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Abstract 

Large brains (relative to body size) might confer fitness benefits to animals. Although the 

putative costs of well-developed brains can constrain the majority of species to modest brain 

sizes, these costs are still poorly understood. Given that the neural tissue is energetically 

expensive and demands antioxidants, one potential cost of developing and maintaining large 

brains is increased oxidative stress (‘oxidation exposure’ hypothesis). Alternatively, because 

large-brained species exhibit slow-paced life histories, they are expected to invest more into 

self-maintenance such as an efficacious antioxidative defence machinery (‘oxidation 

avoidance’ hypothesis). We predict decreased antioxidant levels and/or increased oxidative 

damage in large-brained species in case of oxidation exposure, and the contrary in case of 

oxidation avoidance. We address these contrasting hypotheses for the first time by means of a 

phylogenetic comparative approach based on an unprecedented dataset of 4 redox state 

markers from 85 European bird species. Large-brained birds suffered less oxidative damage 

to lipids (measured as malondialdehyde levels) and exhibited higher total non-enzymatic 

antioxidant capacity than small-brained birds, while uric acid and glutathione levels were 

independent of brain size. These results were not altered by potentially confounding variables 

and did not depend on how relative brain size was quantified. Our findings partially support 

the ‘oxidation avoidance’ hypothesis and provide a physiological explanation for the linkage 
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of large brains with slow-paced life histories: reduced oxidative stress of large-brained birds 

can secure brain functionality and healthy lifespan, which are integral to their lifetime fitness 

and slow-paced life history. 

Keywords: antioxidants; brain size; life history; lipid peroxidation; oxidative stress. 

 

Introduction 

A range of fitness benefits have been associated with large brain sizes (relative to body mass) 

and these served as primary explanation for their evolution. For instance, the ‘cognitive-

buffer’ hypothesis proposes that large brains confer enhanced cognitive skills and flexible 

behavioural repertoires, which ultimately buffer them against the extrinsic hazards of 

mortality (e.g. starvation, parasites, predation and social stress; Allman et al., 1993; reviewed 

by Sol, 2009). Ample comparative evidence demonstrates that big-brained species excel in 

terms of learning, cognition, innovation and behavioural coping with environmental stressors, 

and enjoy enhanced survival and longer lifespan in changing or novel environments (e.g. 

Shultz et al., 2005; Sol et al., 2005, 2007, 2012; González-Lagos et al., 2010; Maklakov et 

al., 2011; Benson-Amram et al., 2016; reviewed by Sol, 2009). Considering these salutary 

effects, it is odd that only a small fraction of homeotherm vertebrates possess considerably 

larger brains than expected from their body mass (Parker, 1990; Isler & van Schaik, 2009a; 

b). Costs of a highly-developed central nervous system should be responsible for constraining 

the evolution of large brains relative to body mass. Yet, except the high energetic needs of 

brain development and maintenance, there is scant evidence about putative costs, even though 

these are imperative to understand brain size evolution (Martin, 1981; Parker, 1990; Isler & 

van Schaik, 2006b, 2009a; Navarrete et al., 2011). 
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The costs of enlarged brains postulated so far are often grounded on the high 

metabolic expenses of developing and maintaining the neural tissue, which require high rates 

of oxygen consumption, ion pumping and neurotransmitter synthesis (Parker, 1990; Aiello & 

Wheeler, 1995; Isler & van Schaik, 2006b). This cost can be paid directly by increased 

metabolic rate (Parker, 1990; Ricklefs, 2004; Isler & van Schaik, 2006b; but see Isler & van 

Schaik, 2006a) and/or increased maternal metabolic turnover (Martin, 1981; Isler & van 

Schaik, 2009a; Barton & Capellini, 2011). It can also be manifested as energetic trade-offs 

implying that allocation into the brain tissue is saved to the detriment of investment into 

intestines, other visceral organs, locomotion, adipose tissue or production of soma and 

progeny (Aiello & Wheeler, 1995; Isler & van Schaik, 2006a, 2009a; b; Barton & Capellini, 

2011; Navarrete et al., 2011; Kotrschal et al., 2013). 

