn(bR) set equal to 1. The error in this long-range fit is on
the order of 2%. The parameters in the functions used to fit
S(R) and D(R) and the parameterb in the damping func-
tionsDn(bR) were obtained from a subsequent least squares
fit of the data forR,10 Å. The error in the fit of the sum
potentialS(R)1L(R) is smaller than 1%, except for geom-
etries where the potential becomes zero and the relative error
is larger~but the absolute error remains small!. Even for the
much smaller difference potential containing the functions
D(R), the fit is quite accurate, typically 2%–3%.

The scaling of the long-range induction energy required
to obtain accurate potentials for ionic complexes from the IP
method9,10 requires the coefficientsCn,l in Eq. ~9! in terms of
monomer properties: the charge and multipole moments of
C6H6

1 and the polarizability of Ar. These properties, and the
induction coefficientsCn,l in which they occur, were com-
puted with thePOLCORsuite of codes.40 Multipole moments
considered are the chargeQ51, quadrupole, hexadecapole,
and 64-pole. The isotropic term containingC4,0 is the only
contribution, which is due purely to induction effects, the
higher coefficientsCn,l with n56, 8, and 10 in the fit of Eq.
~9! contain induction as well as dispersion contributions that
cannot be separated. It is therefore appropriate to scale only
C4,0. In previous work9,10 we scaled alsoC5,1 but this coef-
ficient is zero in the present case. The polarizability of Ar
obtained from the fitted coefficientC4,0, 8.63a0

3, is signifi-
cantly lower than the accurate value of 11.08a0

3 andC4,0 was
therefore scaled by the ratio 11.08/8.63.

C. Characteristics of the potentials

Figure 1 shows contour plots of the scaled potential sur-
facesV(1)(R) and V(2)(R). It is clear from these plots that
the two potentials have a joint minimum with Ar on thez
axis andRe53.506 Å. The dissociation energyDe equals
520 cm21. In agreement with experiment,11 the binding is not
much stronger than in neutral Ar–benzene withDe

5387 cm21 and the equilibrium distanceRe is not much
smaller (Re53.555 Å for the neutral complex!. The scaling,
of course, affected these values, but did not alter the charac-
teristics of the potential very much: without scalingDe

would have been 484 cm21 andRe53.514 Å. The well depth
and Re value of the scaled potential are in good agreement
with the experimental data of Ref. 11, hence we are confident
that the IP method with the scaling of the long-range induc-
tion coefficient worked well in this case also.

An interesting difference is observed when the Ar atom
is displaced from the minimum in thex or y ~bending! direc-
tion. The higher one of the two potentials,V(2)(R), is about
equally steep in this direction as the potential of neutral Ar–
benzene, but the lower one,V(1)(R), is surprisingly flat. This
was quite unexpected, as one would think that the ionic com-
plex would be more rigid than the neutral complex. We will
see below that the fundamental bending frequency of
Ar–benzene1, when calculated on the adiabatic potential
V(2)(R), is about equal to that of neutral Ar–benzene, but
considerably lower onV(1)(R). Nonadiabatic coupling must

be taken into account, however, and the two potential sur-
faces cannot be used independently in dynamical calcula-
tions. Still, we expect the zero-point energy of Ar–benzene1

to be considerably lower than that of Ar–benzene. We will
see below that the lower zero-point energy and the increase
of De from 387 to 520 cm21 upon ionization of the Ar–
benzene complex agree well with the stabilization energy of
170 cm21 derived from the observed ionization energies, so
that we may indeed conclude that our Ar–benzene1 poten-
tials are accurate.

When we analyze the splitting of the two potentials more
closely, we find that it is very nearly a quadratic function of
r5Ax21y25R sinu. One observes this more globally in
Fig. 2, for R53.5 Å near the minimum, and especially for
somewhat smallerR, where the lower surface has a local
maximum and the higher one has still a minimum. This con-
firms the occurrence of a quadratic Jahn–Teller effect by
vibronic coupling of the electronicE1g ground state, twofold
degenerate forx5y50, to the bending (x,y) mode of e1

symmetry. Only modes ofe2 symmetry would cause linear
Jahn–Teller coupling,17 but there are no fundamentals of this
symmetry among the van der Waals modes. The dependence

FIG. 1. Adiabatic potentialsV(1)(R) and V(2)(R) in cm21; cuts in thexz
plane (y50).
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on f is rather weak for both potentials and even smaller for
the difference potential.

Finally, we might comment on why the induction energy
in the ionic complex does not lead to stronger binding. The
reason is that the strong attraction proportional toR24 from
the charge-induced dipole interaction is largely canceled by
the interaction of the dipole induced on Ar with the perma-
nent quadrupole of benzene1. This interaction is repulsive
when Ar is on thez axis and proportional toR26 and it takes
away a significant amount of binding forR values near the
minimum.

We also used the IP method to compute the intermolecu-
lar potentials of Ar–benzene1 for excited states of the com-
plex that correlate with the twofold degenerateB̃ 2E2g state
and the nondegenerateC̃ 2A2u state of benzene1, which are
both about 3 eV above the ground state. The two asymptoti-
cally degenerate potentials for theE2 state of the complex
are very nearly the same, very similar in shape to the poten-
tial of neutral Ar–benzene, and only slightly deeper than the
latter. In these states the electron is removed from the highest
s molecular orbital~MO! of benzene. The potential of theA2

state shows a much deeper well, withDe about three times
larger than for neutral Ar–benzene, and the much smallerRe

value of 2.89 Å that one would expect for an ionic complex.
In this A2 state the electron is removed from the lowestp
MO of benzene, which is equally distributed over the six
carbon atoms. Apparently this reduces the steric repulsion
with the Ar atom. These excited state potentials will not be
further discussed, however.

