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Abstract. Answering a question of Balasubramanian, we find all
primes p for which there exist p consecutive primes forming a com-
plete residue system (mod p). On the other hand, under the prime
ℓ-tuple conjecture we show that for any k ≥ 2, there exist infin-
itely many sets of φ(k) consecutive primes forming reduced residue
classes (mod k). The problems considered are generalizations of
those of Recaman and Pomerance, respectively.

1. Introduction

Let 2 = p1 < p2 < · · · denote the sequence of all primes. Let k and
l be positive integers with gcd(k, l) = 1. Denote by p(k, l) the least
prime p ≡ l (mod k). We write P (k) for the maximal value of p(k, l)
for all l.

A prime p is called a Recaman prime, if the first p primes form a
complete residue system (mod p). Pomerance [11] showed that there
are only finitely many Recaman primes. Recently, Hajdu and Saradha
[4] proved that the only Recaman prime is p = 2. An integer k ≥ 2 is
called a P -integer, if the first φ(k) primes coprime to k form a reduced
residue system (mod k). Pomerance [11] proved that there exist only
finitely many P -integers. Under certain conditions, Hajdu and Saradha
[4] and [13] determined all P -integers. Hajdu, Saradha and Tijdeman
[5] proved that if k is a P integer, then k ≤ 103500, and that if the
Riemann Hypothesis is true, then the only P -integers are given by
k = 2, 4, 6, 12, 18, 30. Finally, this was unconditionally verified by Yang
and Togbé [14].

After the talk of the first author in the DMANT 2015 meeting, Bal-
asubramanian proposed the variaton of the above problems where the
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first k (resp. φ(k)) primes are replaced by any block of k (resp. φ(k))
consecutive primes.

To be more precise, we introduce some new definitions. An integer
k is called a B-prime if there exist k consecutive primes forming a
complete residue system (mod k). Further, an integer k is called a B-
integer, if there exist φ(k) consecutive primes forming a reduced residue
system (mod k).

Note that the Recaman prime 2 is a B-prime also. Further the
P -integers 2, 4, 6, 12, 18, 30 are also B-integers. When a prime k is a
B-prime, we have

(1) P (k) ≤ pπ(k)+k−1.

From well known estimates in Prime Number Theory, it is clear that
pπ(k)+k−1 ≪ k log k. In fact, the implicit constant lies between 1 and
1.04 for k ≥ 1093. This leads us to make a more general definition as
follows. We say that a prime k is a shifted Pα-prime if there exist
k primes not exceeding αk log k forming a complete residue system.
Finally, an integer k is called a shifted Pα-integer if there exist φ(k)
primes not exceeding αk log k forming a reduced residue system (mod
k).

In this paper, we show that the only B-primes are 2,3,7 and there
is no shifted Pα-prime with α = 1.1954. Pomerance [11, Theorem 2]
showed that if k is any positive integer, then

P (k) ≥ (eγ + o(1))φ(k) log k

where φ denotes the Euler totient function, and γ = 0.577 . . . is Euler’s
constant. In particular when k is a prime, this gives

P (k) ≥ (eγ + o(1))k log k.

Here the implied constant is not explicit and may be very small. By
Theorem 2.2 below, we see that

P (k) > 1.1954k log k

for all primes k. It appears that one needs to take k > 1010
10
, in order

to get
P (k) ≥ eγk log k

by the method in this paper.
Finding upper bound for P (k) is a well known problem. Linnik [8]

showed that
P (k) ≤ ckL

where c and L are effectively computable constants. There is a huge
literature on finding the best constant L.
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In 1992, Heath-Brown [6] had shown that L can be taken as 5.5.
This has been improved to 5 by Xylouris [16] (see Theorem 2.1, p. 12)
in 2011. A conjecture of Chowla [1] says that L is 1 + ϵ for arbitrary
ϵ > 0. Observe that as α increases, the set of shifted Pα-primes (or
integers) becomes larger and larger. Under Chowla’s conjecture, we
see that α (as a function of k) must be of the order kϵ so that all
primes (or integers) k may become shifted Pα-primes (or integers). On
the other hand, if k is a B-integer, then we need to find φ(k) consecutive
primes coprime to k. Assuming the prime ℓ-tuple conjecture of Hardy
and Littlewood, we deduce that every integer k is a B-integer, and
in fact one can choose appropriate blocks of φ(k) consecutive primes
in infinitely many ways. We note that for k = 2, 3, 4, 6 this assertion
easily follows unconditionally.

