
ON PRODUCTS OF DISJOINT BLOCKS OF ARITHMETIC

PROGRESSIONS AND RELATED EQUATIONS

SZ. TENGELY AND M. ULAS

Abstract. In this paper we deal with Diophantine equations involving prod-

ucts of consecutive integers, inspired by a question of Erds and Graham.

1. introduction

Consider the polynomial

f(x, k, d) = x(x+ d) · · · (x+ (k − 1)d).

Erdős [5] and independently Rigge [18] proved that f(x, k, 1) is never a perfect
square. A celebrated result of Erdős and Selfridge [7] states that f(x, k, 1) is never
a perfect power if x ≥ 1 and k ≥ 2. The literature of this type of Diophantine
equations is very rich. First we mention some results related to the Diophantine
equation

(1) f(x, k, d) = y2.

Euler proved (see [4] pp. 440 and 635) that a product of four terms in arithmetic
progression is never a square. Obláth [17] obtained a similar statement for k = 5.
Saradha and Shorey [20] showed that (1) has no solutions with k ≥ 4, provided
that d is a power of a prime number. Laishram and Shorey [15] extended this
result to the case where either d ≤ 1010, or d has at most six prime divisors.
Bennett, Bruin, Győry and Hajdu [2] solved (1) with 6 ≤ k ≤ 11. Hirata-Kohno,
Laishram, Shorey and Tijdeman [14] completely solved (1) with 3 ≤ k < 110 and
x, d, k ≥ 2, gcd(x, d) = 1.

Many authors have studied the more general equation

(2) f(x, k, d) = byl,

where b > 0, l ≥ 3 and the greatest prime factor of b does not exceed k. Saradha
[19] proved that (2) has no solution with 1 ≤ d ≤ 6, k ≥ 4, gcd(x, d) = 1. Győry
[10] studied the cases k = 2, 3, he determined all integral solutions. Győry, Hajdu
and Saradha [12] showed that the product of four or five consecutive terms of an
arithmetical progression of integers cannot be a perfect power, provided that the
initial term is coprime to the difference. Hajdu, Tengely and Tijdeman [13] proved
that the product of k coprime integers in arithmetic progression cannot be a cube
when 2 < k < 39. Győry, Hajdu and Pintér [11] proved that for any positive integers
x, d and k with gcd(x, d) = 1 and 3 < k < 35, the product x(x+d) · · · (x+(k−1)d)
cannot be a perfect power.
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Erdős and Graham [6] asked if the Diophantine equation

r∏
i=1

f(xi, ki, 1) = y2

has, for fixed r ≥ 1 and {k1, k2, . . . , kr} with ki ≥ 4 for i = 1, 2, . . . , r, at most
finitely many solutions in positive integers (x1, x2, . . . , xr, y) with xi +ki ≤ xi+1 for
1 ≤ i ≤ r− 1. Ska lba [21] obtained a bound for the smallest solution and estimated
the number of solutions below a given bound. Ulas [23] answered the above question
of Erdős and Graham in the negative when either r = 4, (k1, k2, k3, k4) = (4, 4, 4, 4)
or r ≥ 6 and ki = 4, 1 ≤ i ≤ r. Bauer and Bennett [1] extended this result to the
cases r = 3 and r = 5. Bennett and Van Luijk [3] constructed an infinite family of
r ≥ 5 non-overlapping blocks of five consecutive integers such that their product is
always a perfect square. Luca and Walsh [16] studied the case (r, k1, k2) = (2, 4, 4).

2. Erds-Graham type Diophantine problems

In this section we present some related Diophantine equations involving products
of consecutive integers. Let us recall that Bauer and Bennett [1] proved that for
each positive integer j and a j tuple (k1, . . . , kj) the Diophantine equation

(3) y2 = x(x+ 1)

j∏
i=1

ki−1∏
l=0

(xi + l)

has infinitely many solutions in positive integers x, x1, . . . , xj . However, the proof
they presented produces solutions which grow exponentially. In the light of this
result one can ask whether in some cases we can find solutions in polynomials with
integer coefficients. In this direction we offer the following:

Theorem 2.1. The Diophantine equations

x(x+ 1)y(y + 1)(y + 2) = z2,(4)

x(x+ 1)y(y + 1)(y + 2)(y + 3) = z2(5)

have infinitely many solutions in the ring Z[t]. Moreover, the Diophantine equation

(6) x(x+ 1)y(y + 1)(y + 2)(y + 3)(y + 4) = z2

has at least two solutions in the ring Z[t].

