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Abstract

Euler equations for a family of descriptors of the spherically symmetric Coulomb systems are

derived and discussed. Generalized Weizsäcker and Pauli energies and potentials are introduced.
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I. INTRODUCTION

According to the density functional theory, the ground-state electron density is a fun-

damental quantity, as it determines every property of the electron system [1]. In case of a

Coulomb system, not only the electron density possesses this fundamental property. Namely,

it turned out that other quantities are also capable of fully determining every property of

a Coulomb system. The first one that proved to be a descriptor of a Coulomb system was

the shape function (density per particle )[2]. Later, reactivity indicators [3] such as Fukui

function, local softness, softness kernel, electrostatic potential, local kinetic energy and local

temperature [4, 5] were also shown to be adequate for describing a Coulomb system. Then a

whole family of descriptors for Coulomb systems have been presented [6, 7]. Recently, it has

been proved that the local Shannon information is also capable of fully determining every

property of a Coulomb system [8].

Though any of these descriptors is able to determine a Coulomb system, they are not

so fundamental in calculations as the density. They are generally obtained from standard

Kohn-Sham calculations. Equations capable computing these descriptors directly, have not

been presented. In this paper, such equations are derived for spherically symmetric systems.

These correspond to the Euler equation of the standard density functional theory.

Density functional calculations are frequently done in the Kohn-Sham scheme, though

in principle orbital-free calculations [9–11] would be also possible. Because of the lack of

accurate approximation for the kinetic energy functional, these calculations are not accurate

enough. Recently an approach has been proposed to solve the orbital-free problem for

spherically symmetric systems [12–15]. In this paper, that approach is generalized to derive

Euler equations for a family of descriptors of Coulomb systems.

In the following section the definition and main properties of these descriptors of Coulomb

systems are summarized. In Section III differential equation is derived for spherically sym-

metric systems. Section IV presents Euler equations for the descriptors. The last section is

devoted to discussion.
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II. “GENERALIZED DENSITIES” OF COULOMB SYSTEMS

The descriptors of Coulomb systems that we call “generalized densities” are defined with

the Kohn-Sham one-partical densities. The Kohn-Sham equations [17] can be written as

−
1

2
∇2uk(r) + v

KS
(r)uk(r) = ǫkuk(r) , (1)

where v
KS
(r), uk(r) and ǫk are the Kohn-Sham potential, the orbitals and the orbital energies,

respectively. The “generalized density” ξ(r) is defined by the expression [6, 7]

ξ(r) =

N
∑

k

αknk(r), (2)

where αk ≥ 0 for 1 ≤ k < N and αN > 0 .

nk(r) = |uk(r)|
2 (3)

are the one-partical densities. The sum is going for the occupied orbitals and N is the

number of electrons. The notation “generalized densities” refers to the fact that this family

of descriptors contains the density as a special case: if αk are the occupation numbers,

that is, αk = λk, then ξ is the electron density. The shape function σ also belongs to

this family: if αk = λk/N , ξ(r) is the shape function: ξ(r) = σ(r) = n(r)/N . Another

interesting case is the highest occupied orbital density: if α1 = ... = αN−1 = 0 and αN = 1,

ξ(r) = nHOMO(r) ≈ f−(r) which approximates the Fukui function. It is worth mentioning

[16] that the frontier molecular orbitals (highest occupied and lowest unoccupied orbitals)

determine the electron density, and thus all properties of a system (even if the system is not

Coulombic).

It was shown in [6] that the generalized densities (2) are descriptors of a Coulomb system,

that is, capable of determining all its properties. The following theorem was proved: For

any Coulomb system, ξ(r) determines the external potential v(r) up to an additive constant.