III. NONADIABATIC COUPLING AND DIABATIZATION

The nuclear kinetic energy operator for the relative mo-
tion of Ar and benzene1 and the overall rotation of the com-
plex is1

Tnuc5
1

2
~J2 l!I21~J2 l!1

pR
2

2mAB
, ~10!

wherepR is the linear momentum conjugate to the coordinate
R and l5RÃpR is the angular momentum of Ar relative to
benzene1. The reduced massmAB is given by mAB

215mAr
21

1mbenzene1
21 . The operatorJ is the overall angular momentum

of the rotating complex andI is the inertia tensor of~rigid!
benzene1. We take I21 to be a diagonal matrix with the
rotational constantsA, B(5A), andC of C6H6

1 or C6D6
1 on

the diagonal. The total angular momentumJ does not include
the electron spin as spin–orbit coupling may be
neglected.24–26 We only considered the rotationless states
with J50 in this paper.

In the Born–Oppenheimer or adiabatic approximation
one computes the eigenstatesx~R! of a nuclear motion
Hamiltonian that is the sum of this operatorTnuc and one of
the two adiabatic potentialsV(1)(R) andV(2)(R). Important
nonadiabatic coupling occurs, however. The term withpR

2 in
the nuclear kinetic energy operator, when expressed in polar
coordinates, contains the operator

Tf5
2\2

2mABR2 sin2 u

]2

]f2
, ~11!

which leads to nonadiabatic coupling terms

F125
2\2

2mABR2 sin2 u
K C1

adiabU ]

]f
C2

adiabL ]

]f
~12!

and

G125
2\2

2mABR2 sin2 u
K C1

adiabU ]2

]f2
C2

adiabL , ~13!

between the two adiabatic electronic statesC1
adiabandC2

adiab

that are degenerate foru50. It is clear from these expres-
sions that these coupling matrix elements become singular at
u50 for all R.

Rather than taking the singular nonadiabatic coupling
into account explicitly we constructed a diabatic model with
statesF1

diab and F2
diab that removes~or, at least, strongly

reduces! the kinetic coupling. A so-called ‘‘crude’’ diabatic
model41 would be to construct diabatic states that do not
depend onf by using for all values ofR the eigenstates of
the electronic Hamiltonian calculated for a fixed nuclear ge-
ometry R0 . We propose a similar diabatic model, but we
only fix the coordinatef to f050, while R andu adopt the
values corresponding to the actual geometry considered. In
the electronicX̃ 2E1g ground state of benzene1 that is con-
sidered here, the electron is removed from one of the two
degenerate highest occupiedp MO’s of benzene. These
MO’s each have a single nodal plane perpendicular to the
plane of the molecule. For a canonical set of MO’s these
nodal planes coincide with orthogonalsv andsd reflection
symmetry planes:sv is theyz plane;sd thexz plane. These

FIG. 2. Behavior of adiabatic potentialsV(1)(R) and V(2)(R) near thez
axis, forz53.2 Å and for the equilibrium heightz53.5 Å.
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two MO’s, and the corresponding many-electron states of
benzene1, are degenerate and they may be freely mixed.
Each MO keeps a single nodal surface perpendicular to the
plane of the molecule; the mixing rotates these surfaces
about thez axis. This is also what seems to happen for the
adiabatic states of the Ar–benzene1 complex whenu.0 and
the Ar atom rotates around thez axis over the anglef. An
increase off by 60° is equivalent to a cyclic~simultaneous!
permutation of the carbon and hydrogen nuclei in the
benzene1 monomer. From the PI(C6v) symmetry of the
complex it follows that the adiabatic states stay equivalent
under this permutation and that their wave functions are sim-
ply obtained from the original wave functions by mixing the
substates 1 and 2. For functions ofE1 symmetry, as we have
here, the angleDa in the rotation matrix:

R~Da!5S cosDa 2sinDa

sinDa cosDa D , ~14!

which mixes the adiabatic wave functions is equal toDf
560°. Also, whenf is changed into2f or 180°2f the
adiabatic wave functions stay equivalent. The transformation
matrix is an improper rotation~with determinant21! in that
case. For arbitrary changesDf the adiabatic states are not
simply related by mixing them, but our model assumes that
they are and that the mixing angleDa is equal toDf. We
assume, in other words, that the adiabatic states of
Ar–benzene1 simply ‘‘follow’’ the Ar atom.

The most general transformation between two adiabatic
and diabatic states can be written as

~C1
adiabC2

adiab!5~F1
diabF2

diab!R„a~R!…, ~15!

with a mixing anglea~R! that depends on the nuclear coor-
dinatesR. The diabatic states in our model are defined in
terms of the~calculated! adiabatic states by Eq.~15! with the
general mixing anglea~R! equal to the geometrical anglef.
If the model were exact, these diabatic states would bef
independent and equal to the adiabatic states calculated for
f50, with R and u given by their ‘‘real’’ values. It is not
difficult to prove, when the~orthonormal! diabatic states are
indeed f independent, that the matrix element
^C1

adiabu(]/]f)C2
adiab& in the nonadiabatic coupling param-

eterF12 of Eq. ~12! should be exactly equal to unity.
In order to check our model, we calculated this nonadia-

batic coupling matrix element from the adiabatic states com-
puted by the programMOLPRO,42 as a function of the geom-
etry R. The electronic structure method used is the CAS-SCF
~complete interacting space self-consistent field! method
with the five p electrons of benzene1 in the active space
spanned by the sixp MO’s. We used a two-state-averaged
version of CAS-SCF, which correctly reproduces the twofold
degeneracy of the ground state foru50. The derivative ma-
trix element̂ C1

adiabu(]/]f)C2
adiab& in Eq. ~12! was computed

by numerical differentiation~a feature ofMOLPRO! with step
sizeDf51° for a range off values from 0 to 30°. Different
(aug-!cc-PVnZ basis sets from Refs. 37, 38 were used, but
the results were essentially the same. They are shown in Fig.
3 for an augmented double zeta basis (n52).