The next results deal with the question of whether the product of disjoint blocks
of consecutive integers can be a product of two consecutive integers. We thus
consider the Diophantine equation

(7)

r∏
i=1

f(xi, ki, d) = y(y + d)

This question concerning the solvability in integers of the equation (7) can be
seen as a variation on Erdős and Graham question. We have the following:

Theorem 2.2. The Diophantine equations

x(x+ 1)y(y + 1)(y + 2) = z(z + 1),(8)

x(x+ 1)y(y + 1)(y + 2)(y + 3) = z(z + 1)(9)
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have infinitely many solutions in the ring Z[t]. Moreover, for k1 = 3, r ≥ 2 and
each r − 1-tuple k2, . . . , kr of positive integers the Diophantine equation (7) has at
least six solutions in the ring Z[x2, . . . , xr].

Theorem 2.3. The Diophantine equation

(10) x(x+ 1)y(y + 1) = z(z + 1)(z + 2)(z + 3)

has infinitely many solutions in positive integers satisfying the condition (z−x)(z−
x+ 2) 6= 0.

In [24] the second author proved that the system of Diophantine equations
x(x+ 1) + y(y + 1) = p(p+ 1)

y(y + 1) + z(z + 1) = q(q + 1)

z(z + 1) + x(x+ 1) = r(r + 1)

has infinitely many solutions in integers satisfying the condition 0 < x < y < z.
One can ask whether similar phenomenon holds for the multiplicative version of
the above system. More precisely: does the system of Diophantine equations

(11)


x(x+ 1)y(y + 1) = p(p+ 1)

y(y + 1)z(z + 1) = q(q + 1)

z(z + 1)x(x+ 1) = r(r + 1)

have infinitely many solutions in integers satisfying the condition 1 < x < y < z?
Motivated by this question we prove the following:

Theorem 2.4. The system (11) has infinitely many solutions in the ring of poly-
nomials Z[t].

Consider the Diophantine equations

(12) (x− b)x(x+ b)(y − b)y(y + b) = z2

and

(13) (x− b)x(x+ b)(y − b)y(y + b) = (z − b)z(z + b)

where b ∈ N is a parameter. If a solution (x, y, z) satisfies b | x and b | y, we call it
trivial. If b = 1, then Sastry [9] noted that (12) has infinitely many positive integer
solutions (x, y, z), where y = 2x − 1 and (x + 1)(2x − 1) is a square. Zhang and
Cai [25] proved that there exist infinitely many nontrivial positive integer solutions
of the Diophantine equation (12) if b ≥ 2 is an even integer. They note that it is
likely that for odd b ≥ 3 integers there are also infinitely many solutions. They
showed that (13) has infinitely many nontrivial positive integer solutions for b = 1,
and the set of rational solutions of it is dense in the set of real solutions for b ≥ 1.
They posed the following question. Are all the nontrivial positive integer solutions
of (13) for b = 1 with x ≤ y given by (F2n−1, F2n+1, F

2
2n), n ≥ 1? We prove that all

”large” solutions have this shape while ”small” solutions belong to certain intervals.
We have the following statements.

Theorem 2.5. Let (x, y, z) be a nontrivial positive integer solution of equation (12)
and k = y − x. Either

x = −
48 b2k − 3 k3 ± 2

(
4 b2 − k2

)√
−48 b2 + 3 k2

6 (16 b2 − k2)
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or

1 ≤ x ≤ max
1≤i≤3

Bi,

where

B1 = 2 max

∣∣∣∣−6 b2k2 +
3

8
k4 ± 3

2
k

∣∣∣∣ ,
B2 = 2 max

∣∣∣∣−6 b2k3 +
3

8
k5 ∓ b2 ± 3

8
k2
∣∣∣∣1/2 ,

B3 = 2 max

∣∣∣∣−b4k2 − 1

4
b2k4 − 1

64
k6 ± 1

4
b2k ± 1

32
k3 − 1

64

∣∣∣∣1/3 .
Corollary 2.6. If 3 ≤ b ≤ 13, b is odd and 2b < k ≤ 300, then all nontrivial
positive integer solutions of equation (12) are as follows

b (x, y, z) b (x, y, z) b (x, y, z)