2. Results

Theorem 2.1. The only B-primes are given by 2, 3, 7.

Theorem 2.2. There is no shifted Pα-prime with α = 1.1954.

The above two results are contained in the following theorem.

Theorem 2.3. Let k be a prime with the property that there exist k
primes not exceeding max(pπ(k)+k−1, 1.1954k log k) which form a com-
plete residue system. Then k ∈ {2, 3, 7, 11}.

To get the assertions of Theorems 2.1 and 2.2 we first deduce that

(2) max(pπ(k)+k−1, 1.1954k log k) =

{
pπ(k)+k−1, if k < 6691068

1.1954k log k, otherwise.

Further we find that 2, 3, 7 are B-primes since

{2, 3}, {3, 5, 7}, {7, 11, 13, 17, 19, 23, 29}

form complete residue systems, respectively. Also 2, 3, 7 are not shifted
Pα-primes with α = 1.1954 since π(1.1954k log(k)) < k in these cases.
Further, 11 is not a B-prime, since no set of 11 consecutive primes
forms a complete residue system (mod 11).

Using the argument in the proof of [4, Theorem 2], one may obtain
the following result which we state without proof.

Let α be a fixed positive number. Suppose k is a shifted Pα-integer
with the least prime factor of k exceeding log(k). Then there exists
an effectively computable number c(α) depending only on α such that
k < c(α).
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The above result leads us to speculate if there are only finitely many
B-integers. We show below that the contrary is true under the prime
ℓ-tuple conjecture of Hardy and Littlewood. In fact, assuming the
conjecture we deduce that every integer k is a B-integer, and one can
choose appropriate blocks of φ(k) consecutive primes in infinitely many
ways. We note that for k = 2, 3, 4, 6 this assertion easily follows un-
conditionally.

Before formulating our next theorem, we recall the prime ℓ-tuple
conjecture. A finite set A of integers is called admissible, if for any
prime p, no subset of A forms a complete residue system (mod p).

Conjecture 2.1 (The prime ℓ-tuple conjecture).

Let {a1, . . . , aℓ} be an admissible set of integers. Then there exist
infinitely many positive integers n such that n + a1, . . . , n + aℓ are all
primes.

Remark. By a recent, deep result of Maynard [9] we know that for each
ℓ, the above conjecture holds for a positive proportion of admissible ℓ-
tuples.

Theorem 2.4. Suppose that the prime ℓ-tuple conjecture is true. Then
for every integer k ≥ 2 one can find infinitely many sets of φ(k) con-
secutive primes forming a reduced residue system (mod k).

Remark. In fact, in the proof of Theorem 2.4 we need the numbers n+
a1, . . . , n+aℓ occurring in the prime ℓ-tuple conjecture to be consecutive
primes. In case of ℓ = 2, by deep and celebrated results of Zhang [17]
and Pintz [10] we know this to be true for infinitely many admissible
sets {a1, a2}, even with a1 = 0. In case of general ℓ, such a variant is
known to follow from the following quantitative version of the prime
ℓ-tuple conjecture, also made by Hardy and Littlewood. Let A0 =
{a1, . . . , aℓ} be an admissible set with a1 < a2 < · · · < aℓ. Put

I0 = {n ∈ N : a1 ≤ n ≤ aℓ} and A′
0 = I0 \ A0.

For every prime p let vp be the number of residue classes (mod p) met
by A0. Clearly, for all p we have 1 ≤ vp ≤ p− 1. Put

δA0 :=
∏

p prime

1− vp
p(

1− 1
p

)ℓ .
Note that here the product on the right hand side is convergent for any
admissible set. Further if A0 ⊆ B, then δA0 ≥ δB. Let

S = {n ∈ N : n+ a1, · · · , n+ aℓ are all primes}
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and
S(X) = {n ∈ S : n ≤ X}.

Then the quantitative version of the prime ℓ-tuple conjecture of Hardy
and Littlewood asserts that

|S(X)| = (δA0 + o(1))
X

(logX)ℓ
.

Now we explain how this implies that there are infinitely many integers
n for which n+ a1, · · · , n+ aℓ are all consecutive primes. Let

S1 = {n ∈ S : n+ a1, · · · , n+ aℓ are not consecutive primes}.
It is enough to show that

|S1(X)| = o

(
X

(logX)ℓ

)
.