It is clear from this figure that the nonadiabatic coupling
matrix element is very nearly equal to 1 indeed, especially

when the Ar atom is close to thez axis. That is the most
important region, since the couplingsF12 and G12 between
the adiabatic states become singular in this region and the
diabatic states should be trulyf independent there, in order
to remove this kinetic coupling. Even when the Ar atom

FIG. 3. Nonadiabatic coupling matrix element^C1
adiabu(]/]f)C2

adiab& as a
function of the azimuthal anglef for different values of z and r
5Ax21y2.
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moves as far as 2.4 Å away from thez axis, i.e., over the
hydrogen atoms, the coupling matrix element does not differ
from 1 by more than 4%. So, our diabatic model works ex-
tremely well and is globally valid. The reasons for this are
the near-cylindrical symmetry of benzene1 and the fact that
the statesC1

adiabandC2
adiabare only coupled by the operator

]/]f.
The diabatic states are not eigenstates of the electronic

Hamiltonian, so they are coupled in the nuclear motion prob-
lem by the potential energy operator. From the transforma-
tion formula in Eq.~15! with a~R!5f, it follows that the
diabatic potentials are

V11
diab~R!5

1

2
@V~1!~R!1V~2!~R!#1

cos 2f

2

3@V~1!~R!2V~2!~R!#,

V22
diab~R!5

1

2
@V~1!~R!1V~2!~R!#2

cos 2f

2

3@V~1!~R!2V~2!~R!#, ~16!

V12
diab~R!5

sin 2f

2
@V~2!~R!2V~1!~R!#.

Finally, let us note that the idea that the electron hole in
the highest occupiedp MO’s of benzene1 follows the Ar
atom provides also a qualitative explanation of the shape of
the adiabatic potential surfacesV(1)(R) and V(2)(R). The
lower surfaceV(1)(R), see Fig. 1, is very flat in thex, y
directions, as if in substate 1 the electron hole makes space
for the Ar atom when it moves away from thez axis. The
hole can easily do that when it chooses among the degener-
ate MO’s the one that points toward the Ar atom. The upper
surfaceV(2)(R) is quite similar in shape to the potential
surface of neutral Ar–benzene, as if the Ar atom does not
feel that an electron was removed from the benzene mol-
ecule. This seems to imply that in adiabatic substate 2 the
electron hole chooses the MO that has its nodal plane
~nearly! through the Ar nucleus.

IV. VIBRONIC MODEL

The two-state vibronic model used in our calculations is
based on the Hamiltonian

H5S Tnuc 0

0 TnucD 1S V11
diab~R! V12

diab~R!

V12
diab~R! V22

diab~R!
D , ~17!

with the nuclear kinetic energy operatorTnuc given by Eq.
~10! and diabatic potentialsVi j

diab(R) obtained from theab
initio computed adiabatic potentialsV(1)(R) and V(2)(R)
through Eq.~16!. The off-diagonal kinetic energy operator
F12 is neglected because it is very small in the diabatic basis.
This is easily shown by writing the coupling matrix element
^F1

diabu(]/]f)F2
diab& in the diabatic basis, substituting Eq.

~15! with a~R!5f, and using the property that expectation
values of the real anti-hermitian operator]/]f over real wave
functions are zero. Then, if we assume that
^C1

adiabu(]/]f)C2
adiab&51 in the adiabatic basis~which is

very nearly true; see Fig. 3! we find thatF1250 in the di-
abatic basis. The second-order couplingG12 is expected to be
very small as well and is neglected too.

The solutions of the two-state vibronic model are

C~rel ,R!5F1
diabx1~R!1F2

diabx2~R!

5C1
adiab@x1~R!cosf1x2~R!sinf#

1C2
adiab@2x1~R!sinf1x2~R!cosf#, ~18!

with rel denoting the electronic coordinates. They include, in
particular, the quadratic Jahn–Teller effect of the bend van
der Waals mode of symmetrye1 . Especially this bend mode
has a large amplitude and is strongly anharmonic. The elec-
tronic wave functionsF1

diab(rel ,R) and F2
diab(rel ,R) were

not explicitly considered in the calculation of the vibronic
levels; they entered through the diabatic potentialsVi j

diab(R)
in Eq. ~17!. The nuclear wave functionsx1(R) andx2(R) in
Eq. ~18! were expanded in a basis of three-dimensional har-
monic oscillator functions,1,2

Hk~x2xe!Hl~y2ye!Hm8 ~z2ze!, ~19!

centered at (xe ,ye ,ze)5(0,0,Re53.506 Å). The functions
Hk(x2xe) andHl(y2ye) were taken from the same set, i.e.,
kmax5lmax, and they were restricted tok1 l<kmax in order to
make the basis invariant underC6v symmetry operations.
The functionsHm8 (z2ze) were taken from a different set.
The matrix elements of the diabatic potentials in this basis
were computed numerically with a 32332332 points
Gauss–Hermite quadrature.43 The matrix elements of the
nuclear kinetic energy operator, Eq.~10!, were obtained ana-
lytically with the aid of harmonic oscillator step up and step
down operators. The vibronic problem was solved variation-
ally, by diagonalization of the matrixH of Eq. ~17! in the
given basis.

A high-order basis (kmax5lmax518 andmmax515) and a
basis size of 2565 were needed to simultaneously converge
both functionsx1(R) andx2(R). The nonlinear parameters
in the basis are the harmonic frequenciesve ; they were
optimized in calculations with smaller basis sets by minimi-
zation of the ground vibronic level, while considering also
some of the excited levels. We took anve value of 2.5 cm21

for the functionsHk(x2xe) andHl(y2ye) and of 40 cm21

for the functionsHm8 (z2ze). By comparison with calcula-
tions in smaller 12312310 and 15315312 basis sets, we
estimate that the lower levels have converged to within a few
hundredths of cm21, while some of the higher combination
levels may still shift by several tenths of cm21.

The mass of the Ar atom is 39.950 u, the masses of
C6H6

1 and C6D6
1 are 78.047 and 84.084 u, respectively. For

the rotational constants we took the recent experimental
values18 A5B50.187 06 cm21, C50.093 445 cm21 for
C6H6

1 and A5B50.154 52 cm21, C50.077 253 cm21 for
C6D6

1 .