3 (5, 12, 360) 5 (145, 343, 11083800) 7 (250, 507, 45103500)
3 (7, 18, 1260) 5 (33, 280, 877800) 9 (15, 36, 9720)
3 (4, 21, 504) 5 (16, 275, 277200) 9 (21, 54, 34020)
3 (8, 33, 3960) , (35, 60, 95760) 7 (10, 27, 3060) 9 (12, 63, 13608)
3 (10, 42, 8190) 7 (105, 128, 1552320) 9 (24, 99, 106920) , (105, 180, 2585520)
3 (7, 45, 5040) 7 (8, 42, 2940) , (41, 75, 167280) 9 (11, 90, 17820)
3 (32, 87, 146160) 7 (34, 75, 125460) 9 (30, 126, 221130)
3 (93, 245, 3437280) 7 (9, 56, 7056) 9 (21, 135, 136080)
3 (125, 363, 9662400) 7 (32, 91, 152880) 9 (25, 153, 220320)
3 (77, 333, 4102560) 7 (13, 98, 38220) 9 (10, 171, 30780)
5 (7, 30, 2100) 7 (42, 128, 388080) 9 (96, 261, 3946320)
5 (11, 49, 11088) 7 (8, 105, 11760) 11 (91, 119, 1113840)
5 (6, 49, 2772) 7 (8, 128, 15840) 11 (13, 132, 37752)
5 (11, 55, 13200) 7 (12, 140, 55860) 11 (12, 253, 66792)
5 (6, 55, 3300) , (21, 70, 54600) 7 (18, 169, 154440) 13 (22, 77, 55440)
5 (7, 75, 8400) 7 (32, 189, 458640) 13 (14, 169, 42588)
5 (19, 100, 79800) 7 (11, 169, 61776) 13 (15, 182, 70980)
5 (3605, 3703, 48773919600) 7 (185, 363, 17387040) 13 (99, 288, 4767840)

Table 1

Remark 2.7. We computed all nontrivial solutions with 3 ≤ b ≤ 25, b is odd
and 2b < k ≤ 300. There are 144 such solutions, the list can be downloaded from
http://math.unideb.hu/media/tengely-szabolcs/XblockYblockZ2.txt. We note
that the total running time of our calculations was 11.6 hours on an Intel Core i5
2.6GHz PC.

Theorem 2.8. Let (x, y, z) be a nontrivial positive integer solution of equation (13)
with b = 1. Either

(x, y, z) = (F2n−1, F2n+1, F
2
2n) for some n ≥ 1

or

1 ≤ x ≤ −1

2
k +

1

2

√
3 k2 + 2 k

√
k2 + 4 + 4,

where k = y − x.

Based on the previous theorem we have the following numerical result.

Corollary 2.9. If 4 ≤ k ≤ 5000, then all nontrivial positive integer solutions of
equation (13) with b = 1 have the form (x, y, z) = (F2n−1, F2n+1, F

2
2n) for some n ≥

1.
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3. Proofs of the results

Before we present the proofs let us note that if (Z ′, X ′) is a solution of the
Diophantine equation Z2 − AX2 = B and (Z,X) is s solution of Z2 − AX2 = 1
with X 6= 0, then for each n the pair (Zn, Xn), where

Z0 = Z ′ X0 = X ′, Zn = Z · Zn−1 +AX ·Xn−1, Xn = X · Zn−1 + Z ·Xn−1

is solution of Z2 −AX2 = B.
In order to shorten the notation we write

fk(x) := f(x, k, 1) = x(x+ 1) · . . . · (x+ k − 1).

Proof of Theorem 2.1. We observe that the equation (4) can be rewritten in the
following form

(14) Z2 − f3(y)X2 = −f3(y).

with Z = 2z and 2x + 1 = X. In order to solve this equation we take y = t2 + 1
and we observe that the equation (14) has the solution

Z ′ = tf3(t2 + 1), X ′ = t4 + 3t2 + 1.

Moreover, we note that the Diophantine equation Z2 − f3(t2 + 1)X2 = 1 has the
nontrivial solution

Z = t4 + 3t2 + 1, X = t.