Oxidative homeostasis, another component of the physiological network, was also 

found to play a role in brain development and functioning within species (Gilgun-Sherki et 

al., 2001; Halliwell, 2001; Lin & Beal, 2006; Dröge & Schipper, 2007). However, this topic 

was seldom addressed in evolutionary biology (see Buchanan et al., 2013 and references 

therein) and thus the understanding of the brain–redox state nexus remained elusive 

especially in comparisons across several species. Oxidative stress arises when the generation 

of reactive oxygen species (ROS) by cellular respiration overwhelms the defence capacity of 

the antioxidative system (reviewed in detail in Monaghan et al., 2009; Pamplona & 

Costantini, 2011). Oxidative stress state implies that vital cellular components (proteins, 

lipids and DNA) can be damaged, and the accumulation of unrepaired oxidative damages was 

suggested to play at least some role in ageing and a plethora of age-related disorders (around 

150) at the organism level in general and nervous system in particular (Finkel & Holbrook, 

2000; Barja, 2004; Halliwell & Gutteridge, 2007; Buttemer et al., 2010; Clausen et al., 2010; 

Speakman et al., 2015). 
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Here we ask for the first time whether oxidative state measured in the blood tissue is 

associated with brain size in birds. We propose two alternative hypotheses linking brain size 

and redox physiology. The ‘oxidation exposure’ hypothesis argues that an elevated oxidation 

exposure might arise in large-brained organisms for at least three reasons. First, the high 

metabolic expenses of large brains might exacerbate the oxidative insults, all else in the redox 

system being equal (Beckman & Ames, 1998; see also Burger et al., 2008); though the 

metabolic theory of oxidative stress and ageing is progressively devalued (Hulbert et al., 

2007; Speakman & Selman, 2011; Speakman et al., 2015). Second, brain development and 

maintenance demands large amounts of antioxidants (e.g. glutathione; Galván & Møller, 

2011), which might be traded off with the antioxidant protection against oxidation challenges. 

Third, the neural tissue demands high blood oxygen and glucose levels, which are sources of 

ROS production (Aiello & Wheeler, 1995; Gilgun-Sherki et al., 2001; Halliwell, 2001; 

Galván & Møller, 2011). 

Alternatively, the ‘oxidation avoidance’ hypothesis postulates that species with large 

brains should exhibit adaptations that better retard an oxidative stress state to be settled. 

Better oxidation avoidance can help to shield out potentially long-lasting and adverse carry-

over effects of oxidative stress. Given that large-brained species feature a slow pace-of-life, 

and hence rely on a long reproductive life to improve their fitness (Sol et al., 2007, 2012; Sol, 

2009; van Schaik et al., 2012), they should gain fitness benefits by investing into self-

maintenance such as oxidative homeostasis (Halliwell & Gutteridge, 2007; Monaghan et al., 

2009). The rationale behind this hypothesis is that oxidative homeostasis is, on one hand, 

conducive to brain functionality and cognitive resilience, which are integral to the fitness and 

slow-paced life history of large-brained species (Buchanan et al., 2013), and, on the other 

hand, might permit longer reproductive lifespan (Finkel & Holbrook, 2000; Halliwell & 

Gutteridge, 2007; Buttemer et al., 2010; Salmon et al., 2010; Speakman et al., 2015). 
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We contrasted the ‘oxidation exposure’ and ‘oxidation avoidance’ hypotheses by 

predicting that the former holds if species with large relative brain size feature reduced 

antioxidant defence and/or enhanced oxidative damage as measured in the blood tissue, while 

the latter is supported if these relationships are reversed. For this, we conducted a 

comprehensive phylogenetic comparative analysis based on an unprecedented dataset of four 

blood redox state markers of 85 European bird species that belong to 37 families and 13 

orders (based on taxonomy by Gill & Donsker, 2016). Three markers describe the non-

enzymatic antioxidant defence (total antioxidant status, uric acid and total glutathione), and 

one marker shows the oxidative damage of lipids (malondialdehyde). Lipid peroxidation was 

measured for the first time spanning a wide range of wild-living avian taxa, while the 

antioxidant parameters were the first time assayed for such a large number of European bird 

species. These markers were chosen because (1) non-enzymatic antioxidants, besides 

antioxidant enzymes, are deployed to combat free radical insults and might play a role in 

ageing (Cohen et al., 2007), (2) glutathione is the most significant intracellular, endogenous, 

non-enzymatic antioxidant with multifaceted physiological effects (Meister & Anderson, 