ξ(r) also determines the number of electron. The proof based on the cusp condition and the

asymptotic behavour of the generalized density, can be found in Ref. [6].
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III. DIFFERENTIAL EQUATION FOR SPHERICALLY SYMMETRIC GENER-

ALIZED DENSITIES

In spherically symmetric Coulomb systems, it is convenient to introduce the radial gen-

eralized density ξ̃(r) = 4πr2ξ(r). Though the derivation is done in the Kohn–Sham scheme,

the results will have an orbital-free form. The Kohn–Sham equations (1) for spherically

symmetric systems take the form [6]

−
1

2

d2Pi

dr2
+

li(li + 1)

2r2
Pi + vKSPi = ǫiPi , (4)

where Pi(r) = rRi(r) and li are the radial wave functions and the azimuthal quantum

numbers, respectively. Then the radial generalized density takes the form

ξ̃ =
∑

i

αi̺i, (5)

where ̺i(r) = 4πr2ni(r) is the one-particle radial density. Eq. (5) can be rewritten as

ξ̃ =
∑

i

aiwi̺i, (6)

where

ai =
αi

wi
. (7)

In the following the weighting factors wi are selected as

wi = eβεi−γli(li+1) (8)

with any real values β and γ.

Dividing Eq. (4) by Pi, differentiating, then multiplying by P 2
i we obtain

−
1

2
PiP

′′′

i +
1

2
P ′

iP
′′

i −
li(li + 1)

r3
P 2
i + v′KSP

2
i = 0 . (9)

’ denotes the derivation with respect to the radial coordinate r. Multiplying Eq. (4) by P ′

i

and combining it with Eq. (9) we arrive at

PiP
′′′

i + 3P ′

iP
′′

i = 2
li(li + 1)

r2
̺′i ++4v′KS̺

′

i − 4ǫi̺
′

i −
li(li + 1)

r3
̺i + 2v′KS̺i = 0 , (10)

where ̺i = P 2
i .
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The third derivative of ξ̃(r) is

ξ̃′′′ = 2
∑

i

wiai[PiP
′′′

i + 3P ′

iP
′′

i ]. (11)

Taking into account that

ξ̃′ =
∑

i

wiai̺
′

i, (12)

∂ξ̃′

∂β
=
∑

i

wiaiǫi̺
′

i (13)

and

∂ξ̃

∂γ
= −

∑

i

wiaili(li + 1)̺i, (14)

the third derivative of ξ̃(r) can be written as

ξ̃′′′ = 8vKS ξ̃
′ + 4v′KS ξ̃ − 8

∂ξ̃′

∂β
+

4

r2
∂ξ̃′

∂γ
−

4

r3
∂ξ̃

∂γ
. (15)

Note that Eq. (15) is valid for any ξ̃(r), that is, for any values of ai.

IV. EULER EQUATION FOR THE GENERALIZED DENSITIES

Define a generalized Weizsäcker expression

Sw =
1

8

∫

(∇ξ(r))2

ξ(r)
dr . (16)

The functional derivative of Sw with respect to ξ(r) is given by

δSw

δξ
=

1

8

(

∇ξ

ξ

)2

−
1

4

∇2ξ

ξ
. (17)

It can also be written as

δSw

δξ
=

1

8

(

ξ̃′

ξ̃

)2

−
1

4

ξ̃′′

ξ̃
(18)

or

δSw

δξ
= −

1

2

∇2ξ1/2

ξ1/2
. (19)
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Define a generalized potential as

u =
1

2

∇2ξ1/2

ξ1/2
− vKS . (20)

The Kohn-Sham potential can be given as

vKS = −
1

8

(

ξ̃′

ξ̃

)2

+
1

4

ξ̃′′

ξ̃
− u . (21)

Differentiating vKS(r) with respect to r, then substituting vKS(r) and v′KS(r) into equation

Eq. (15) we arrive at

1

2
ξ̃u′ + ξ̃′u = F, (22)

where

F = −
∂ξ̃′

∂β
−

1

2r2
∂ξ̃′

∂γ
+

1

2r3
∂ξ̃

∂γ
. (23)

Eq. (22) can be solved for u(r)

u =
2

ξ̃2

∫ r

∞

ξ̃(r1)F (r1)dr1. (24)

Eq. (20) can be reformulated as an Euler equation

−
1

2

∇2ξ1/2

ξ1/2
+ vKS + u = 0 (25)

or

−
1

2
∇2ξ1/2 + (vKS + u)ξ1/2 = 0. (26)

In the original Euler equation there is a constant on the right-hand side of Eq. (25). We

can formaly add a constant µ to both sides of Eq. (25):

−
1

2

∇2ξ1/2

ξ1/2
+ vKS + û = µ. (27)

However, û(r) = u(r) + µ is defined only up to a constant.

V. DISCUSSION

The derivation in Section III is valid for generalized densities of spherical symmetries.