According to remark given at the beginning of the section we see that for each n
the pair of polynomials (Zn, Xn) defined by the recurrence relations

Z0 = tf3(t2 + 1),

X0 = t4 + 3t2 + 1,

Zn = (t4 + 3t2 + 1)Zn−1 + tf3(t2 + 1)Xn−1,

Xn = tZn−1 + (t4 + 3t2 + 1)Xn−1,

is a solution of the equation (14). It is clear from the definition that Zn, Xn ∈ Z[t]
for each n ∈ N. Moreover, by simple induction on n we check that Xn(2t) ≡ 1
(mod 2) and Zn(2t) ≡ 0 (mod 2) in the ring of polynomials Z[t]. As a consequence
we get that for each n the pair of polynomials

xn(t) =
1

2
(Xn(2t)− 1), zn(t) =

1

2
Zn(2t)

is the solution of equation (4) in the ring Z[t].

In order to get the polynomial solutions of the equation (5) we use the same
method as above. We take y = t, where t is a variable and we rewrite our equation
in the form

(15) Z2 − f4(t)X2 = −f4(t)

with Z = 2z and X = 2x+ 1. We found that

Z ′ = f4(t), X ′ = t2 + 3t+ 1

is a solution of the equation (15) and the pair

Z = t2 + 3t+ 1, X = 1
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solves the equation Z2 − f4(t)X2 = 1. We thus see that for each n ∈ N the pair of
polynomials (Zn, Xn) defined by the recurrence relations

Z0 = f4(t),

X0 = t2 + 3t+ 1,

Zn = (t2 + 3t+ 1)Zn−1 + f4(t)Xn−1,

Xn = Zn−1 + (t2 + 3t+ 1)Xn−1,

is a solution of the equation (15) in the ring Z[t]. Similarly as in the previous case
one can easily check that Xn(2t) ≡ 1 (mod 2) and Zn(2t) ≡ 0 (mod 2) in Z[t] and
in consequence, for each n the pair of polynomials with integer coefficients

xn(t) =
1

2
(Xn(2t)− 1), zn(t) =

1

2
Zn(2t)

is the solution of the equation (5).

Finally, in order to show that the equation (6) has polynomial solutions we
performed numerical search and found that triplets of polynomials

x = 2t(t+ 1)(2t− 1)(2t+ 3), y = 4t2 + 4t− 3, z = 2x(y + 2)(2t+ 1)(2t2 + 2t− 1),
x = (2t2 + 2t+ 1)(4t2 + 4t+ 5), y = (2t+ 1)2, z = 4x(y + 2)(2t+ 1)(t2 + t+ 1)

satisfy the equation (6). �

Proof of Theorem 2.2. We proceed in the same way as in the proof of Theorem 2.1.
This time we take y = 4t2 + 1, where t is a variable. In this situation our equation
(8) is equivalent with the following one:

(16) Z2 − f3(4t2 + 1)X2 = 1− f3(4t2 + 1),

where Z = 2z + 1 and X = 2x+ 1. We found that the pair of polynomials

Z ′ = 128t7 + 192t5 − 16t4 + 88t3 − 12t2 + 12t− 1, X ′ = 16t4 + 12t2 − 2t+ 1

satisfies the equation (16). Moreover, the pair

Z = 16t4 + 12t2 + 1, X = 2t

satisfies the corresponding equation Z2 − f3(4t2 + 1)X2 = 1. As a consequence we
see that for each n ∈ N the pair of polynomials (Zn, Xn) defined by the recurrence
relations 

Z0 = 128t7 + 192t5 − 16t4 + 88t3 − 12t2 + 12t− 1,

X0 = 16t4 + 12t2 − 2t+ 1,

Zn = (16t4 + 12t2 + 1)Zn−1 + 2tf3(4t2 + 1)Xn−1,

Xn = 2tZn−1 + (16t4 + 12t2 + 1)Xn−1,

is a solution of the equation (15) in the ring Z[t]. A simple induction shows that
for each n ∈ N we have XnZn ≡ 1 (mod 2) in the ring Z[t] and thus the pair

xn =
1

2
(Xn − 1), zn =

1

2
(Zn − 1)

is the solution of the equation (8) with y = 4t2 + 1.