1983; Galván & Alonso-Alvarez, 2008) including brain development and maintenance 

(Gilgun-Sherki et al., 2001; Halliwell, 2001; Galván & Møller, 2011) and is also integral to 

the ageing process (Maher, 2005; Rebrin & Sohal, 2008), and (3) malondialdehyde, which 

results from the peroxidative degeneration of polyunsaturated fatty acids by ROS, is a widely 

used marker of oxidative stress (Del Rio et al., 2005; Halliwell & Gutteridge, 2007; 

Monaghan et al., 2009), can act as a ROS itself and consequently can trigger oxidative 

cascades and perpetuate lipid peroxidation (Barja, 2004; Del Rio et al., 2005; Halliwell & 

Gutteridge, 2007), and was also linked to ageing (Spiteller, 2007; Pamplona, 2008). 
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Materials and methods 

Fieldwork 

We sampled 544 birds belonging to 85 species in Romania between 2011 and 2013 (Table 

S1). These species represent a diverse set of European birds as they belong to 37 families and 

13 orders (based on taxonomy by Gill & Donsker, 2016). Only a small fraction of species is 

represented by one sampled individual (11 out of 85, 13%; Table S1). The majority of the 

species were captured at multiple locations (totally 42 in eight counties) and/or during 

multiple sampling occasions (Table S1). Species were sampled in their breeding phase from 

late April until early July. The breeding phase was confirmed by females exhibiting clear 

brood patches. After capture, we banded the birds with metal rings (to exclude repeated 

sampling of the same individuals) and determined their age (only adults were considered) and 

sex (except for 28 species that are sexually monomorphic). Then, we took a blood sample 

(range 30–300 µL, depending on body size) by brachial venepuncture into heparinized 

capillaries. The blood sample drawn from small-sized species usually allowed only one 

aliquot, therefore different redox state markers were measured from different samples, which 

makes the sample size to vary per marker per species (Table S1). For the welfare of birds and 

potential stress-sensitivity of redox markers, bleeding took place as fast as possible after the 

bird hit the net (bleeding time within 15 min; mean = 9.34 min, SD = 4.72). All birds were 

released in good condition after sampling. The samples were kept in dark cooling boxes at 

around 4°C for less than 10 hs until spun (for 5 mins at 5,000 rpm) to separate the plasma and 

erythrocyte fractions. The plasma fraction was visually scored for the degree of haemolysis 

on a 4-point scale (none, weak, intermediate, strong), then plasma was partitioned into 

aliquots for each marker and all aliquots and the erythrocytes were stored at –50°C until 

assaying. Laboratory assays (see below) were done following the same protocol and by the 

same person (LP). The abovementioned standardisation of sample collection and assaying 
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minimized the heterogeneity in data due to geographic region, life-history stage, bird’s age, 

stress exposure (samples only from Romania, breeding season and adults, and collected 

within a short time, respectively) and laboratory protocols. Trapping by mist nets and blood 

sampling was done as licensed by the Romanian Academy of Sciences (permission no. 2257) 

and in accordance with current Romanian laws of animal welfare. 

 

Biochemical assays 

We measured three antioxidant markers (total antioxidant status, TAS, uric acid, UA, and 

total glutathione, tGSH) and a marker of peroxidative damage to lipids (malondialdehyde, 

MDA, by HPLC). Detailed protocols can be found in the Supporting Information and Bókony 

et al. (2014). UA significantly positively correlates with TAS (species-level correlation: r = 

0.32, 95% CI: 0.12–0.50, t82 = 3.07, P = 0.003) in agreement with previous studies (Cohen et 

al., 2008). To remove the contribution of UA to TAS, we extracted the TAS residuals from 

an ordinary least squares regression (Cohen et al., 2008) of individual-level measures of TAS 

on UA and then averaged this per species. 

