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Abstract. Diophantine problems involving recurrence sequences have a long history and is an
actively studied topic within number theory. In this paper, we connect to the field by considering
the equation

BmBm+d . . . Bm+(k−1)d = y`

in positive integers m, d, k, y with gcd(m, d) = 1 and k ≥ 2, where ` ≥ 2 is a fixed integer and
B = (Bn)

∞
n=1 is an elliptic divisibility sequence, an important class of non-linear recurrences.

We prove that the above equation admits only finitely many solutions. In fact, we present an
algorithm to find all possible solutions, provided that the set of `-th powers in B is given. (Note
that this set is known to be finite.) We illustrate our method by an example.

1. Introduction

Finding perfect powers among the terms or the products of terms of recurrence sequences is a
classical Diophantine problem. The case of linear recurrences has a vast literature already. We
only mention several important results, without going into details. Pethő [12] and independently
Shorey and Stewart [18] showed that any non-degenerate binary recurrence can admit only finitely
many perfect powers and their sizes are effectively bounded. Further, in case when a general
linear recurrence of order k has a so-called dominant root, Shorey and Stewart [18] proved that
the sequence cannot contain a q-th power if q is large enough. These results, together with other
general theorems concerning the perfect powers among the terms (see e.g. the book of Shorey and
Tijdeman [19] and the references there) suggest that the effective determination of perfect power
terms is possible, at least in principle. However, listing all of them for an individual sequence
is a highly non-trivial problem. For instance, it was just recently that Bugeaud, Mignotte and
Siksek [4], applying modular techniques, came up with a result that gives all perfect powers in
the sequences of Fibonacci and Lucas numbers. Note that these are the most basic examples of
binary recurrences. For perfect powers in products of terms, the situation is roughly the same.
Results for certain infinite families of sequences promise effective determination of all solutions,
but usually the bounds are so high that explicit computation cannot be carried out. Concerning
the general setting, we mention the paper of Luca and Shorey [11], where they gave an effective
upper bound for the size of the solutions to the equation when a product of terms from a
Lucas sequence or from its companion sequence equals a perfect power. In case of individual
recurrences, we refer to Bravo, Das, Guzmán and Laishram [3] who considered the previously
mentioned equations with the Pell and Pell-Lucas sequences, listing all solutions. Their proofs
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also provide a method for Lucas and their companion sequences, in general. For more details on
these topics, we point the reader to the above mentioned papers and the references given there.

It is natural to investigate analogous problems for non-linear recurrences. One of the classical and
most studied family of such recurrences is given by the elliptic divisibility sequences. The notion
of elliptic divisibility sequence was introduced by Ward [23] as a class of non-linear recurrences
satisfying certain arithmetic properties. It is important to note that some special cases of his
definition give back Lucas sequences. We follow Silverman [20], whose definition is a conventional
and widely used one. Take an elliptic curve E over Q and a point P ∈ E(Q) of infinite order.
We can write the multiples of P as

nP =

(
An
B2
n

,
Cn
B3
n

)
with integers An, Bn, Cn such that gcd(AnCn, Bn) = 1 and Bn > 0. (Note that the assumption
Bn > 0 is made only for convenience.) The sequence B = (Bn)∞n=1 is called an elliptic divisibility
sequence. Due to their relation with elliptic curves and various applications, such sequences
have attracted increased attention for the last few decades. For example, Shipsey [17] and Swart
[22] established connections between elliptic divisibility sequences and the elliptic curve discrete
logarithm problem, while Stange [21] applied them and their generalizations, the so-called elliptic
nets, in the computation of the Weil and Tate pairings. As an exotic application, Poonen [14]
used them to prove the undecidability of Hilbert’s tenth problem over certain rings of integers.
In this paper, we are interested in a Diophantine problem concerning perfect powers represented
as products of terms of elliptic divisibility sequences.