We consider now the equation (9) with y = t. It is equivalent with the following
one:

(17) Z2 − f4(t)X2 = 1− f4(t),
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where Z = 2z + 1 and X = 2x+ 1. We found that the pair of polynomials

Z ′ = 2t6 + 18t5 + 58t4 + 78t3 + 36t2 − 1, X ′ = 2t4 + 12t3 + 20t2 + 6t− 1

satisfies the equation (17). Moreover, the pair

Z = t2 + 3t+ 1, X = 1

satisfies the corresponding equation Z2 − f4(t)X2 = 1. As a consequence we see
that for each n ∈ N the pair of polynomials (Zn, Xn) defined by the recurrence
relations 

Z0 = 2t6 + 18t5 + 58t4 + 78t3 + 36t2 − 1,

X0 = 2t4 + 12t3 + 20t2 + 6t− 1,

Zn = (t2 + 3t+ 1)Zn−1 + f4(t)Xn−1,

Xn = Zn−1 + (t2 + 3t+ 1)Xn−1,

is a solution of the equation (17) in the ring Z[t]. A simple induction shows that
for each n ∈ N we have X2n(2t + 1)Z2n(2t + 1) ≡ 1 (mod 2) in the ring Z[t] and
thus the pair

xn =
1

2
(X2n(2t+ 1)− 1), zn =

1

2
(Z2n(2t+ 1)− 1)

is the solution of the equation (9) with y = t.

Finally, in order to prove the last statement of our theorem let us put

A =

r∏
i=2

f(xi, ki, d)

and consider the curve

C : Ax(x+ d)(x+ 2d) = y(y + d).

From geometric point of view C can be seen as a genus one curve defined over
rational function field Q(A, d). The Weierstrass equation for C is given by

C ′ : Y 2 = X3 + 12AdX2 + 32A2d2X + 16A2d2,

where the corresponding maps are the following:

ϕ : C 3 (x, y) 7→ (X,Y ) = (4Ax, 4A(2y + d)) ∈ C ′,
ϕ−1 : C ′ 3 (X,Y ) 7→ (x, y) =

(
X
4A ,

Y−4Ad
8A

)
∈ C.

Now using the trivial points with y = 0 lying on C we can define the points

P1 = ϕ((0, 0)) = (0, 4Ad),

P2 = ϕ((−d, 0)) = (−4Ad, 4Ad),

P3 = ϕ((−2d, 0)) = (−8Ad, 4Ad).

One can easily check that for each i, j ∈ {1, 2, 3}, i 6= j the points 2Pi and 2Pi +2Pj

have polynomials with integer coefficients as coordinates and the same is true for
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the points ϕ−1(2Pi) and ϕ−1(2Pi + 2Pj). This leads us to the solutions of the
equation defining C:

x = Ad2 − d, y = −A2d3

x = Ad2 − d, y = A2d3 − d,
x = 4Ad2 + d, y = 8A2d3 + 6Ad2

x = 4Ad2 + d, y = −8A2d3 − 6Ad2 − d
x = 4Ad2 − 3d, y = 8A2d3 − 6Ad2

x = 4Ad2 − 3d, y = −8A2d3 + 6Ad2 − d.

From the definition of A we know that it is essentially a polynomial in Z[x2, . . . , xr]
and hence we get the statement of our theorem.

�

Proof of Theorem 2.3. In order to get the statement of our theorem we consider
the intersection of the surface, say S, defined by the equation (10) and the plane L
defined by the equation

L : x+ y = 4z + 5.

We then observe that S ∩ L = C1 ∪ C2, where

C1 : (2z − 4x+ 1)2 − 3(2x+ 1)2 = −2,

C2 : (2z + 4x+ 5)2 − 5(2x+ 1)2 = −4.

Using standard methods we find that all solutions in positive integers of correspond-
ing Pell type equations U2 − 3V 2 = −2 and U ′2 − 5V ′2 = −4 are

U0 = 1, V0 = 1, Un+1 = 2Un + 3Vn, Vn+1 = Un + 2Vn,
U ′0 = 1, V ′0 = 1, U ′n+1 = 9U ′n + 20V ′n, V ′n+1 = 4U ′n + 9V ′n

respectively. One can easily check, by induction on n, that VnV
′
n ≡ 1 (mod 2) and

