
INTERSECTIONS OF RECURRENCE SEQUENCES

MICHAEL A. BENNETT AND ÁKOS PINTÉR

Abstract. We derive sharp upper bounds for the size of the in-
tersection of certain linear recurrence sequences. As a consequence
of these, we partially resolve a conjecture of Yuan on simultaneous
Pellian equations, under the condition that one of the parameters
involved is suitably large.

1. Introduction

Let {um}∞m=0 and {vn}∞n=0 be integral linear recurrence sequences.
That is, let us suppose that there exist positive integers h and k,
and rational integers a1, a2, . . . , ah, u0, u1, . . . uh−1, b1, b2, . . . , bk and
v0, v1, . . . vk−1, such that

um+h = ah−1um+h−1 + ah−2um+h−2 + · · ·+ a0um, for m = 0, 1, 2, . . .

and

vn+k = bk−1vn+k−1 + bk−2vn+k−2 + · · ·+ b0vn, for n = 0, 1, 2, . . .

Then, as is well-known, there further exist algebraic integers

α1, . . . , αh, β1, . . . , βk

and polynomials P1, . . . , Ph, Q1, . . . , Qk, with algebraic coefficients,
such that we may write

um = P1(m)αm
1 + · · ·+ Ph(m)αm

h , P1 6= 0,

and

vn = Q1(n)β
n
1 + · · ·+Qk(n)β

n
k , Q1 6= 0,
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for each pair of nonnegative integers m and n. It is certainly possible
that such sequences may share values, even infinitely many, but, typ-
ically, our expectation is that their intersection is finite. Our goal in
this paper is to derive a very sharp estimate for the size of such an
intersection, for a specific class of recurrences. This problem is studied
in detail in much greater generality by, for example, Laurent [8] and
Schlickewei and Schmidt [13], [14].

As a qualitative example of the type of theorem available in the
literature, let us mention the main result of [11] :

Theorem 1.1. (Mignotte) For {um}∞m=0 and {vn}∞n=0 as above with
the additional assumptions that

|α1| > max{1, |α2|, . . . , |αh|} and |β1| > max{1, |β2|, . . . , |βk|},
there exists an effectively computable constant m0 such that if um = vn
with m ≥ m0, then necessarily

P1(m)αm
1 = Q1(n)β

n
1 .

If this last relation occurs infinitely often, then there exist positive in-
tegers x and y such that αx

1 = βy
1 . If, further, the polynomials P1 and

Q1 are actually constant, then the set of pairs of integers (m,n) for
which um = vn lie in the union of a finite set with a finite number of
arithmetic progressions.

If we can rule out the presence of such progressions, then the corre-
sponding intersection is necessarily finite. In this context, our main re-
sult quantifies the size of such an intersection, at least under favourable
circumstances. While our arguments lead to a more general statement,
we will restrict our attention somewhat in the interests of simplicity.
Here and henceforth, by h(α) we mean the absolute logarithmic Weil
height of an algebraic number of degree d, given by the formula

h(α) =
1

d

(

log |a0|+
d
∑

i=1

logmax
(

1, |α(i)|
)

)

,

where a0 is the leading coefficient of the minimal polynomial of α over
Z and the α(i)s are the conjugates of α in the field of complex numbers.

Theorem 1.2. Suppose that {um}∞m=0 and {vn}∞n=0 are integral linear
recurrence sequences, that

α1, . . . , αh, β1, . . . , βk

are algebraic integers, and that

P1, . . . , Ph, Q1, . . . , Qk
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are algebraic numbers, for which

(1.1) um = P1α
m
1 + · · ·+ Phα

m
h , P1 6= 0,

and

(1.2) vn = Q1β
n
1 + · · ·+Qkβ

n
k , Q1 6= 0

hold, and we have

(1.3) |α1| > max{1, |α2|, . . . , |αh|} and |β1| > max{1, |β2|, . . . , |βk|}.
Let us assume further that α1, β1, P1 and Q1 are real, that α1 and β1

are multiplicatively independent and that P1 6= Q1. Defining

M = max{h(Pi), h(Qj) : 1 ≤ i ≤ h, 1 ≤ j ≤ k}
and

N = max{h, k,M, log |β1|, 3},
there exists an effectively computable absolute constant C such that if

(1.4) log |α1| ≥ CM log |β1| log3 N
then there is at most one pair of positive integers (m,n) with

um = vn and P1α
m
1 6= Q1β

n
1 .

It is worth observing that the dominant root condition (1.3) is one
that occurs somewhat naturally in a variety of contexts in the theory
of recurrence sequences.