Questions about finiteness and effective determination of perfect powers among the terms of
elliptic divisibility sequences themselves have already been considered by several authors and
various results appeared in this direction. Let us take an elliptic divisibility sequence B =

(Bn)∞n=1, an integer ` ≥ 2 and introduce the notation

P`(B) = {i : Bi is an `-th power}.

For later use, also set

N` = |P`(B)| and M` = max
i∈P`(B)

i.

Everest, Reynolds and Stevens [5] showed finiteness for the set P`(B), however, their proof is
ineffective and hence does not give an upper bound for the size of its elements. Further, they
noted that under the assumption of the abc-conjecture one can let the exponent ` vary and prove
finiteness for the set of all perfect powers in the sequence. As in the case of linear recurrences,
listing the elements of P`(B) is a highly non-trivial problem. A paper of Reynolds [15] explains
a procedure to find every perfect power in the sequence when B1 is divisible by 2 or 3. There
are more explicit results for square and cube terms by Bizim and Gezer [1, 2]. (Note that their
definition of elliptic divisibility sequence differs from ours, since it involves a torsion point rather
than a point of infinite order.)

Let B = (Bn)∞n=1 be an elliptic divisibility sequence such that B1 = 1 and ` ≥ 2 is fixed. We
will point out later in the Introduction that B1 = 1 is unnecessary, but makes the presentation
smoother. Consider the diophantine equation

(1) BmBm+d . . . Bm+(k−1)d = y`
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in positive integers m, d, k, y with k ≥ 2 and gcd(m, d) = 1. We prove that (1) admits only
finitely many solutions. Further, we bound m, d, k, y in terms of N` andM`. In fact, our method
provides an algorithm to find all the solutions to equation (1), whenever P`(B) is given explicitly.

Theorem 1. Let ` ≥ 2 be a fixed integer. Then, equation (1) has only finitely many solutions.
Further, there exists an effectively computable constant c1(N`,M`) depending only on N` and M`

such that max(m, d, k, y) < c1(N`,M`). In particular, if P`(B) is given then all solutions to (1)
can be effectively determined.

To prove Theorem 1, we need to combine several tools, including arithmetic properties of elliptic
divisibility sequences, arguments from [3, 11] and new variants of bounds, developed in this paper,
concerning the greatest prime divisor and the number of prime divisors of blocks of consecutive
terms of arithmetic progressions.

Finally, we mention a possible generalization of (1), which could be handled by our arguments.
In their paper, Everest, Reynolds and Stevens [5] remark that it is possible to modify their proof
on the finiteness of P`(B) to deduce finiteness also for S-unit multiples of `-th powers, where S
is any given finite set of primes. Then with slight changes (but more technicality involved) we
could prove the analogue of Theorem 1 for the equation

BmBm+d . . . Bm+(k−1)d = by`,

where b is an arbitrary S-unit, i.e. b is composed of fixed primes (coming from S) with unspecified
non-negative exponents. Observe that it also makes the assumption B1 = 1 unnecessary. Indeed,
dividing both sides by Bk

1 , we get an equation of the form

B′mB
′
m+d . . . B

′
m+(k−1)d = b′y`.

Since the sequence B′ = (B′n)∞n=1 = (Bn/B1)
∞
n=1 preserves the arithmetic properties of B we rely

on (see Remark 2), one can solve the above more general equation, as well (and hence omit the
condition B1 = 1).

2. Auxiliary tools

Recall that throughout the paper we use the assumption B1 = 1. Thus, in particular, we have
P`(B) 6= ∅, N` ≥ 1 and M` ≥ 1.

Arithmetic properties of elliptic divisibility sequences have been well-studied, see for instance
the fundamental paper of Ward [23] and theses of Shipsey [17] and Swart [22] and the references
given there. Let B = (Bn)∞n=1 be an elliptic divisibility sequence, p be a prime and denote by rp
the smallest number such that p | Brp holds. Then rp is called the rank of apparition of p in B.
Further, let νp(z) stand for the exponent of p in z.