 

Brain size 

Information on brain mass was obtained from a previously assembled dataset (Sol et al., 

2010). Despite concerns raised about combining brain measurements from different sources, 

this has proved negligible in comparisons across species (Sol et al., 2010). For seven species 

we had no species-specific brain mass data and thus we instead used genera mean brain mass; 

however, this did not alter the results (see the Supporting Information). To account for the 

allometric effects of body mass on brain mass, body mass data were collected from (Dunning, 

2008) and the allometric exponent was estimated as the slope of the log brain size on log 
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body mass by means of phylogenetic generalized least squares (PGLS) regression. Brain size 

scales to body mass0.65 (log brain mass = –2.48 + 0.65 × log body mass); the scaling exponent 

0.65 being very close to the hypothetic negative allometric exponent 0.67. Consequently, we 

derived a mass-corrected brain size dividing original brain mass with body mass0.65 (see also 

Sol et al., 2008). The mass-corrected brain size thus reflects the size of the brain relative to 

what is expected from body size. The results found by other two alternative measures of 

relative brain size are coincident and can be found in the Supporting Information. 

 

Confounding variables 

We ruled out the potentially confounding effects of sampling stress (expressed as time 

elapsed between hitting the net and bleeding), degree of haemolysis, sampling date, body 

mass, life history and breeding latitude. Details on their relevance and methods are provided 

in the Supporting Information. 

 

Statistical analyses 

All statistical analyses were carried out in R 3.2 (R Core Team, 2015). To assess whether 

redox state markers are suitable for multispecies comparison, we tested the species-specificity 

of these traits by partitioning variance into among- and within-species components using the 

function ‘ICCest’ from the R package ‘ICC’ (Wolak et al., 2011). Since the precision of 

within-species variance estimation is dependent on sample size, the estimation of intraclass 

correlation coefficient (ICC; a measure of species-specificity here) in comparative studies 

with unbalanced sample sizes across species is not equivocal. To cope with this problem, as a 

first step, species with only one individual sampled per focal redox marker were excluded. 

Subsequently, for the remaining species, we randomly picked two individuals out of the total 
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number of available measurements per species and computed ICC. This routine was iterated 

1,000 times, so final ICCs are the average of the 1,000 ICC estimates. Then we restricted ICC 

calculations to species with at least three, four and five individuals sampled within species. 

ICC was computed using raw, non-transformed values. We also used an alternative approach 

building a model for the entire individual-level dataset (i.e. without restriction to any 

particular sample size within species) with species ID being set as random factor. The 

variance was partitioned to among- and within-species components (Va and Vw, respectively) 

and ICC was computed as Va / (Va + Vw). 

To test the ‘oxidation exposure’ and ‘oxidation avoidance’ hypotheses, we modelled 

each of the 4 redox markers as a function of relative brain size and the three potential 

confounding variables (body mass, developmental time and LCB) as covariates. Additionally, 

because the redox state markers are expected to covary, those three markers that were not the 

response in the actual model were also entered as covariates to assess whether they are 

related to relative brain size independently of each other. Sex was omitted from models since 

one third of the species could not be sexed in the field. However, the significant species-

specificity of redox markers (see Results) indicates that conspecifics are more similar to each 

other than to other species, independent of their sex. All variables were log-transformed to 

meet the normality assumption, and were scaled to zero mean and unit SD to gain comparable 

parameter estimates. The full models were reduced to minimal adequate models (MAMs) by 

backward stepwise elimination with the more permissive criterion of P < 0.1 in order to 

retain marginal explanatory terms as well (i.e. 0.05 < P < 0.1). Although body mass and 

developmental period were correlated, the fact that their relationship with the response 

variables were consistent whether the other life-history trait was present or absent in the 

model suggests that collinearity was not an issue in our models. 
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To account for the dependence of species due to shared evolutionary ancestry, we 

built PGLS models in which phylogenetic signal (Pagel’s λ; Pagel, 1997, 1999) was 

estimated by maximum likelihood. To control for phylogeny and uncertainties in 

phylogenetic construction, we retrieved 1,000 phylogenetic trees from birdtree.org (Jetz et 

al., 2012), with the backbone tree of (Hackett et al., 2008), which were merged into an 

ultrametric consensus phylogenetic tree using the SumTrees program (Sukumaran & Holder, 

2010). Each PGLS model was based on the entire species pool and we weighted models by 

within species sample size (i.e. sampling effort) of the focal response variable as 

implemented in the ‘gls’ function of the R package ‘nlme’ (Pinheiro et al., 2015). This was 

meant to avoid the possibility that well- or poorly-sampled species might alter the results. 