V. RESULTS AND DISCUSSION

Before we discuss the results of the vibronic calculations
we present in Tables II and III, the van der Waals levels
calculated on the separate adiabatic potentialsV(1)(R) and
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V(2)(R). The first potential is very flat in the (x,y) bend
direction and, indeed, the bend fundamentalb1 has the very
low frequency of 9 cm21. This is quite surprising for a cat-
ionic complex, as the corresponding frequency of the neutral
Ar–benzene complex is 33 cm21.5 We observe in Table II
that the amplitude of the ground state van der Waals vibra-
tions in thex andy directions is nearly twice as large as in
the neutral complex,2 while the amplitude in thez direction is
of the same size as in neutral Ar–benzene. The second po-
tential is similar in shape to that of neutral Ar–benzene and
the van der Waals modes on this potential are also similar,
both in frequency and amplitude; cf. Ref. 5. The stretch fre-

quency of 49 cm21 on the potentialV(1)(R) is somewhat
higher than the value of 42 cm21 on the potentialV(2)(R),
which may be related to Fermi resonance-type interactions
with the bending overtones. The first overtoneb2 is higher in
frequency thans1 for V(2)(R) and may push the stretch fre-
quency down, while the potentialV(1)(R) has several bend
overtones ofa1 symmetry below the stretch frequency that
may push the latter up. Line strengths, discussed below, con-
firm this picture.

Table IV shows the results of the two-state vibronic cal-
culations. The ground state is twofold degenerate (E1 sym-
metry! and is dominated~88%! by a nodeless vibrational

TABLE II. van der Waals modes calculated on the adiabatic potential surfaceV(1)(R). The energy is relative to
the zero-point level withD05486.19 cm21. The mode character is given in terms of (x,y) bendb and ~z!
stretchs quanta. Root mean square displacements are defined asDx5@^x2&2^x&2#1/2, etc. For thee1 ande2

modesDx andDy are reversed in the second substate. Line strengths in units of the model described in the text;
perpendicular refers to the sum ofx andy components, parallel to thez component.

Energy
~cm21! mode

PI(C6v)
symmetry

Dx
~Å!

Dy
~Å!

^z&
~Å!

Dz
~Å!

Line strength

Perpendicular Parallel

0.00 a1 0.572 0.572 3.506 0.124
8.96 b1 e1 1.002 0.579 3.475 0.134 2.337 14 0.0

16.89 b2 a1 1.000 1.000 3.439 0.148 0.0 0.025 01
17.72 b2 e2 1.085 0.942 3.437 0.145 0.0 0.0
24.27 b3 b2 1.230 1.230 3.380 0.162 0.0 0.0
25.04 b3 e1 1.439 0.837 3.394 0.167 0.002 14 0.0
29.47 b3 b1 1.077 1.077 3.431 0.141 0.0 0.0
31.51 e2 1.611 1.032 3.337 0.186 0.0 0.0
32.32 a1 1.333 1.333 3.343 0.191 0.0 0.002 16
38.31 b2 1.469 1.469 3.292 0.208 0.0 0.0
38.82 e1 1.754 1.069 3.298 0.213 0.000 04 0.0
38.93 e2 1.395 0.960 3.403 0.149 0.0 0.0
46.10 e2 1.824 1.128 3.272 0.227 0.0 0.0
46.54 a1 1.491 1.491 3.282 0.232 0.0 0.005 26
48.23 e1 1.332 1.325 3.366 0.159 0.000 16 0.0
48.62 b1 1.283 1.283 3.381 0.162 0.0 0.0
49.10 s1 a1 0.566 0.566 3.565 0.215 0.0 0.833 88
53.84 b2 1.563 1.563 3.252 0.240 0.0 0.0
54.22 e1 1.861 1.121 3.264 0.244 0.000 02 0.0
56.46 b6 a2 1.462 1.462 3.320 0.166 0.0 0.0
57.88 e2 1.667 1.061 3.346 0.176 0.0 0.0
58.88 a1 1.396 1.396 3.352 0.172 0.0 0.001 51
59.96 b1s1 e1 0.977 0.631 3.533 0.228 0.003 34 0.0

TABLE III. Van der Waals modes calculated on the adiabatic potential surfaceV(2)(R). Zero-point level with
D05460.66 cm21. For explanations, see Table II.

Energy
~cm21! mode

PI(C6v)
symmetry

Dx
~Å!

Dy
~Å!

^z&
~Å!

Dz
~Å!

Line strength

Perpendicular Parallel

0.00 a1 0.303 0.303 3.551 0.117
32.43 b1 e1 0.550 0.317 3.569 0.119 0.650 22 0.0
42.17 s1 a1 0.390 0.390 3.602 0.189 0.0 0.594 85
62.33 b2 e2 0.581 0.579 3.585 0.122 0.0 0.0
65.23 b2 a1 0.546 0.546 3.593 0.146 0.0 0.185 99
70.12 b1s1 e1 0.703 0.406 3.612 0.178 0.005 36 0.0
81.67 s2 a1 0.500 0.500 3.651 0.238 0.0 0.000 36
89.46 b3 b2 0.712 0.712 3.598 0.125 0.0 0.0
89.76 b3 b1 0.708 0.708 3.599 0.125 0.0 0.0
94.80 b3 e1 0.827 0.477 3.613 0.165 0.000 32 0.0
95.67 e2 0.747 0.737 3.618 0.169 0.0 0.0
98.54 a1 0.705 0.705 3.630 0.199 0.0 0.009 16
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wave function; see Fig. 4. In contrast with neutral Ar–
benzene, where the vibrational ground state wave function
hasa1 symmetry and is nearly cylindrical about thez axis,2

the dominant vibrational component in the ground state here
is not purelya1 . It is clearly biased in thex ~or, for the other
substate,y! direction by admixture of ane2 vibration (x2

2y2). The minor vibrational component~12%! is purely
e2 (xy). This is a consequence of the fact that the electronic
charge distribution in each of the two degenerate (E1) sub-
states of the cationic complex is not sixfold symmetric. In
our diabatic representation of these substates the electron
hole occurs in thep-MO with thexz plane as the nodal plane
in one of the substates; in the other one it occurs in the
p-MO with the yz plane as the nodal plane.