Lemma 1. Let B = (Bn)∞n=1 be an elliptic divisibility sequence. Then we have the following
properties.

(i) If p | Bm, then

νp(Bm) = νp

(
m

rp

)
+ νp(Brp).
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(ii) B is a strong divisibility sequence, that is, for every m,n ≥ 1 we have

gcd(Bm, Bn) = Bgcd(m,n).

(iii) For every prime p we have

rp ≤ p+ 1 + 2
√
p.

(iv) For m | n we have

gcd

(
Bm,

Bn
Bm

)∣∣∣∣ nm.

Proof. For (i) see formula (13) in [20]. Part (ii) is exactly Theorem 6.4 in [23] and also follows
from (i), while (ii) is an immediate consequence of the famous Hasse-Weil theorem, see Section
4.7.2 in [17]. Applying (iii) for m | n yields

νp

(
Bn
Bm

)
= νp

(
n

rp

)
+ νp(Brp)− νp

(
m

rp

)
− νp(Brp) = νp

( n
m

)
and hence

min

(
νp(Bm), νp

(
Bn
Bm

))
≤ νp

( n
m

)
which proves part (iv). �

We write P (z) for the greatest prime divisor of the positive integer z, with the convention
P (1) = 1. Further, for 0 ≤ i < k we put

m+ id = aixi

with P (ai) ≤ k and gcd

(
xi,
∏
p≤k

p

)
= 1.

Our next lemma plays a crucial role later on. As we are not aware of such a result appearing in
the literature, we give its simple proof, as well.

Lemma 2. Let 0 ≤ i < k. Then

gcd

Bxi ,∏
j 6=i

Bm+jd

 = 1 and gcd

(
Bxi ,

Bm+id

Bxi

)∣∣∣∣ ai.
Proof. If xi = 1, then the assertion of the lemma follows from B1 = 1. Thus assume that xi 6= 1.
Then for every p | xi we have p > k. Since a prime greater than k can divide at most one of
m,m+d, . . . ,m+(k−1)d, for every j 6= i we get gcd(xi,m+jd) = 1 and from part (i) of Lemma
1 the first formula follows. The second part of the statement is an immediate consequence of
part (iv) of Lemma 1. �

Using the above lemmas, we can already prove Theorem 1 for small values of k.

Lemma 3. Let (m, d, k, y) be a solution to (1) with k ≤ 48. Then we have max(m, d) ≤ c2M`,
where c2 = 1 for k ≤ 16, c2 = 2 for 17 ≤ k ≤ 24 and c2 = 3 for 25 ≤ k ≤ 48.
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Proof. Suppose first that k ≤ 16. Then by a classical result of Pillai [13] there is a term m+ id

with gcd(m + id,m + jd) = 1 for every j 6= i. Observe that here we may assume that i > 0.
Indeed, if i = 0 then by gcd(m,m+ jd) = 1 for all j = 1, . . . , k− 1, using Pillai’s result again for
the terms m+ d, . . . ,m+ (k − 1)d, we can find an index i > 0 with the desired property. Then,
by B1 = 1 and part (i) of Lemma 1 we have gcd(Bm+id, Bm+jd) = 1. Hence m+ id ∈ P`(B) and
max(m, d) ≤ m+ d ≤ m+ id ≤M`, and the lemma follows in this case.

Assume next that 17 ≤ k ≤ 24. Then by Theorem 2.2 of Hajdu and Saradha [6] there is a term
m + id with gcd(m + id,m + jd) ≤ 2 for every j 6= i. Similarly as in the case k ≤ 16, we may
assume that i > 0. If in fact gcd(m + id,m + jd) = 1 for all j 6= i, then just as before, we get
m+ id ∈ P`(B) and max(m, d) ≤M`. So we may assume that gcd(m+ id,m+ jd) = 2 for some
j 6= i; in particular, ai is even. Write ai = 2t, and observe that gcd(t,m+ jd) = 1 for all j 6= i.
Rewrite (1) as

(2) Btxi
Bm+id

Btxi

∏
j 6=i

Bm+jd = y`.