Furthermore, all analyses were repeated by only using species with at least three individuals 

sampled within species for the focal response variable, the level at which each redox state 

marker proved to be species-specific (see Table S2). 

Phylogenetic signal of redox parameters was computed using the ‘phylosig’ function 

of the R package ‘phytools’ (Revell, 2012). Strong and weak signal (i.e. λ approaches 1 and 

0, respectively) indicates that evolution conforms to or deviates from the Brownian motion 

model, respectively. 

Additional statistical methods can be found in the Supporting Information. 

 

Results 

The redox state markers were found to be species-specific (i.e. have significant ICC values) 

with both approaches (i.e. based on the entire dataset or with sample size restrictions); 

though, the ICC of non-enzymatic antioxidant markers were generally low (Table S2). The 

phylogenetic signal of MDA was marginally (Pagel’s λ = 0.57, P = 0.087) and that of tGSH 
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significantly (λ = 0.46, P = 0.01) different from zero, while it did not differ from zero for the 

other two antioxidant markers (TAS: λ = 0.00, P = 1.0; UA: λ = 0.24, P = 0.37). 

The levels of UA and MDA were weakly negatively, while the concentration of tGSH 

was significantly positively related to body mass. TAS and UA levels increased with higher 

degree of lipid peroxidative damage (i.e. MDA concentration; Table 1). In addition, residual 

TAS was also elevated in species with higher MDA level (PGLS, β ± SE = 0.08 ± 0.03, t84 = 

2.47, P = 0.016, Pagel’s λ = 0.04). 

Species with large relative brain size featured significantly higher TAS and 

significantly lower peroxidative damage to lipids (expressed by the concentration of MDA) in 

concordance with the ‘oxidation avoidance’ hypothesis (Table 1, Fig. 1; see Table S3 for full 

models). UA and tGSH, however, were unrelated to relative brain size. These results were 

robust to the confounding effects of body mass, developmental time, LCB and redox state 

covariates (Table 1), and held regardless of multiple changes in the modelling procedure (see 

Sensitivity analyses and Tables S4, S5 and S6 in the Supporting Information). 

 

Discussion 

We found that the four redox state markers are species-specific, i.e. conspecifics resemble 

each other more (even if they differ in e.g. sampling stress, sampling day or breeding status) 

than other species, which is a primary requisite of phylogenetic comparisons. We showed that 

bird species with disproportionally larger brains relative to body mass suffer lower oxidative 

damage to cell lipids (MDA) and have higher total non-enzymatic antioxidant capacity (TAS) 

in the peripheral blood during the energetically demanding period of reproduction. However, 

two individual antioxidant compounds, plasma uric acid (UA) and erythrocyte glutathione 

(GSH), were not related to brain size. These findings lend partial support for the ‘oxidation 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

avoidance’ hypothesis and refute the hypothesis that large brains bring ‘oxidation exposure’ 

costs. 

MDA is a reactive carbonyl species, a di-aldehyde intermediate of lipids’ peroxidative 

decomposition. Cardiolipin, the most frequent phospholipid in mitochondrial membranes, has 

central role in cellular bioenergetics and is highly susceptible to oxidation (Paradies et al., 

2011). Therefore, higher lipid peroxidation levels might imply cardiolipin depletion, cellular 

energetic decay and loss of functionality (Paradies et al., 2011). Furthermore, MDA is a 

prime promoter of oxidative vicious cycles by perpetuating lipid peroxidation and causing 

oxidative damages to proteins and DNA as well (Barja, 2004; Halliwell & Gutteridge, 2007). 