If n ∈ S1, then there exists a ∈ A′
0 such that n + a is prime. Also

A
(a)
0 := A0 ∪ {a} is an admissible set. For a ∈ A′

0, let

S
(a)
1 = {n ∈ S1 : n+ a1, · · · , n+ aℓ, n+ a are all primes}.

Then
S1 =

∪
a∈A′

0

S
(a)
1 .

Thus

|S1(X)| ≤
∑
a∈A′

0

(δ
A

(a)
0

+ o(1))
X

(logX)ℓ+1

≤ (δA0 + o(1))(aℓ − a1)
X

(logX)ℓ+1
= o

(
X

(logX)ℓ

)
for X → ∞ as desired. However, in the proof of Theorem 2.4 we avoid
the use of the quantitative version of the conjecture. In fact, we apply
an elementary argument showing that the prime ℓ-tuple conjecture it-
self implies the existence of infinitely many n such that the numbers
n+ a1, . . . , n+ aℓ are consecutive primes.

As a simple corollary of Theorem 2.4, we obtain

Corollary 2.1. Suppose that the prime ℓ-tuple conjecture is true. Then
every integer k ≥ 2 is a B-integer.

Remark. It is obvious that 2 is a B-integer. Since for k = 3, 4, 6
there are only two coprime residue classes, and both classes contain
infinitely many primes, there must be infinitely many “switches” be-
tween these classes in pairs of consecutive primes. Hence k = 3, 4, 6
are (unconditionally) also B-integers.
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In view of the above remarks and theorems, we propose the following

Conjecture 2.2. Every integer k ≥ 2 is a B-integer.

3. Lemmas

The proof of Theorem 2.3 follows similar line of arguments as the
proof of [4, Theorem 2]. We record here three lemmas necessary for
the proof. The first lemma is from Rosser and Schoenfeld [12].

Lemma 3.1. Let pn denote the n-th prime. Then
(i) pn > n(log(n) + log2(n)− 3

2
) for n > 1;

(ii) pn < n(log(n) + log2(n)) for n ≥ 6.

Here and henceforth, log2(n) denotes log log(n) for any real number
n > 1. For n ≥ 1 the Jacobsthal function g(n) is defined as the smallest
integer such that any sequence of g(n) consecutive integers contains an
element which is coprime to n. This function has been studied by many
authors, and good lower as well as upper bounds are known (see e.g.
[7], [15], [11], [3] and [2] for some results and history). Further, the
exact values of g(n) when n is the product of the first h < 50 primes
is given in [3, Table 1].

It was observed by Jacobsthal that for integers k with ℓ(k) > log(k)
we have g(k) = ω(k) + 1 where ℓ(k) is the least prime divisor of k,
and ω(k) is the number of distinct prime divisors of k. In particular
this is true if k is a prime i.e., g(k) = 2 in this case. Further, g(k) ≥
ω(k) + 1 is obviously valid for any k. We shall use these assertions
throughout the paper without any further reference. The following
lemma is Proposition 1.1 of Hagedorn [3].

Lemma 3.2. We have

g

(
h∏

i=1

pi

)
≥ 2ph−1 for h > 2.

The next result due to Pomerance [11] is an important ingredient in
this problem.

Lemma 3.3. Let k and m be integers with 0 < m ≤ k
1+g(k)

and

gcd(m, k) = 1. Then P (k) > (g(m)− 1)k.

4. Proofs

Proof of Theorem 2.3. We restrict to k prime so that g(k) = 2. First
take k ≥ 1093. By (2),

max(pπ(k)+k−1, 1.1954k log k) = 1.1954k log k.
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Put

h =

⌊
0.9688 log(k)

log2(k)

⌋
+ 1.

Then

h <
0.9946 log(k)

log2(k)

giving

log(h) < log2(k)− log3(k) and log2(h) < log3(k).

This by Lemma 3.1 (ii) implies

ph < 0.9946 log(k) < log(k).

Let m be the product of the first h primes coprime to k. Since ph <
log(k) < k, we see that m is indeed the product of all the first h primes.
Hence

m < phh < e0.9946 log(k) <
k

3
.

Thus by Lemmas 3.2 and 3.3, we have

P (k) > (g(m)− 1)k ≥ (2ph−1 − 1)k.

Now

h− 1 ≥ 0.9688
log(k)

log2(k)
− 1 > 0.943

log(k)

log2(k)
.