Observe that gcd(txi,m+ jd) = 1 and hence gcd(Btxi , Bm+jd) = 1 for every j 6= i. On the other
hand, by part (iv) of Lemma 1 we have

gcd

(
Btxi ,

Bm+id

Btxi

)∣∣∣∣ 2.
Now if 2 | Btxi , then we have r2 | txi. This by r2 ≤ 5 following from part (ii) of Lemma 1,
implies that r2 | t. However, this would clearly contradict the choice of m+ id. So Btxi is odd,
and hence coprime to Bm+id/Btxi . Thus (2) yields that txi ∈ P`(B) and we get max(m, d) ≤
m+ id = 2txi ≤ 2M`, proving our claim also in this case.

Finally, assume that 25 ≤ k ≤ 48. Then, using again Theorem 2.2 of [6], by a similar argument
as before we obtain that there is an i > 0 such that gcd(m + id,m + jd) ≤ 3 for every j 6= i.
Now if this gcd is in fact ≤ 2 for all j 6= i, then the same argument as for 17 ≤ k ≤ 25 gives
max(m, d) ≤ 2M`. Hence we may assume that there is a j 6= i such that gcd(m+ id,m+jd) = 3.
In particular, 3 | ai, and we can write ai = 3t. Now we can just follow the argument for
17 ≤ k ≤ 24 to conclude that txi ∈ P`(B) and get max(m, d) ≤ 3M`. This finishes the
proof. �

Remark 1. In certain cases, Lemma 3 can be extended for larger values of k. This is based on
quantitites concerning a problem of Pillai [13] and its generalizations, obtained by Hajdu and
Saradha [6] and by Hajdu and Szikszai [7, 8]. To do so, one needs to know which terms Bn
satisfy Bn = 1 and compare the set of the corresponding indices with the tables in [7, 8]. For
example, if we take the sequence generated by the point P = (0, 0) on the curve y2 + y = x3−x,
then we have B1 = B2 = B3 = B4 = B6 = 1. Using Table 2 in [8] we could extend Lemma 3 for
k ≤ 78.

Fix now m, d and k and consider the indices m + id (0 ≤ i < k). Write k′ = k + 1 + 2
√
k and

put
W1 = {i : ∃p | (m+ id) with p > k}, w1 := |W1|;
W2 = {i ∈W1 : ∃p | (m+ id) with k < p ≤ k′}, w2 := |W2|;
W0 = W1 \W2, w0 := |W0|.
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Here p always denotes a prime number. Clearly, we have w0 = w1 − w2. Further,

w2 ≤ πd(k′)− πd(k) ≤ π(k′)− π(k),

where πd(x) stands for the number of primes up to x which does not divide d.

An important connection between the sets W0 and P`(B) is given by the following lemma.

Lemma 4. Let (m, d, k, y) be a solution to (1). Then xi ∈ P`(B) for each i ∈W0. In particular,
we have w0 ≤ N`, and also k < M` if w0 > 0.

Proof. Observe that for i ∈ W0 the numbers xi are distinct, and also that we have q > k′ for
every prime divisor q of xi. Let i ∈ W0 and let p be a prime divisor of ai. Then by part (ii) of
Lemma 1 we have rp ≤ p+ 1 + 2

√
p ≤ k′. Thus rp - xi, whence p - Bxi , and by Lemma 2 we have

gcd(Bxi , Bm+id/Bxi) = 1. This immediately gives xi ∈ P`(B). As the xi are distinct for i ∈W0,
we obtain w0 ≤ N`. Finally, as if i ∈W0 then we have k < xi ≤M`, the lemma follows. �

Remark 2. Concerning properties of elliptic divisibility sequences, Lemma 4 is the last we state.
With little effort one can prove that the sequence B′ = (B′n)∞n=0 = (Bn/B1)

∞
n=0 preserves (i)

even if B1 6= 1. Hence (ii) and (iv) also remain valid. Since (iii) is true for arbitrary curves
(Hasse’s theorem holds), we find that the statements of Lemma 1 are independent of the condition
B1 = 1. This also implies the truth of Lemma 2 and 4 for B′. As it was mentioned already in
the Introduction, this allows one to omit B1 = 1 and consider (1) without restrictions on B.