This is the case of filled shells. The findings of the paper also hold for systems with partially
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filled shells, that is, for degenerate states, if we take the spherical part of the generalized

density. It was shown by Theophilou [18, 19] that the spherical part of the density uniquely

defines the external potential. In our case the spherical part of the generalized density should

be taken: ξ̃(r) =
∫

dθ
∫

dφ sin θξ(r, θ, φ)/(4π). The radial parts Pi of the orbitals fulfill Eq.

(4) and with ̺i = P 2
i the whole derivation is valid.

In the Kohn-Sham scheme of the density functional theory, the non-interacting kinetic

energy can be partitioned as a sum of the full Weizsäcker kinetic energy ([20]) and the

so-called Pauli energy Tp [21–23]:

Ts = Tw + Tp . (28)

The functional derivatives are

δTw

δn
=

1

8

∣

∣

∣

∣

∇n

n

∣

∣

∣

∣

2

−
1

4

∇2n

n
= n−1/2

(

−
1

2
∇2

)

n1/2 (29)

and

vp =
δTp

δn
, (30)

where vp(r) is the Pauli potential. Therefore the Euler equation of the density functional

theory

δTs

δn
+ vKS = µ (31)

can be rewritten as

δTw

δn
+ vp + vKS = µ . (32)

It can also be written as a Schrödinger-like equation for the square root of the density
[

−
1

2
∇2 + vp + vKS

]

n1/2 = µn1/2. (33)

The appearence of the Pauli potential [21–23] in the Euler equation (31) is the consequence

of the Pauli principle. The density is determined by a single equation (31). All information

concerning the shell structure is incorporated into a local potential vp(r).

The generalized radial density is equal to the ground-state radial density if αk = λk or

ak = λk and wk = 1. It corresponds to β = γ = 0. For other values of β and γ, wk is

different from 1. It has been shown in recent papers [12, 13, 15] that this generalized density
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is similar to an ensemble density. This ensemble interpretation makes it possible to give a

solution to the orbital-free problem. Instead of the original radial density depending only

on the radial distance, the ensemble radial density (defined as
∑

i λiwi̺i(r)) depending also

on β and γ is considered. Making use of Eqs. (22) - (24) for the case of the ensemble radial

density, the Euler equation can be solved.

The new Euler equations (26) can be considered the generalizations of the original Euler

equation (33). Eq. (26) contains Eq. (33) as a special case: Eq. (26) is equivalent to

Eq. (33) if the generalized density is the density itself. The generalized Euler equation

(26) contains a generalized Pauli potential û(r) resulting from the Pauli principle. The

generalized density ξ(r) has also shell structure which is guaranted by the generalized Pauli

potential.

The Eqs. (22) - (24) make it possible to obtain an orbital-free solution for the generalized

density ξ(r). It can be done as follows:

(i) Starting from an initial guess of the generalized density, the function F (r) is calculated

by Eq. (23).

(ii) Using Eq. (24) calculate the generalized potential u(r).

(iii) Solve the generalized Euler equation (26) to obtain the generalized density ξ(r). Note

that one needs the Kohn-Sham potential to obtain the solution. The accuracy of the results

will depend on the approximate functional used in solving the Euler equation.

(iv) Repeat steps (i)-(iii) until convergence.

Though it seems to be a simple procedure, novel numerical methods are needed because

of the β and γ dependence in ξ. For the case where ξ(r) is the density itself, first results on

Be atom are already available [24].

As an illustration consider the following generalized densities: the non-interacting energy

density and the angular momentum density. The radial non-interacting energy density ̺ǫ(r)

is defined as

̺ǫ(r) =
∑

i

wiλiǫi̺i(r), (34)

that is, ai = λiǫi. It is equal to the partial derivative of the radial density ̺(r) with respect

to β

̺ǫ =
∂̺

∂β
. (35)
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FIG. 1: The radial density ̺, the angular momentum density ̺l divided by −20 and the angular

momentum density ̺l for β = γ = 0 as a function of the radial distance for the Neon atom. (Atomic

units).