In the case where the two recurrences under consideration are both
binary, there are many results in the literature establishing absolute
bounds upon the size of their intersections, under various restrictions.
One of the simplest cases is that of simultaneous Pellian equations,
where, given distinct non square positive integers a and b, we find that
the number of positive integral triples (x, y, z) satisfying

(1.5) x2 − az2 = 1, y2 − bz2 = 1

is at most two (a bound that is achieved for infinitely many pairs (a, b);
see [2] and [17]). In the case of the similar simultaneous equations

(1.6) x2 − ay2 = 1, y2 − bz2 = 1,

the number of positive solutions has also been shown (see [6] and [7])
to be at most two. In this situation, however, we know of no pair
(a, b) for which two such solutions actually exist and Yuan (Conjecture
1.1 of [18]) suggests that (1.6) has, in fact, at most a single positive
solution (x, y, z) for a fixed pair (a, b). We can verify this conjecture
(in a rather stronger form), provided b is sufficiently large as a function
of a. Indeed, a somewhat straightforward corollary of Theorem 1.2 in
this case is the following
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Corollary 1.3. Let a and b be non square positive integers and let εa
and εb denote the fundamental units in Q(

√
a) and Q(

√
b), respectively.

Then there exists an effectively computable absolute constant κ such
that if

(1.7) log εb > κ log a log εa (logmax{log εa, 3})3 ,
the system of simultaneous equations

(1.8)
∣

∣x2 − ay2
∣

∣ =
∣

∣y2 − bz2
∣

∣ = 1.

has at most one solution in positive integers x, y and z.

It is easy to observe that this result is sharp. Defining

Tk =

(

3 + 2
√
2
)k −

(

3− 2
√
2
)k

2
√
2

,

if we choose (a, b) = (2, T 2
k − 1) for k suitably large, then inequality

(1.7) is satisfied and equations (1.8) have the positive integer solution
(x, y, z) = (Uk, Tk, 1), where

Uk =

(

3 + 2
√
2
)k

+
(

3− 2
√
2
)k

2
.

In what follows, our principal tool will be lower bounds for linear
forms in complex logarithms of algebraic numbers. Our hope is that
this paper will serve as a small advertisement for the theory of si-
multaneous linear forms in logarithms (indeed, Theorem 1.2 depends
fundamentally upon such estimates). These results have been around
for many years, dating to the early days of development of the general
theory, but are neither widely known, nor widely used. One has the
sense that they could find application rather more broadly than is cur-
rently the case. Interested readers are directed to [3], [4], [5], [9], [12],
[15] and [16].

2. Proof of Theorem 1.2

We begin by proving Theorem 1.2. Suppose that we have

um1
= vn1

and um2
= vn2

,

where (m1, n1) and (m2, n2) are distinct pairs of positive integers. Sup-
pose further that

(2.1) P1α
m1

1 6= Q1β
n1

1 and P1α
m2

1 6= Q1β
n2

1 .

Define

δ =
1

2
min

{

1− max
2≤i≤h

{

log |αi|
log |α1|

}

, 1− max
2≤j≤k

{

log |βj|
log |β1|

}}

.
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Then, assuming (1.4) for suitably large C, it follows from (1.3) that

|P1α
mi

1 −Q1β
ni

1 | < 1

2
min{|P1α

mi

1 | , |Q1β
ni

1 |}1−δ.

Since P1, Q1, α1 and β1 are real, if we consider the linear forms

Λi = mi log |α1| − ni log |β1|+ log |P1/Q1|, i = 1, 2,

we therefore have that

(2.2) log |Λi| < −δ min{log |P1α
mi

1 | , log |Q1β
ni

1 |}.
Assumption (2.1) ensures further that Λi 6= 0. Since the αi and the
βj are roots of the companion polynomials of the recurrences defining
{um}∞m=0 and {vn}∞n=0, respectively, monic polynomials with integer
coefficients, it follows from (1.3) that

h(α1) ≤ log |α1| and h(β1) ≤ log |β1|.
We appeal to standard bounds for linear forms in logarithms to derive
a lower bound upon |Λi|. Specifically, we use the main result of [1].

Theorem 2.1. (Baker-Wüstholz) Let α1, . . . , αn be algebraic numbers
different from 0 and 1, in a fixed number field K of degree d. Define
the modified height h′ by

h′(α) = max

{

h(α),
| logα|

d
,
1

d

}

,

for every non-zero α in K, where h(α) is the usual logarithmic Weil
height. Let b1, . . . , bn be rational integers, not all 0, and with absolute
values less than B ≥ 3. Setting

Λ = b1 logα1 + . . .+ bn logαn 6= 0,

we have
log |Λ| > −C(n, d) · h′(α1) · · ·h′(αn) logB,

with
C(n, d) = 18(n+ 1)!nn+1(32d)n+2 log(2nd).

We will also have need of a simultaneous analogue of this result,
due to Loxton [9], which provides a sharper lower bound for linear
combinations of logarithms of algebraic numbers.

Theorem 2.2. (Loxton) Set

Λi = bi1 logα1 + . . .+ bin logαn, (1 ≤ i ≤ t),

where α1, . . . , αn are multiplicatively independent elements of a fixed
number field K of degree d, the matrix of rational integers (bij) has
rank t and the logαj are the principal values. Let Aj ≥ 4 be an upper

https://www.researchgate.net/publication/246716561_Logarithmic_forms_and_group_varieties?el=1_x_8&enrichId=rgreq-b21561e78055bb1f6e41300e50188a7d-XXX&enrichSource=Y292ZXJQYWdlOzI2MDcxOTI0OTtBUzoxMzM1ODgxNzEzNjY0MDBAMTQwODg2MTMxMDE1NQ==
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bound for exp(h(αj)), B ≥ 4 be an upper bound for max{|bij|} and put
Ω = logA1 · · · logAn. Then

max
1≤i≤t

|Λi| > exp{−C(Ω log Ω)1/t log(BΩ)} with C = (16nd)200n.