In what follows, we shall establish lower bounds for w0. For this, we need results concerning the
number of terms W (∆) of ∆ having a prime factor > k, where

∆ = m(m+ d) . . . (m+ (k − 1))d.

Lemma 5. Let k ≥ 31. Then we have

(i) W (∆) ≥ min
(⌊

3
4π(k)

⌋
− 1, π(2k)− π(k)− 1

)
if d = 1 and m > k,

(ii) W (∆) > π(2k)− πd(k)− ρ if d > 1, where ρ = 1 for d = 2 and ρ = 0 otherwise.

Proof. Part (i) immediately follows from Corollary 1 of [10]. Though the assertion was stated
for the number of distinct prime factors of ∆, it is in fact valid for W (∆) as given by the proof.
Part (ii) is a simple consequence of Theorem 1 of [9]. �

We also use estimates for π(x), due to Rosser and Schoenfeld [16].

Lemma 6. For any x ≥ 17 we have

x

log x
< π(x) <

x

log x

(
1 +

3

2 log x

)
.

Proof. The upper bound is part of Theorem 1 of [16], while the lower bound is in Corollary 1 in
the same paper. �

Lemma 5 combined with Lemma 6 easily implies the following assertion.
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Lemma 7. Let k ≥ 2. Further, assume that m > k if d = 1. Then there exists an absolute
constant c > 0 such that

w0 >
ck

log k
.

Proof. Recall that w0 = w1 − w2 and w2 ≤ πd(k + 1 + 2
√
k) − πd(k) ≤ π(k + 1 + 2

√
k) −

π(k). By observing that w1 ≥ W (∆), the assertion follows from Lemmas 5 and 6 by a simple
calculation. �

Under a certain assumption, we can establish a much better lower bound for w0.

Lemma 8. Let k ≥ 48, and assume that m+ d ≥ (k − 1)4. Then we have

w0 ≥
3(k − 1)

4
− πd(k + 1 + 2

√
k).

Proof. We follow standard arguments, going back to Erdős. For similar results, see e.g. [9] and
the references given there.

For each prime p ≤ k and p - d, choose an index ip with 0 ≤ ip < k such that

νp(m+ ipd) ≥ νp(m+ id) (i = 0, 1, . . . , k − 1).

Put

I = {ip : p ≤ k, p - d},

and write J for the complement of I ∪ W0 ∪ {0} in {0, 1, . . . , k − 1}. We clearly have |J | ≥
k − w1 − πd(k)− 1. Let

∆′ =
∏
i∈J

(m+ id),

and observe that all prime divisors of ∆′ is at most k, and also that (∆′, d) = 1. Let p be any
prime with p ≤ k and p - d. Then for any i = 0, 1, . . . , k − 1 we have

νp(m+ id) ≤ νp(m+ id− (m+ ipd)) ≤ νp(i− ip).

This easily gives νp(∆′) ≤ νp((k − 1)!), implying ∆′ | (k − 1)!. Hence we get

(m+ d)k−w1−πd(k)−1 ≤ (k − 1)!.

Now our assumption m+ d ≥ (k − 1)4 yields

w1 ≥
3(k − 1)

4
− πd(k).