The lowest excited state in Table IV hasA1 symmetry
and a remarkably low frequency: 1.25 cm21. An analysis of
its wave function, see Fig. 5, shows clearly that it is a bend-
ing (x,y) mode of vibrational symmetrye1 . Next, at 10.12
cm21, we find a vibronic state ofE2 symmetry that has
mostly e1 bend character as well; see Fig. 6. Theoretical
considerations of the quadratic Jahn–Teller effect~equivalent
to a Renner–Teller effect! predict that the bend mode ofe1

symmetry in combination with the degenerate electronic
state ofE1 symmetry produces three vibronic levels: nonde-
generate levels ofA1 andA2 symmetry and a twofold degen-
erate level ofE2 symmetry. Two of these levels have now

TABLE IV. Vibronic levels of Ar–C6H6
1 . Zero-point level withD05478.47 cm21. Column 2 lists the sym-

metry of the vibrational components, column 3 the total vibronic symmetry. Columns 4 and 5 list the occupa-
tions of the two vibrational components~with reversed values for the secondE1 andE2 substate!. For further
explanations, see Table II.

Energy
~cm21!

Symmetry Occupation
Dx
~Å!

Dy
~Å!

^z&
~Å!

Dz
~Å!

Line strength

vib total 1 2 Perp Paral

0.00 a11e2 E1 0.88 0.12 0.783 0.474 3.502 0.130
1.25 e1 A1 0.50 0.50 0.818 0.818 3.475 0.134 1.391 21 0.0

10.12 e11b11b2 E2 0.54 0.46 1.020 0.897 3.452 0.145 1.474 77 0.0
12.56 a11e2 E1 0.83 0.17 1.205 0.709 3.443 0.155 0.0 0.004 71
16.95 e2 B2 0.50 0.50 1.210 1.210 3.387 0.163 0.0 0.0
17.41 e1 A1 0.50 0.50 1.172 1.172 3.397 0.167 0.041 96 0.0
21.74 e2 B1 0.50 0.50 1.046 1.046 3.440 0.142 0.0 0.0
22.78 e11b11b2 E2 0.64 0.36 1.519 0.973 3.364 0.188 0.015 94 0.0
26.09 a11e2 E1 0.78 0.22 1.626 0.967 3.342 0.198 0.0 0.000 03
30.35 e2 B2 0.50 0.50 1.421 1.421 3.312 0.210 0.0 0.0
30.46 e11b11b2 E2 0.65 0.35 1.345 0.942 3.413 0.153 0.000 07 0.0
31.65 e1 A1 0.50 0.50 1.460 1.460 3.295 0.214 0.001 57 0.0
36.04 e11b11b2 E2 0.69 0.31 1.757 1.086 3.295 0.227 0.000 90 0.0
38.56 a11e2 E1 0.65 0.35 1.515 1.177 3.346 0.202 0.0 0.000 62
39.66 e2 B1 0.50 0.50 1.225 1.225 3.400 0.163 0.0 0.0
41.79 a11e2 E1 0.61 0.39 1.635 1.236 3.310 0.208 0.0 0.000 01
45.10 e2 B2 0.50 0.50 1.501 1.501 3.280 0.242 0.0 0.0
46.70 e1 A1 0.50 0.50 1.498 1.498 3.284 0.240 0.000 19 0.0
47.78 e11b11b2 E2 0.68 0.32 1.531 1.127 3.360 0.193 0.000 02 0.0
47.87 a11e2 E1 0.92 0.08 0.687 0.477 3.568 0.217 0.0 0.049 00
48.70 e1 A2 0.50 0.50 1.454 1.454 3.324 0.168 0.000 19 0.0
50.24 e1 A2 0.50 0.50 0.450 0.450 3.570 0.120 0.055 04 0.0
50.39 e1 A1 0.50 0.50 1.270 1.270 3.400 0.222 0.001 14 0.0
51.88 e11b11b2 E2 0.68 0.32 1.758 1.220 3.280 0.242 0.0 0.0
53.37 e1 A1 0.50 0.50 1.030 1.030 3.476 0.231 0.003 06 0.0
56.06 a11e2 E1 0.61 0.39 1.554 1.402 3.306 0.220 0.0 0.000 50
57.02 e2 B1 0.50 0.50 1.410 1.410 3.344 0.194 0.0 0.0
58.26 a11e2 E1 0.54 0.46 1.492 1.484 3.313 0.212 0.0 0.000 29

FIG. 4. Ground state vibronic wave function,E1 symmetry. Cuts (x,y) at
z53.5 Å through the two vibrational components~with contributions ofa1

ande2 symmetry! are shown in panels~a! and~b!, while panel~c! shows the
total density. Panel~d! shows a (x,z) cut aty50 through the total density.
One of the two degenerate substates is displayed, the other one is equivalent,
with the vibrational components interchanged and rotated over 90° about the
z axis.
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been identified for the bend fundamental,b1. The third one
of A2 symmetry is found at 50.24 cm21. Both by its vibronic
wave function, shown in Fig. 7, and by the remarkably small
root mean square displacements in thex andy directions, see
Table IV, it can be clearly distinguished among the many
levels of a more complex nature found at this higher energy.
This analysis reveals that even in the absence of a linear

Jahn–Teller effect, the splitting of the~quadratically! Jahn–
Teller active van der Waals bend mode is quite dramatic. In
the separate adiabatic potentials, i.e., when nonadiabatic cou-
pling is neglected, the bend fundamental has a frequency of 9
or 32 cm21. In the two-state vibronic model it splits into
three vibronic states at 1, 10, and 50 cm21.

FIG. 5. Vibronic state ofA1 symmetry at 1.25 cm21. Cuts (x,y) at z
53.5 Å through the two vibrational components~of e1 symmetry! are
shown in panels~a! and ~b!, panel ~c! shows the total density. Panel~d!
shows a (x,z) cut aty50 through the total density.

FIG. 6. Vibronic state ofE2 symmetry at 10.12 cm21. Cuts (x,y) at z
53.5 Å through the two vibrational components~with contributions ofe1 ,
b1 , and b2 symmetry! are shown in panels~a! and ~b!, while panel~c!
shows the total density. Panel~d! shows a (x,z) cut aty50 through the total
density. One of the two degenerate substates is displayed, the other one is
equivalent, with the total density rotated over 45° about thez axis.

FIG. 7. Vibronic state ofA2 symmetry at 50.24 cm21. Cuts (x,y) at z
53.5 Å through the two vibrational components~of e1 symmetry! are
shown in panels~a! and ~b!, panel ~c! shows the total density. Panel~d!
shows a (x,z) cut aty50 through the total density.