These oxidative damages are unwanted per se because of their adverse effects on neural and 

organismal capacity, but also derange other crucial physiological setting points like immune 

effectors and the insulin/IGF-1 signalling that can also cause further damages for instance in 

the brain (Dröge & Schipper, 2007). These multifaceted negative effects of MDA can 

ultimately jeopardize mitochondrial, cellular and organismal functioning and accelerate 

ageing (Pamplona, 2008). Species with large relative brain size thus seem to protect better 

their odds by mitigating such oxidation costs during the oxidatively challenging breeding 

period. 

Studies involving transgenic model organism increasingly suggest that antioxidants 

might play a minor role in combating oxidative stress and silencing (neural) ageing (e.g. 

Barja, 2004; Speakman et al., 2015). However, comparative evidence in wild-living birds 

shows that the level of antioxidants is elevated in species exposed to increased oxidative 

insults (Cohen et al., 2008). Consistent with this latter study, we found that species with 

higher levels of MDA also exhibit higher concentrations of TAS in their bloodstream. 

Therefore, boosted levels of non-enzymatic antioxidants might play a role in mitigating 

oxidative damage of large-brained species. However, this does not deny that adaptations 
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other than non-enzymatic antioxidant defence might also alleviate oxidative stress in large-

brained species, including lower ROS generation rate (Pamplona et al., 2005), higher activity 

of antioxidant enzymes (Clausen et al., 2010), lowered cardiolipin content (Paradies et al., 

2011) and lower receptor density for glucocorticoids or IGF-1 (Gilgun-Sherki et al., 2001; 

Dröge & Schipper, 2007). 

Our results show that the concentration of tGSH is unrelated to brain size, even 

though a positive association was previously postulated (Galván & Møller, 2011). GSH is a 

tri-peptide ubiquitous in virtually all cells, a key intracellular antioxidant per se due to the 

thiol group and it is also required as substrate by the antioxidant enzyme glutathione 

peroxidase (Gilgun-Sherki et al., 2001). GSH preserves brain functionality during ageing and 

protects the blood–brain barrier (Halliwell, 2001) and the level of reduced GSH decreases 

with ageing in brain and other tissues as well (Dröge & Schipper, 2007). The downside of 

GSH-mediated antioxidant potential is its difficulty to bypass the blood–brain barrier 

(Gilgun-Sherki et al., 2001). Interestingly, vitamin C and E, which are significant 

components of TAS, can cross the blood–brain barrier, have large and average concentrations 

in the brain, respectively, and both were found to be important in neural protection against 

oxidative insults and neurodegenerative diseases, alone or in cocktails (Gilgun-Sherki et al., 

2001). These differences among antioxidants might explain the positive association between 

TAS and brain size and the lack of association between tGSH and brain size. 

At least three mutually non-exclusive explanations can be put forward for the negative 

covariation between brain size and oxidative stress. First, certain components of the total 

non-enzymatic antioxidants are derived from food. If a large relative brain size enhances the 

ability to discriminate and choose food resources richer in antioxidants (e.g. via visual acuity; 

Schaefer et al., 2008 and/or diet generalism; Overington et al., 2011; Ducatez et al., 2015; 

Sol et al., 2016), this should lead to an association between oxidative damage and relative 
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brain size. Second, given that glucocorticoids induce oxidative stress (Costantini et al., 2011), 

large-brained species might suffer less glucocorticoid-induced oxidative stress if they cope 

with stress by means of cognitive mechanisms (e.g. anticipation or innovation) rather than by 

a glucocorticoid response (Lendvai et al., 2013). Finally, the overall energy consumption 

rates in large-brained animals might be lower than generally assumed: (Pontzer et al., 2014) 

reported that primates expend on average only 50% of the energy expected for a mammal of 

similar mass. This does not contradict that a large brain consumes more energy, as, despite 

their lower total energy expenditure, primates have basal metabolic rates similar to those of 

other mammals; however, it does suggest that overall they might suffer less oxidative 

damage. Whether this is also true in birds requires further analyses (but see Isler & van 

Schaik, 2006b). 