Using w0 = w1 − w2 and w2 ≤ πd(k + 1 + 2
√
k)− πd(k), the assertion follows. �

3. Proof of Theorem 1

Proof of Theorem 1. If k ≤ 48, then the statement is given by Lemma 3. So we may assume
that k ≥ 49. We split the proof into two parts.
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Suppose first that d > 1, or d = 1 and m > k. Then by Lemmas 4 and 7 we get that k is
bounded in terms of N` (and also in terms of M`). Now if m+ d ≤ (k − 1)4, then we are done.
Otherwise, Lemma 8 gives that

w0 ≥
3(k − 1)

4
− πd(k + 1 + 2

√
k).

Now apart from at most πd(k) indices i, we have that νp(ai) ≤ νp((k− 1)!). (The exceptions are
those indices ip for which νp(aip) is maximal.) This shows that if

(3)
3(k − 1)

4
− πd(k + 1 + 2

√
k)− πd(k) > 1,

then there are at least two indices i 6= j such that all ai, aj , xi, xj are bounded in terms of N`

and M`. As one of these indices, say i, is positive, by m+ d ≤ m+ id = aixi we obtain that m
and d are also bounded in terms of N` andM`. A simple calculation based upon Lemma 6 shows
that (3) holds whenever k ≥ 62. Then, working with the concrete values of the π(x) function,
we get that (3) holds in fact for k ≥ 42. Hence the theorem follows in this case.

Assume next that d = 1 and m ≤ k. Then there exists an effectively computable constant
c3 = c3(N`) > 0 depending only on N` such that if m + k − 1 > c3(N`), then the interval(
2
3(m+ k − 1),m+ k − 1

)
contains more than N` primes. Observe that by m ≤ k these primes

are among m,m+ 1, . . . ,m+ k− 1, and further that each of these primes divides exactly one of
these numbers. Let q be any of these primes, and write q = m + i. Observe that then by part
(i) of Lemma 1, gcd(Bm+i, Bm+j) = B1 = 1 for any j 6= i with 0 ≤ j < k. Hence m+ i ∈ P`(B).
However, since we have more than N` primes among m, . . . ,m+k−1, this yields a contradiction.
Thus m+ k − 1 ≤ c3(N`), and our claim follows also in this case. �

4. An example

Consider the elliptic curve E : y2 + xy = x3 + x2 − 7x+ 5 and the elliptic divisibility sequence
Bn = (Bn)∞n=1 generated by the point P = (2,−3). Reynolds [15] found the following perfect
powers in Bn:

B1 = B2 = B3 = B4 = B7 = 1, B12 = 27.

Now we illustrate how our method works, assuming that there are no other perfect powers in
Bn. (Note that once the set of all perfect powers is given, our method describes all solutions to
(1).)

Under the above assumption, we have

P`(B) =

{
{1, 2, 3, 4, 7, 12}, if ` = 7;

{1, 2, 3, 4, 7}, otherwise,

and hence

N` =

{
6, if ` = 7;

5, otherwise;
and M` =

{
12, if ` = 7;

7, otherwise.

Following the proof of Lemma 7, by a simple calculation we get that for k ≥ 49 we have w0 ≥ 1.
However, then by Lemma 4 we obtain that k < M` ≤ 12, a contradiction.
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Hence we conclude that k ≤ 48. Then following the proof of Lemma 3, we get m+d ≤ 3M` ≤ 36.
As m, d and k are small, we can easily check all possibilities. (Note that for this we can work
with the indices and not with the terms of Bn themselves.) We find that (under our assumption)
the only solutions (m, d, k, y) of equation (1) for arbitrary ` are given by

(1, 1, 2, 1), (1, 1, 3, 1), (1, 1, 4, 1), (1, 2, 2, 1), (1, 3, 2, 1), (1, 3, 3, 1), (1, 6, 2, 1), (2, 1, 2, 1),

(2, 1, 3, 1), (2, 5, 2, 1), (3, 1, 2, 1), (3, 4, 2, 1), (4, 3, 2, 1)}
and further, for ` = 7, we also have the solutions

(1, 11, 2, 2), (2, 5, 3, 2), (7, 5, 2, 2).
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