FIG. 8. Vibronic state ofE1 symmetry at 47.87 cm21 that corresponds to the
stretch fundamentals1. Cuts (x,y) at z53.75 Å through the two vibrational
components~with contributions ofa1 ande2 symmetry! are shown in panels
~a! and~b!, while panel~c! shows the total density. Panel~d! shows a (x,z)
cut aty50 through the total density. One of the two degenerate substates is
displayed, the other one is equivalent and rotated over 90° about thez axis.

10079J. Chem. Phys., Vol. 120, No. 21, 1 June 2004 Jahn–Teller effect

Downloaded 11 Feb 2013 to 131.174.248.95. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions



Most of the higher levels involve bend overtones:b2

~vibrational symmetry a11e2), b3 (e11b11b2), b4 (a1

12e2), etc. The lowest level of total symmetryA2 ~vibra-
tional symmetrye1) at 48.70 cm21 is clearly ab5 overtone,
but in most cases the mode character is less clear. Another
exception is the level ofE1 symmetry at 47.87 cm21 that
corresponds~mostly! to the van der Waals stretch fundamen-
tal vibration,s1, of a1 symmetry. The wave function of this
vibronic state in Fig. 8 confirms this assignment.

The vibronic levels of the perdeuterated complex
Ar–C6D6

1 are listed in Table V. They are quite similar in
nature to those of Ar–C6H6

1 . The vibronic levels corre-
sponding to the bend fundamental occur at 1.07, 9.24, and
46.95 cm21 and to the stretch fundamental at 46.94 cm21.
The isotope shifts are typically what one might expect from
the change in the reduced mass of the complex~for the
stretch frequency! and the change in the rotational constants
of the benzene cation~for the bend!; cf. the analysis for
neutral Ar–benzene in Ref. 5.

The first direct comparison to experimental data con-
cerns the binding energyD0 of the complex. It was men-
tioned above thatDe5519.87 cm21 in our potential, and it
was anticipated that the zero-point vibrational energy in
Ar–benzene1 will be lower than in neutral Ar–benzene be-
cause one of the two adiabatic potentials is much flatter in
the (x,y) bend direction than the potential of the neutral
complex. The full vibronic calculations show that this is true.
The zero-point energy is 41.4 cm21, while it is 59 cm21 for

neutral Ar–benzene.6 This is mostly an effect of the flatter
potential indeed: the zero-point energy calculated on the
separate adiabatic potentialV(1) is 33.7 cm21 and on the
adiabatic potentialV(2) it is 59.2 cm21. But we could not
anticipate that the zero-point energy of 41.4 cm21 in the
vibronic calculation is even lower than the average zero-
point energy on the two adiabatic potentials. The binding
energy from the full vibronic calculation is D0

5478.47 cm21. Deuteration of the complex givesD0

5480.10 cm21, a lowering of the zero-point energy, from
41.4 to 39.8 cm21. This value ofD0 for Ar–C6D6

1 agrees
well with the experimental upper bound of 485 cm21.11

Hence, we may conclude that the well depth of our~adia-
batic! potentials for Ar–benzene1 is reliable. The difference
in D0 with the neutral complex, 150 cm21 according to our
calculations, is somewhat smaller than the experimental dif-
ference of 170 cm21 obtained from the redshift of the ion-
ization energy of benzene upon complexation with Ar.12 The
potential of Kochet al.6 that we used in the construction of
our potentials for the cationic complex, see Sec. II, is too
deep by about 15 cm2111 and the fact thatD0 agrees better
with experiment for Ar–benzene1 than for neutral Ar–
benzene is fortuitous.

Also, the frequencies of the van der Waals modes in
Ar–C6H6

1 and Ar–C6D6
1 have been measured.11,20–22 The

vibronic levels from our calculations are quite dense, and in
order to help with the assignment of the experimental spectra
we constructed a model dipole function, calculated transition

TABLE V. Vibronic levels of Ar–C6D6
1 . Zero-point level withD05480.10 cm21. For explanations, see

Table IV.

Energy
~cm21!

Symmetry Occupation
Dx
~Å!

Dy
~Å!

^z&
~Å!

Dz
~Å!

Line strength

vib total 1 2 Perp Paral

0.00 a11e2 E1 0.88 0.12 0.763 0.461 3.504 0.127
1.07 e1 A1 0.50 0.50 0.794 0.794 3.479 0.131 1.320 62 0.0
9.24 e11b11b2 E2 0.54 0.46 0.990 0.874 3.456 0.140 1.402 14 0.0