UnU
′
n ≡ 1 (mod 2) and in consequence, for each n ∈ N the triplets

xn = 1
2 (Vn − 1), yn = 1

2 (4Un + 7Vn − 1), zn = 1
2 (Un + 2Vn − 3),

xn = 1
2 (V ′n − 1), yn = 1

2 (9V ′n − 4Un − 1), zn = 1
2 (U ′n − 2V ′n − 3)

are non-trivial solutions in non-negative integers of the equation (10). �

Remark 3.1. Without much of work one can find that the related Diophantine
equation

x(x+ 1)y(y + 1) = z(z + 1)(z + 2)

has infinitely many solutions in positive integers satisfying the condition x + 1 <
y, (y − z)(y − z − 1) 6= 0. In fact, the above equation has polynomial solutions of
the following form:

x = t, y = t2 + t− 2, z = (t− 1)(t+ 2),
x = t, y = t2 + t+ 1, z = t(t+ 1),
x = 8t+ 3, y = 8t2 + 7t+ 1, z = 2(8t2 + 7t+ 1),
x = 8t+ 4, y = 8t2 + 9t+ 2, z = 2(8t2 + 9t+ 2).

Proof of Theorem 2.4. In fact we prove a slightly stronger result, i.e. that the
system (11) has infinitely many polynomial solutions with x = t. In order to do
that let us observe that the first equation from the system (11) is equivalent with
the following one:

(18) P 2 − t(t+ 1)Y 2 = 1− t(t+ 1),
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with P = 2p + 1 and Y = 2y + 1. This equation has infinitely many solutions in
polynomials P, Y ∈ Z[t]. Indeed, the equation (18) is satisfied by P = 1, Y = 1 and
the related equation P 2 − t(t+ 1)Y 2 = 1 has the solution

P ′ = 2t+ 1, Y ′ = 2.

As a consequence we see that for each n ∈ N the pair (Pn, Yn) of polynomials
defined by the recurrence relations

P0 = 1

Y0 = 1

Pn = (2t+ 1)Pn−1 + 2t(t+ 1)Yn−1

Yn = 2Pn−1 + (2t+ 1)Yn−1

is a solution of the equation (18). We thus see that the polynomials

y = yn = 1
2 (Yn − 1) p = pn = 1

2 (Pn − 1)
z = zn = yn+1 r = rn = pn+1

satisfy the first and third equation in the system (11). In order to get the result it
is enough to prove that with our choice of x, y, z the second equation in the system
(11) is satisfied too, i.e. y(y+ 1)z(z+ 1) = yn(yn + 1)yn+1(yn+1 + 1) = q(q+ 1) for
some q ∈ Z[t]. This is easy due to the identity

f

(
u− 1

2

)
f

(
2v + (2t+ 1)u− 1

2

)
− f

(
(v − u)((2t2 + 4t+ 1)u+ (2t+ 3)v)

4(t2 + t− 1)

)
= (v2 − t(t+ 1)u2 − 1 + t(t+ 1))H(u, v),

where 4(t2 + t − 1)H is a polynomial in Z[u, v, t] and f(x) = x(x + 1). If we put
now u = Yn, v = Pn then we have the equalities

yn =
1

2
(u− 1), yn+1 =

2v + (2t+ 1)u− 1

2
,

and simple induction reveals that

v − u = Pn − Yn ≡ 0 (mod 2(t2 + t− 1)) and uv = YnPn ≡ 1 (mod 2)

in the ring Z[t]. As a consequence of our reasoning we see that for each n ∈ N the
function

qn =
(Pn − Yn)((2t2 + 4t+ 1)Yn + (2t+ 3)Pn)

4(t2 + t− 1)

is a polynomial in Z[t] and thus we get the result. �

Proof of Theorem 2.5. In the proof we will use the following result of Fujiwara [8].

Lemma 3.2. Put p(z) =
∑n

i=0 aiz
i, an 6= 0, where ai ∈ R for all i = 0, 1, . . . , n.

Then

max{|ζ| : p(ζ) = 0} ≤ 2 max

{∣∣∣∣an−1an

∣∣∣∣ , ∣∣∣∣an−2an

∣∣∣∣1/2 , . . . , ∣∣∣∣ a02an

∣∣∣∣1/n
}
.