Applying Theorem 2.1 thus yields a lower bound of the shape

log |Λi| ≫ −M log ni log |β1| log |α1|,
whereby we reach the conclusion that

ni

log ni

≪ M log |α1|

and hence, once again appealing to (1.4),

(2.3) ni ≪ M log |α1| log log |α1|.
Next, applying Theorem 2.2 (which we may do since we assume that
P1 6= Q1 and that α1 and β1 are multiplicatively independent) and
writing

Ω = M log |α1| log |β1|,
we obtain the inequality

max {log |Λ1| , log |Λ2|} ≫ −(Ω log Ω)1/2 logmax{n1Ω, n2Ω}.
From (2.3), it follows that

max {log |Λ1| , log |Λ2|} ≫ −Ω1/2 log3/2 Ω.

Combining this with inequality (2.2), we therefore have

log |α1| ≪ Ω1/2 log3/2 Ω,

whence
log |α1| ≪ M log |β1| log3 Ω,

contradicting (1.4) if the constant C is chosen suitably large. This
completes the proof of Theorem 1.2.

3. Proof of Corollary 1.3

We next turn our attention to Corollary 1.3. If we have two solutions
in positive integers to equation (1.8), say (x1, y1, z1) and (x2, y2, z2),
with x1 < x2, then

(3.1) yi =
εni

a − εa
ni

2
√
a

=
εmi

b + εb
mi

2
, for i ∈ {1, 2},

where the ni and mi are positive integers and εa and εb are the conju-
gates of εa and εb in Q(

√
a) and Q(

√
b), respectively. That is, we have

umi
= vni

for i = 1, 2, where the recurrences satisfy h = k = 2,

α1 = εb, α2 = εb, β1 = εa, β2 = εa,
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P1 = P2 = 1/2, Q1 =
1

2
√
a

and Q2 = − 1

2
√
a
.

If we have

P1α
mi

1 = Q1β
ni

1

for either i = 1 or 2, then (3.1) implies that

εni

a =
√
a εmi

b and − εa
ni =

√
a εb

mi ,

whence a = ±1, an immediate contradiction. Since |εa| = |εa|−1 and
|εb| = |εb|−1, these recurrences satisfy (1.3) and hence, applying Theo-
rem 2.2, we conclude as stated, at least provided the fundamental units
εa and εb are multiplicatively independent.

Let us now suppose that εa and εb are multiplicatively dependent,
satisfying, say,

εra = εsb,

for r and s coprime, positive integers. If we have even a single solution
to equation (1.8) in positive integers (x, y, z), then there exist positive
integers m and n such that

(3.2) y =
εna − εa

n

2
√
a

=
εmb + εb

m

2
.

The corresponding linear form

Λ = m log εb − n log εa + log(
√
a)

can be rewritten as

Λ =
(mr

s
− n

)

log εa + log(
√
a).

Since we have

|Λ| = log
∣

∣εa
n +

√
a εb

m
∣

∣≪
√
a ε−m

b ≪ a ε−n
a ,

it follows that

(3.3) log |Λ| ≪ log a− n log εa.

In the other direction, let us begin by noting that mr ≥ ns implies
the inequality |Λ| ≥ log(

√
a), contradicting (1.7) and (3.3). We may

thus assume that max{mr, ns} = ns. Applying part C of Theorem 3
of Loxton and van der Poorten [10], we have that

(3.4) s ≤ 2

log
(

1
2
(1 +

√
5)
) log(εa),

whence, from Theorem 2.1,

log |Λ| ≫ − log εa log a log(ns)

https://www.researchgate.net/publication/267183493_Multiplicative_dependence_in_number_fields?el=1_x_8&enrichId=rgreq-b21561e78055bb1f6e41300e50188a7d-XXX&enrichSource=Y292ZXJQYWdlOzI2MDcxOTI0OTtBUzoxMzM1ODgxNzEzNjY0MDBAMTQwODg2MTMxMDE1NQ==
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and so, appealing to (3.3) and (3.4),

(3.5) n ≪ log a log(ns) ≪ log a log(n log(εa)).

Combining this with (3.2), which implies that

log(εb) ≪ n log(εa),

we contradict (1.7), provided κ is chosen to be suitably large. This
completes the proof of Corollary 1.3.
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Astérisque 147–148 (1987), 121–139.

[9] J. H. Loxton. Some problems involving powers of integers. Acta Arith. 46

(1986), 113–123.
[10] J. H. Loxton and Alf van der Poorten. Multiplicative dependence in number

fields. Acta Arith. 42 (1983), 291–302.
[11] M. Mignotte. Intersection des images de certaines suites récurrentes linéaires.
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