11.55 a11e2 E1 0.84 0.16 1.169 0.688 3.449 0.149 0.0 0.004 38
15.51 e2 B2 0.50 0.50 1.176 1.176 3.396 0.156 0.0 0.0
16.05 e1 A1 0.50 0.50 1.141 1.141 3.404 0.161 0.043 66 0.0
19.73 e2 B1 0.50 0.50 1.019 1.019 3.445 0.138 0.0 0.0
20.97 e11b11b2 E2 0.64 0.36 1.485 0.947 3.372 0.181 0.013 70 0.0
24.04 a11e2 E1 0.78 0.22 1.591 0.947 3.350 0.191 0.0 0.000 04
27.76 e11b11b2 E2 0.65 0.35 1.310 0.908 3.420 0.147 0.000 07 0.0
27.91 e2 B2 0.50 0.50 1.394 1.394 3.321 0.203 0.0 0.0
29.15 e1 A1 0.50 0.50 1.437 1.437 3.303 0.208 0.001 65 0.0
33.11 e11b11b2 E2 0.69 0.31 1.736 1.066 3.301 0.222 0.000 77 0.0
35.24 a11e2 E1 0.64 0.36 1.464 1.159 3.356 0.192 0.0 0.000 26
36.46 e2 B1 0.50 0.50 1.191 1.191 3.406 0.158 0.0 0.0
38.20 a11e2 E1 0.61 0.39 1.631 1.207 3.312 0.207 0.0 0.000 01
41.24 e2 B2 0.50 0.50 1.485 1.485 3.283 0.238 0.0 0.0
42.78 e1 A1 0.50 0.50 1.482 1.482 3.287 0.236 0.000 18 0.0
43.95 e11b11b2 E2 0.67 0.33 1.487 1.114 3.366 0.190 0.000 04 0.0
44.28 e1 A2 0.50 0.50 1.413 1.413 3.336 0.160 0.000 18 0.0
46.65 e1 A1 0.50 0.50 1.371 1.371 3.355 0.187 0.000 08 0.0
46.94 a11e2 E1 0.90 0.10 0.702 0.493 3.562 0.217 0.0 0.046 81
46.95 e1 A2 0.50 0.50 0.430 0.430 3.567 0.118 0.049 53 0.0
47.40 e11b11b2 E2 0.68 0.32 1.738 1.206 3.284 0.239 0.000 00 0.0
51.03 e1 A1 0.50 0.50 0.809 0.809 3.532 0.222 0.002 72 0.0
51.37 a11e2 E1 0.62 0.38 1.522 1.368 3.315 0.220 0.0 0.001 42
52.62 e2 B1 0.50 0.50 1.379 1.379 3.351 0.189 0.0 0.0
53.36 a11e2 E1 0.54 0.46 1.487 1.461 3.311 0.203 0.0 0.000 15
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strengths, and simulated the far-infrared spectrum. An obvi-
ous contribution to the dipole moment function of the com-
plex is due to the motion of the charged benzene1 monomer
relative to the center of mass of the complex. This produces
a dipole moment vectorm that depends linearly on the posi-
tion vector R5(x,y,z) of Ar relative to benzene1, with a
proportionality factor ofmAr /(mAr1mbenzene1). Further di-
pole contributions are due to the polarization of Ar by the
benzene cation and to other interaction-induced effects. The
spectra measured are infrared spectra11,22due to combination
bands of the van der Waals modes with some of the intramo-
lecular modes of the benzene cation, or they were obtained
by selectively exciting the van der Waals excited states of the
cationic complex20 or the corresponding Rydberg series of
the neutral complex21 by a resonance-enhanced two-photon
process. The actual dependence of the dipole function on the
Ar position vectorR is more complicated, but we simply
assumed a dipole linear in (x,y,z) with a proportionality
constant of one. With this dipole function we calculated the
dipole transition strengths between the ground state ofE1

symmetry and each of the excited vibronic states that origi-
nate from the van der Waals modes. This quantity was aver-

aged over the two substates of the degenerate ground state
and summed over the excited substates when the excited
state is degenerate as well. The parallel line strength is the
transition strength calculated with thez component of the
dipole, the perpendicular line strength is a sum over thex
and y transition strengths. The simulated far-infrared spec-
trum was generated with the use of the calculated transition
frequencies and line strengths, convoluted with a Gaussian
lineshape of full width half-maximum~FWHM! 0.83 cm21.
The spectra in Fig. 9 were produced with the vibrational
states from separate calculations on the two adiabatic poten-
tials. The spectrum in Fig. 10 was generated by using the
vibronic states from the full calculation, with the assumption
that the effective dipole moment function for the van der
Waals modes does not depend on the electronic coordinates.
The justification of the latter assumption is that the effective
vibrational dipole moment function is an expectation value
~or transition matrix element! over the electronic wave
functions.

The spectra in Fig. 9 obtained from the levels computed
on the adiabatic potentialsV(1)(R) and V(2)(R) show the
features that one might expect for anharmonic vibrations.
The bend mode gives rise to a perpendicular line at frequen-
cies of 9 and 32 cm21 for V(1)(R) andV(2)(R), respectively,
and the stretch mode to a parallel line at frequencies of 49
and 42 cm21. Weaker parallel lines at 17 and 64 cm21 in the
first and second spectrum, respectively, correspond to the
bend overtone ofa1 symmetry; also see Tables II and III.
The line in the second spectrum is relatively stronger be-
cause of mixing~Fermi resonance! between the bend over-
tone b2 and the stretch fundamentals1. The vibronic spec-
trum in Fig. 10 shows unexpected features, however. Most
striking is that the very low excited state at 1.3 cm21 that is
one of the Jahn–Teller split vibronic states originating from
the bend mode causes a strong perpendicular absorption line.
It is almost equally strong as the perpendicular line at 10.1
cm21 that corresponds to another one of these vibronic states
of the bend mode. Also, the third bend state at 50.2 cm21 is
visible as a perpendicular line in the simulated spectrum, but

FIG. 9. Simulated far-infrared spectra of Ar–C6H6
1 on adiabatic potentials

V(1)(R) @panel~a!# andV(2)(R) @panel~b!#. Line strength in units of model
described in the text.

FIG. 10. Simulated far-infrared spectrum of Ar–C6H6
1 from the full vi-

bronic model. Line strength in units of the model described in the text.
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much weaker. The vibronic transition corresponding to the
stretch mode gives rise to a parallel line at 47.9 cm21, which
is relatively much weaker than in the separate adiabatic cal-
culations shown in Fig. 9, although we used the same dipole
function. Even weaker lines, both perpendicular and parallel,
can be seen in Fig. 10 at 12.6, 17.4, 22.8, 38.6 cm21 and still
weaker allowed transitions can be observed in Table IV.

In the experimental spectra of Refs. 20, 21 a line was
observed at 48 cm21 and assigned to the stretch vibration.
This line agrees very well with our stretch absorption line. In
the spectrum of Bakkeret al.22 lines were observed at 11, 26,
and 46 cm21 as sidebands to then11 mode ofa2u symmetry
in D6h and a1 symmetry inC6v . The line at 46 cm21 was
assigned to the stretch mode, previously observed at 48
cm21.20,21 From the comparison to our calculations we can
conclude that the peak at 11 cm21 must be assigned to one of
the vibronic levels that originate from the bend mode, with
the unexpectedly low frequency for this mode agreeing very
well with our results. The peak observed at 26 cm21 might
correspond to the calculated line at 22.8 cm21. Krause
et al.20 also reported a line at 23 cm21, in agreement with our
calculations. Neuhauseret al.21 did not observe this line,
however. Krauseet al. and Neuhauseret al. found a peak at
30 cm21. In our theoretical spectrum we obtained only very
weak lines in this region, perhaps because of our model di-
pole function being too simple. The strong perpendicular line
that we predict at 1.3 cm21 could not be observed experi-
mentally since it is too close to the monomer line.44 All in
all, we may conclude that our calculated spectra agree well
with the measurements. It is satisfactory, in particular, that
the peak at the unexpectedly low frequency of 11 cm21 is
clearly explained now.