Without loss of generality we may assume k > 0. We apply Runge’s method to
determine a bound for the size of integral solutions. Let F (x) = (x− b)x(x+ b)(x+
k − b)(x+ k)(x+ k + b). The polynomial part of the Puiseux expansion of

((x− b)x(x+ b)(x+ k − b)(x+ k)(x+ k + b))
1/2
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is

P (x) = x3 +
3

2
kx2 +

(
−b2 +

3

8
k2
)
x− 1

2
b2k − 1

16
k3.

We have that

256F (x)− (16P (x)− 1)2 = 32x3 +
(
−192 b2k2 + 12 k4 + 48 k

)
x2 +

+
(
−192 b2k3 + 12 k5 − 32 b2 + 12 k2

)
x− 64 b4k2 − 16 b2k4 − k6 − 16 b2k − 2 k3 − 1,

256F (x)− (16P (x) + 1)2 = −32x3 +
(
−192 b2k2 + 12 k4 − 48 k

)
x2 +

+
(
−192 b2k3 + 12 k5 + 32 b2 − 12 k2

)
x− 64 b4k2 − 16 b2k4 − k6 + 16 b2k + 2 k3 − 1.

Fujiwara’s result implies that all roots of these cubic polynomials satisfy |x| ≤
max1≤i≤3Bi, where

B1 = 2 max

∣∣∣∣−6 b2k2 +
3

8
k4 ± 3

2
k

∣∣∣∣ ,
B2 = 2 max

∣∣∣∣−6 b2k3 +
3

8
k5 ∓ b2 ± 3

8
k2
∣∣∣∣1/2 ,

B3 = 2 max

∣∣∣∣−b4k2 − 1

4
b2k4 − 1

64
k6 ± 1

4
b2k ± 1

32
k3 − 1

64

∣∣∣∣1/3 .
Therefore if |x| > max1≤i≤3Bi, then either

(16P (x) + 1)2 < 256F (x) = (16y)2 < (16P (x)− 1)2

or

(16P (x)− 1)2 < 256F (x) = (16y)2 < (16P (x) + 1)2.

Hence y = ±P (x). It remains to solve the equation F (x) = P (x)2. It follows that

x = −
48 b2k − 3 k3 ± 2

(
4 b2 − k2

)√
−48 b2 + 3 k2

6 (16 b2 − k2)
.

�

Proof of Theorem 2.8. We apply Runge’s method to determine an upper bound for
the size of possible positive integer solutions of the equation

F (x) := (x− 1)x(x+ 1)(x+ k − 1)(x+ k)(x+ k + 1) = (z − 1)z(z + 1),

where y = x+ k for some positive integer k. We have that

(x2 + kx− 1)3 < F (x) < (x2 + kx)3

if x is large. In fact, the second inequality is true if k > 1. The roots of the
polynomial F (x)− (x2 + kx− 1)3 are as follows

−1

2
k − 1

2

√
3 k2 + 2 k

√
k2 + 4 + 4 ≈ −1

2
k
(√

5 + 1
)
,

−1

2
k − 1

2

√
3 k2 − 2 k

√
k2 + 4 + 4 ≈ −k,

−1

2
k +

1

2

√
3 k2 − 2 k

√
k2 + 4 + 4 ≈ 1

k3
,

−1

2
k +

1

2

√
3 k2 + 2 k

√
k2 + 4 + 4 ≈ 1

2
k
(√

5− 1
)
.
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Therefore if

x > −1

2
k +

1

2

√
3 k2 + 2 k

√
k2 + 4 + 4,

then the first inequality is valid. Similarly we obtain that

(z − 1)3 < (z − 1)z(z + 1) < (z + 1)3

if z /∈ {−1, 1}. Assume that x > − 1
2 k+ 1

2

√
3 k2 + 2 k

√
k2 + 4 + 4 and z /∈ {−1, 1}.

We obtain that

(x2 + kx− 1)3 − (z + 1)3 < 0 < (x2 + kx)3 − (z − 1)3.

It follows that z = x2 + kx − 1 or z = x2 + kx. If z = x2 + kx, then (k2 + 2kx +
2x2 − 2)(k + x)x = 0 and we get that either x = 0, x = −k or |k| ≤ 2. In the latter
case k = 1 or 2 and we obtain overlapping blocks, a contradiction.

If z = x2 + kx − 1, then (k2 − kx − x2 + 1)(k + x)x = 0 and we have that
x = 0, x = −k or

x = −1

2
k ± 1

2

√
5k2 + 4.