An important contribution of our findings is that they provide a physiological 

explanation for the evolutionary linkage between large relative brain size and slow-paced life 

histories (Sol, 2009; van Schaik et al., 2012) (Fig. 2). In large-brained and long-lived species 

selection should favour, on one hand, adaptations that ensure a homeostatic development and 

maintenance of the nervous system and, on the other hand, adaptations that promote 

longevity (Barja, 2004; van Schaik et al., 2012; Buchanan et al., 2013). Improved oxidation 

avoidance is a good candidate mechanism to meet both requirements. On one hand, it 

promotes brain functionality and cognitive resilience, which has high relevance for the fitness 

of slow-living large-brained species (Buchanan et al., 2013). On the other hand, the ageing 

process might be at least partly contingent upon the redox state (Finkel & Holbrook, 2000; 

Halliwell & Gutteridge, 2007; Salmon et al., 2010; Galván et al., 2015; Speakman et al., 

2015), and the accumulation of ROS-induced oxidative injuries (e.g. mtDNA mutations) in 

post-mitotic tissues such as the brain are considered relevant causes of ageing in both 

mammals and birds (Gilgun-Sherki et al., 2001; Barja, 2004; Hyun et al., 2006). This is 
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corroborated by our data as we found higher TAS and lower MDA levels in bird species that 

live longer and feature slow-paced life history (Vágási et al., in prep.). Thus, big-brained 

birds might benefit not only from reduced extrinsic mortality risk via cognitive buffering, but 

also from reduced intrinsic hazards via oxidation avoidance. We speculate that this might 

have implications for the more frequent occurrence of large brains in birds as opposed to 

mammals (Isler & van Schaik, 2009b). The peculiarities of the avian redox physiological 

system confer them two-fold longer lifespan relative to size-matched mammals (Hulbert et 

al., 2007; Costantini, 2008). Because species with large relative brains have reduced 

reproductive rates and lifespan partially levels off this loss (Isler & van Schaik, 2009b), the 

longer (reproductive) lifespan of birds might contribute to the higher frequency of large 

brains in birds. 

In sum, our study provides support for the hypothesis that large brain size relative to 

body mass coevolves with an improved resistance to oxidative stress in birds. To assess the 

generality of our findings, the covariation between brain size and redox state needs to be 

further validated in other organisms. Taking the outstanding differences in redox physiology 

and ageing between birds and mammals (Costantini, 2008), but also in brain size (Isler & van 

Schaik, 2009b), mammals are an obvious choice for future tests of the hypotheses. It would 

also be insightful to delve into the proposed mechanisms and to measure redox state markers 

in post-mitotic tissue as well. 
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Tables and figure captions 

Table 1 Minimal adequate PGLS models about the relationship between redox state markers 

(i.e. antioxidants and oxidative damage) and brain size. Pagel’s λ of each model is provided 

in brackets beside the response variables. N = 84 species for each model. Significant effects 

are marked in bold. 

Response Predictor β ± SE t P 

TAS (λ = 0.00) Intercept   1.04 ± 0.17   5.98 < 0.001 

 LCB   0.09 ± 0.05   1.81    0.074 

 Relative brain size   0.12 ± 0.05   2.42    0.018 

 MDA   0.26 ± 0.03   7.59 < 0.001 

UA (λ = 0.32) Intercept   5.54 ± 2.01   2.75    0.007 

 Body mass –1.16 ± 0.59   1.97    0.053 

 MDA   3.04 ± 0.36   8.40 < 0.001 

tGSH (λ = 0.28) Intercept 10.61 ± 1.05 10.08 < 0.001 

 Body mass   3.11 ± 0.72   4.34 < 0.001 

MDA (λ = 0.66) Intercept   1.00 ± 0.44   2.24    0.028 

 Body mass –0.25 ± 0.13   1.88    0.064 

 Relative brain size –0.32 ± 0.12   2.75    0.007 

 TAS   0.83 ± 0.18   4.66 < 0.001 

 UA   0.10 ± 0.02   5.74 < 0.001 
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Fig. 1 The relationship between relative brain size and (a) total antioxidant status and (b) 

oxidative damage (MDA). The slopes are extracted from MAMs presented in Table 1. Dot 

sizes are proportional to within species sample size of oxidative markers plotted without 

bearing on the fit. 

 

Fig. 2 The brain size–oxidative state–life history triangle. The association of large relative 

brain size with slow life-history pace might be underpinned by the oxidative stress being 

lower in large-brained species and higher in species with fast life-history pace. 
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