Bakkeret al.22 also measured the van der Waals frequen-
cies of the perdeuterated complex Ar–C6D6

1 . They reported
peculiar isotope shifts: instead of the three peaks at 11, 26,
and 46 cm21 for Ar–C6H6

1 they found two peaks at 13 and
34 cm21. This does not agree with our calculations which
predict more usual downward and smaller isotope shifts. It
was pointed out22 that the character of the intramolecular
mode to which the van der Waals modes appear as sidebands
differs from the corresponding mode in the protonated com-
plex, so that different van der Waals modes may appear as
sidebands in the spectrum. We did not find lines with sub-
stantial intensity in these regions, however. It is quite surpris-
ing also that the stretch mode expected slightly below 48
cm21 is absent from the spectrum of the perdeuterated com-
plex, so one may wonder whether the assignment of these
peaks to the van der Waals modes is correct. Another possi-
bility is that the intramolecular Jahn–Teller effect starts play-
ing a role when the benzene1 monomer modes are excited
~although then11 mode is not a Jahn–Teller active mode!.

VI. CONCLUSION

Two adiabatic potential energy surfacesV(1)(R) and
V(2)(R) for argon interacting with the twofold degenerate
X̃ 2E1g ground state benzene1 cation were computed by con-
sidering the interaction energy of the ionic complex to be the
sum of the interaction energy of the neutral complex and the

difference in the geometry-dependent ionization energies of
the complex and the benzene monomer. The van der Waals
minima in these potentials occur for Ar on theC6v symmetry
axis of benzene1 ~the z axis!, where the surfaces coincide.
The binding energyDe of 520 cm21 is only 34% larger than
the value for the neutral Ar–benzene complex and the inter-
molecular separationRe of 3.506 Å is not much smaller.
With these adiabatic potentials we constructed a two-by-two
matrix of diabatic potentials from a model based on the as-
sumption that the adiabatic states of the Ar–benzene1 com-
plex geometrically follow the Ar atom. The adiabatic to di-
abatic mixing angle in this model is the azimuthal anglef of
the position vectorR of the Ar atom. The model was checked
by ab initio calculations of the nonadiabatic]/]f coupling
matrix element between the adiabatic states with the two-
state-averaged CAS-SCF~5,6! method. It was found to be
very accurate. The diabatic potential surfaces were used in
solving the Schro¨dinger equation for the bound vibronic
states of the Ar–benzene1 complex with the two diabatic
electronic states ofE1 symmetry and a basis of anisotropic
three-dimensional harmonic oscillator functions for the van
der Waals modes. We studied the effect of isotopic substitu-
tion by computing the vibronic levels of both Ar–C6H6

1 and
Ar–C6D6

1 .
A model dipole function was constructed, and the calcu-

lated line strengths of transitions starting from the ground
vibronic level of E1 symmetry were used to generate a vi-
bronic far-infrared spectrum. The~quadratically! Jahn–Teller
active van der Waals mode is the bend mode ofe1 symmetry
that splits into three vibronic states with energies 1.3, 10.1,
and 50.2 cm21 and symmetriesA1 , E2 , andA2 . The levels
at 1.3 and 10.1 cm21 give rise to strong perpendicular ab-
sorption lines in the spectrum, the level at 50.2 cm21 to a
weaker line, also perpendicular. This very low frequency of
the bend mode is quite unexpected for a cationic complex;
the van der Waals bend frequency in the neutral Ar–benzene
complex is 33 cm21. It is related to the fact that the lower
adiabatic potentialV(1)(R) is very flat in the bend (x,y)
direction. The bend frequency on this potential in the adia-
batic approximation is 9.0 cm21; on the steeper potential
V(2)(R) it is 32.4 cm21. A strong parallel line in the spec-
trum at 47.9 cm21 originates from the van der Waals stretch
~z! mode, which gives rise to a twofold degenerate vibronic
state ofE1 symmetry. This line is substantially weaker than
expected from separate calculations on the two potentials in
the adiabatic approximation. Several other, weaker, parallel,
and perpendicular lines were found as well.

A comparison with the experimental data
available11,20–22shows good agreement. The binding energy
D05480 cm21 of the perdeuterated complex agrees well
with the experimental upper bound of 485 cm21.11 The fre-
quencies of the strong lines at 10.1 cm21 ~bend! and 47.9
cm21 ~stretch! agree with the measurements, which made it
possible to assign the lower peak as a bend mode with un-
usually low frequency. The assignment of some of the
weaker lines is still uncertain, but there are several allowed
vibronic transitions in the observed frequency range. The
calculated isotope shifts show the behavior that is expected
from the change of the reduced mass of the complex and the
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change of the benzene1 rotational constants, but they do not
reflect the surprising change of the van der Waals frequencies
that was measured.22

ACKNOWLEDGMENTS

We thank Gerard Meijer for the suggestion to study this
system, and for a stimulating collaboration. We also thank
him and Hans Ju¨rgen Neusser for making available their ex-
perimental data. We are grateful to Terry Miller for inform-
ing us in detail about the characteristics of aromatic Jahn–
Teller systems. Discussions with Gerrit Groenenboom and
Paul Wormer were very useful.

1A. van der Avoird, J. Chem. Phys.98, 5327~1993!.
2E. Riedle and A. van der Avoird, J. Chem. Phys.104, 882 ~1996!.
3E. Riedle, R. Sussmann, T. Weber, and H. J. Neusser, J. Chem. Phys.104,
865 ~1996!.

4W. Kim and P. M. Felker, J. Chem. Phys.107, 2193~1997!.
5R. Neuhauser, J. Braun, H. J. Neusser, and A. van der Avoird, J. Chem.
Phys.108, 8408~1998!.

6H. Koch, B. Ferna´ndez, and J. Makarewicz, J. Chem. Phys.111, 198
~1999!.

7B. Fernández, H. Koch, and J. Makarewicz, J. Chem. Phys.111, 5922
~1999!.
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