The radial angular momentum density ̺l(r) is defined as

̺l =
∑

i

wiλili(li + 1)̺i, (36)

that is, ai = λili(li +1). It can be expressed with the partial derivative of the radial density

̺(r) with respect to γ

̺l = −
∂̺

∂γ
. (37)

To illustrate that not only the density has a shell structure but the non-interacting energy

density ̺ǫ(r) and the angular momentum density ̺l(r) also reflect the Pauli principle, ̺ǫ(r)

and ̺l(r) are presented in Fig. 1 for β = γ = 0 in case of the Ne atom. To a better visibility

−̺ǫ(r)/20 is plotted instead of ̺ǫ(r). (Atomic units are used throughout in the paper.) For

comparison Fig. 1. shows the radial density, too. As it is clear from the definitions, for the

Ne atom, −̺ǫ(r)/20 has its maximum, where the radial density takes its first maximum,

while ̺l(r) has its maximum, where the radial density takes its second maximum. Note that

the local ionization potential ε̃(r) =
∑

i εini(r)/n(r) introduced by Politzer et al. [25, 26] is

closely related to the function ̺ǫ(r). The local ionization potential is a measure of chemical

reactivity and is linked to the local temperature, and thus to the local kinetic energy [5]. So

there is a very intimite relationship between the function ̺ǫ(r) and the local kinetic energy.

There are descriptors of the Coulomb systems that do not belong to the family studied

in this paper. For example, the Shannon entropy and Fisher information are also capable of
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fully determining every property of a Coulomb system. Finally, in comparison to the Euler

equations studied in this paper, the Euler-like equations for specific information that have

been derived in a recent paper [27] are summarized. For a system with electron density n,

the Shannon information can be written as

S = −

∫

n(r) lnn(r)dr =

∫

n(r)s(r)dr, (38)

where s(r) is the specific Shannon information ( Shannon information per particle). The

Fisher information can also be written as

I =

∫

[∇n(r)]2

n(r)
dr =

∫

n(r)i(r)dr, (39)

where i(r) is the specific Fisher information ( Fisher information per particle). The Euler

equation (33) for the density can also been written as

1

8

∣

∣

∣

∣

∇n

n

∣

∣

∣

∣

2

−
1

4

∇2n

n
+ vp + vKS = µ (40)

The Euler-like equation for the specific Shannon information has the form [27]

1

4
∇2s−

1

8
|∇s|2 + vp + vKS = µ. (41)

For spherically symmetric systems the Euler-like equation for the specific Fisher information

can be written as [27]

−
1

8
i+

1

2

i1/2

r
+

1

4
(i1/2)′ + vp + vKS = µ. (42)

The Euler-like equations (41) and (42) have really some resemblance to the original Euler

equation(40). The differences are arrising from the definitions of the specific Shannon and

Fisher information.

In summary, Coulomb systems have the very special property that not only the ground-

state electron density determines all their properties. There are several other quantities that

are also capable of fully determining every property of a Coulomb system. Though these

descriptors have been known and studied for a while, equations for their calculations have

not been presented yet. To fill this gap, Euler equations for a family of descriptors of the

spherically symmetric Coulomb systems are derived and discussed. These can be considered

the generalizations of the Euler equation of the density functional theory.

[1] P. Hohenberg and W. Kohn, Phys. Rev. 1964, 136, B864.

10



[2] P. W. Ayers, Proc. Natl. Acad. Sci 2000, 97 , 1959.

[3] P. W. Ayers, Chem. Phys. Lett. 2007, 438, 148.
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[6] Á. Nagy, Chem. Phys. Lett. 2008, 460, 3 43.
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Appendix: Miscellaneous Mathematics

It is useful to recall some expressions for ∇ and ∇2 in spherical coordinates. Denoting

the unit vectors by er, eθ and eφ, the ∇ operator acts on an a function f(r) as

∇f(r) = ∇f(r, θ, φ) =
∂f

∂r
er +

1

r

∂f

∂θ
eθ +

1

r sin θ

∂f

∂φ
eφ. (43)

If the function depends only on r

∇f(r) =
df

dr
er. (44)

The Laplacian acts on a function f(r) as

∇2f(r) =
1

r2
∂

∂r

(

r2
∂f

∂r

)

+
1

r2 sin θ

∂

∂θ

(

sin θ
∂f

∂θ

)

+
1

r2(sin θ)2
∂2f

∂φ2
. (45)

If the function depends only on r

∇2f(r) =
1

r2
d

dr

(

r2
df

dr

)

. (46)
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