Hence by Lemma 3.1 (i)

ph−1 ≥ X

(
log(X) + log2(X)− 3

2

)
where X = 0.943 log(k)

log2(k)
. Let

F (k) = 2X

(
log(X) + log2(X)− 3

2
− 1

2X

)
k − 1.1954k log(k).

Then F (k) = k log(k)f(k) with

f(k) :=
1.886

log2(k)

(
log(X) + log2(X)− 3

2
− 1

2X

)
− 1.1954.

Observe that f(k) is an increasing function of k and hence f(k) ≥
f(1093), since k ≥ 1093. As f(1093) ≥ 0.0005, we find that F (k) > 0
which implies that P (k) > 1.1954k log k. Hence k is not a Pα-prime
with α = 1.1954. This proves the theorem for k ≥ 1093.

Next consider 6691068 ≤ k < 1093. By (2),

max(pπ(k)+k−1, 1.1954k log k) = 1.1954k log(k).
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Suppose k ∈ [1043, 1093). The largest integer h such that ph < log(1043)
is 25. Taking

m =
25∏
j=1

pj,

we find that gcd(m, k) = 1 and

m <
1043

3
≤ k

g(k) + 1
.

From [3, Table 1], g(m) = 258. Hence by Lemma 3.3,

P (k) > 257k > 1.1954× 93 log(10)k > 1.1954× k log(k).

This proves the proposition for k ∈ [1043, 1093). Let k ∈ [10a, 10b). In
Table 1, we give the values of (a, b), h, the exact value of g(m) from [3,

Table 1] where m =
∏h

i=1 pi so that

ph < log(10a), P (k) > 1.1954k log(k).

Then the assertion of the theorem follows for k in this interval. Thus

h 7 8 9 11 14 18
g(m) 26 34 40 58 90 132
(a, b) (8,9) (9,10) (10,14) (14,19) (19,27) (27,43)

Table 1. Values of h, g(m) and (a, b).

we conclude that k < 108. Further, we take k ∈ [6691068, 108) with
h = 7, g(m) = 26 to get the assertion of the theorem.

Next, we take 90107 ≤ k < 6691068. In this case, we find that
pπ(k)+k−1 < 1.25k log(k). Then we take h = 6, g(m) = 22 to exclude
these values of k by Lemma 3.3.

Thus k < 90107. For these values of k we give a computational
argument. Let k be fixed. Suppose Sk denotes the set of residues mod
k of all the primes upto pπ(k)+k−1. If

(3) |Sk| = k

then, k may be a B-prime. We check that (3) is valid only for k =
2, 3, 7, 11. Further 11 is not a B-prime as there is no set of 11 consecu-
tive primes among the first 15 primes which yields a complete residue
system. On the other hand, 2,3,7 give consecutive primes forming a
complete residue system as mentioned in Section 2. This proves the
theorem. �
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Proof of Theorem 2.4. Let k ≥ 2 be an arbitrary integer. We shall
show that under the prime ℓ-tuple conjecture, k is a B-integer i.e.,
there exists φ(k) consecutive primes forming a reduced residue system
mod k. Let A = {a1, . . . , aφ(k)} be the set of all positive integers
coprime to k with

1 = a1 < · · · < aφ(k) < k.

The set A may not be an admissible set. We construct an admissible
set out of A as follows. Put

P =
∏

p−prime

p-k,p≤φ(k)

p.

Let B = {b1, . . . , bφ(k)} be a set of positive integers such that

(4) b1 = a1 = 1; bi ≡ ai (mod k) and bi ≡ 1 (mod P ) (for i ≥ 2).

Firstly, note that such bi’s exist by the Chinese Remainder Theorem.
Next we show that B is an admissible set. Since |B| = φ(k) and
B contains integers coprime to k, it is enough to restrict to primes
p ≤ φ(k) and p - k. Then by (4), every bi ≡ 1(mod p), hence B cannot
have a complete residue system (mod p). By applying the prime ℓ-tuple
conjecture to B, we find infinitely many n > k for which

n+ b1, · · · , n+ bφ(k)

are all primes and hence coprime to k. But these primes may not be
consecutive primes. To ensure this, we proceed as follows. Let

M = max
b∈B

b

and I the set of positive integers n with n ≤ M. Further let

C = {c ∈ I \B : B ∪ {c} is admissible}.
Let t = |C| and write C ′ = I \ (B ∪ C). Thus for c′ ∈ C ′, B ∪ {c′} is
not an admissible set. Hence there exists a prime p ≤ M such that
B ∪ {c′} has a complete residue system (mod p).