Since x is a positive integer it follows that k = F2n. It yields that either x =
F2n−1 or x = −F2n+1. The latter is negative so the only possible positive solu-
tion is x = F2n−1. Since y = x + k, we obtain that y = F2n+1. Thus (x, y, z) =
(F2n−1, F2n+1, F

2
n) provides solutions. �

Proof of Corollary 2.9. We wrote a Sage [22] code to determine all integral solution
of equation (13) with b = 1 in the interval provided by Theorem 2.8. �

4. Some additional remarks and questions

In this final section we collect some additional remarks and questions which we
were unable to answer during our research.

Question 4.1. Does the equation (8) have infinitely many polynomial solutions
which are not in the sequence constructed in the proof of Theorem 2.2?

Remark 4.2. The above question is motivated by the observation of the existence
of polynomial solutions of (8) which are not contained in the family we constructed.
Indeed, we have the following solutions:

x = t, y = t2 + t− 1, z = (t2 + t− 1)(t2 + t+ 1),
x = t, y = (2t+ 1)2 − 4, z = 2t(t+ 1)(2t− 1)(2t+ 3),
x = t, y = (2t+ 1)2, z = 2t(t+ 1)(4t2 + 4t+ 3),
x = t(8t3 − 6t− 1), y = 4t2 − 3, z = (2t− 1)(2t+ 1)(2t2 − 1)(8t3 − 6t− 1).

The next question is motivated by the result of Sastry mentioned in [9, D17]
which says that the Diophantine equation x(x+ 1)(x+ 2)y(y + 1)(y + 2) = z2 has
infinitely many solutions in integers satisfying y > x+ 2. In this direction one can
ask the following:

Question 4.3. Does the equation

z2 =
x(x+ 1)(x+ 2)

y(y + 1)(y + 2)

have infinitely many solutions in positive integers satisfying x 6= y?
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This seems to be a difficult question. In the range x < 107, y < 105 we found
only 10 solutions given in the Table 2 below:

x y z x y z
2 1 2 1680 5 4756
14 5 4 1680 14 1189
26 12 3 13454 90 1798
48 1 140 57120 168 6214
48 2 70 114242 337 6214

Table 2

The next question which comes to mind is the following:

Question 4.4. Does the Diophantine equation

x(x+ 1)y(y + 1) = z3

have infinitely many solutions in positive integers?

In the range x ≤ y ≤ 105 we found only three solutions:

(x, y, z) = (11, 242, 198), (32, 242, 396), (539, 3024, 13860).

We were trying to prove that relatively simpler Diophantine equation

(19) x(x+ 1)y(y + 1)z(z + 1) = t3

has infinitely many solutions in positive integers satisfying the condition x + 1 <
y < z − 1, but we failed. We find that in the range x + 1 < y < z − 1 < 5 · 103

our equation has 88 solutions. The list of solutions can be downloaded from http:

//math.unideb.hu/media/tengely-szabolcs/xyzt3.pdf. This strongly suggests
that the following is true:

Conjecture 4.5. The equation (19) has infinitely many solutions in positive inte-
gers satisfying the condition x+ 1 < y < z − 1.

Acknowledgement. We express our gratitude to the anonymous referee for a
careful reading of the manuscript and valuable suggestions made.
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[12] K. Győry, L. Hajdu, N. Saradha, On the Diophantine equation n(n+d) · · · (n+(k−1)d) = byl,
Canad. Math. Bull. 47(3) (2004), 373-388.

[13] L. Hajdu, Sz. Tengely, R. Tijdeman, Cubes in products of terms in arithmetic progression,

Publ. Math. Debrecen 74(1-2) (2009), 215-232.
[14] N. Hirata-Kohno, S. and Laishram, T. N. Shorey, R. Tijdeman, An extension of a theorem

of Euler, Acta Arith. 129(1) (2007), 71-102.

[15] S. Laishram, T. N. Shorey, The equation n(n + d) · · · (n + (k − 1)d) = by2 with ω(d) ≤ 6 or
d ≤ 1010 Acta Arith. 129(3) (2007), 249-305.

[16] F. Luca, P. G. Walsh, On a diophantine equation related to a conjecture of Erdős and Graham
, Glas. Mat., III. Ser. 42(2) (2007), 281-289.
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