Note that M > k by (4). We construct an admissible set S ⊇ B,
such that S ∪ {c} is not admissible for any c ∈ C. If t = 0 then take
S = B. If t ≥ 1, take primes q1 < · · · < qt exceeding M and put

Q =
∏

p<q1+···+qt

p.

Let us enumerate the elements of C as c1, . . . , ct. Corresponding to each

ci, we construct a set D(i) as follows. Let d
(i)
1 satisfy

d
(i)
1 > M, d

(i)
1 ≡ 1

(
mod

Q

qi

)
and d

(i)
1 (mod qi) ̸∈ B ∪ {ci}.
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Since B ∪ {ci} is an admissible set, it is possible to find d
(i)
1 as above.

Now consider
B ∪ {ci} ∪ {d(i)1 }.

If this has a complete residue system (mod qi), then put D(i) = {d(i)1 }.
If not, we choose

d
(i)
2 > M, d

(i)
2 ≡ 1

(
mod

Q

qi

)
and d

(i)
2 (mod qi) ̸∈ B∪{ci}∪{d(i)1 (mod qi)}.

If B ∪ {ci} ∪ {d(i)1 , d
(i)
2 } has a complete residue system (modqi), take

D(i) = {d(i)1 , d
(i)
2 }. Otherwise, we proceed to find d

(i)
3 and so on. This

process has at most qi− 1−φ(k) steps. Thus D(i) has at most qi− 1−
φ(k) elements with the property that

B ∪ {ci} ∪D(i)

has a complete residue system (mod qi) and every element of D(i) ex-
ceeds M. Take

S = B ∪D(1) ∪ · · · ∪D(t).

We show that S is an admissible set. Firstly,

|S| ≤ φ(k) + q1 + · · ·+ qt − t(φ(k) + 1) < q1 + · · ·+ qt

since t ≥ 1. Hence we need to consider only primes p < q1 + · · · + qt.
Let p be such a prime with p ̸= qi (1 ≤ i ≤ t). Then by the definition
of Q and the construction of the sets D(i), all the elements of D(i) are
≡ 1(mod p) and as 1 ∈ B we get

S ≡ B (mod p).

(By the above notation we mean {s (mod p) : s ∈ S} = {b (mod p) :
b ∈ B}). Since B is an admissible set, we see that S cannot have
a complete residue system (mod p). Let now p = qi for some i with
1 ≤ i ≤ t. Then

S ≡ B ∪D(i)(mod p).

Since ci ̸∈ B ∪ D(i), by qi > M and the construction of D(i), the set
S does not contain a complete residue system (mod p). Thus S is an
admissible set.

Note that for 1 ≤ i ≤ t, S∪{ci} is not an admissible set since it con-
tains a complete residue system (mod qi). Also for any c′ ∈ C ′, S∪{c′}
is not an admissible set since B ∪ {c′} is not admissible, by definition
and in this case there exists a complete residue system (mod p) for
some p ≤ M. Summarizing, S is an admissible set, but S ∪ {c} for
c ∈ I \ B is not an admissible set. Thus for any c ∈ I \ B there exists
a prime pc such that S ∪ {c} contains a complete residue system (mod
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pc). As seen earlier, pc can be taken as not exceeding M or equal to
qi for some i with 1 ≤ i ≤ t. Hence pc ≤ qt. Now we apply the prime
ℓ-tuple conjecture to the set S to find infinitely many n > qt such that

(5) n+ s is prime for s ∈ S.

For any c ∈ I \ B, there exists a complete residue system (mod pc) in
S∪{c} and hence in {n+s, s ∈ S∪{c}} for any n, and in particular for
those n satisfying (5). Thus pc|(n+s) for some s ∈ S∪{c}. Since n+s
for s ∈ S are all primes > qt, this implies that s = c. That is, pc | n+c,
whence n + c is not a prime for any c ∈ I \ B. This means that n + b
with b ∈ B are φ(k) consecutive primes, all coprime to k. Since by
the construction of B these numbers belong to different residue classes
(mod k), we get that k is a B-integer. In fact there are infinitely many
sets of φ(k) consecutive primes, coprime to k, belonging to different
residue classes (mod k). �
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