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ON SIMULTANEOUS PELL EQUATIONS AND RELATED

THUE EQUATIONS

BO HE, ÁKOS PINTÉR AND ALAIN TOGBÉ

Abstract. In this paper, we prove that the simultaneous Pell equations

x
2
− (m2

− 1)y2 = 1, z2 − (n2
− 1)y2 = 1

have only positive integer solution (x, y, z) = (m, 1, n) if m < n ≤ m+mε, 0 <

ε < 1 and m ≥ 202304
1

1−ε . Using a computational reduction method we can

omit the lower bound for m when m < n ≤ m
1

5 . Moreover, we apply our main
result to a family of Thue equations in two parameters studied by Jadrijević
[?]-[?].

1. Introduction

Let a and b be distinct non-square positive integers. There is a long history of
the simultaneous Pell equations

(1) x2 − ay2 = 1, z2 − by2 = 1.

This system of equations plays a crucial role in the classical theory of the figurate
numbers and the modern approach of congruent number problem as well, see [?]
and [?], respectively. By the work of Thue [?] and Siegel [?], the number of posi-
tive integer solutions (x, y, z) of (??) is finite. The first absolute upper bound for
the number of solutions to (??) was given by Schlickewei [?], later Masser and
Rickert [?] improved his exponential bound to 16. In 1998, combining with simul-
taneous diophantine approximation and the theory of linear forms in logarithms,
Bennett [?] showed that there are at most 3 positive integer solutions (x, y, z) to
the system of equations (??). Yuan [?] and [?] proved that for sufficiently large
a and b, the number of solution is at most two. The best known bound is due
to Bennett, Cipu, Mignotte and Okazaki [?]. In fact, they proved that Yuan’s
result is true for every value of a and b.

As it was pointed out by Bennett (see [?]), if the system of equations (??) has
positive integer solutions, then it is equivalent to

(2) x2 − (m2 − 1)y2 = 1, z2 − (n2 − 1)y2 = 1, 1 < m < n.
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Bennett [?] proved that there are exactly two positive integer solutions of (??)
when

(3) n =

(

m+
√
m2 − 1

)2l
−
(

m−
√
m2 − 1

)2l

4
√
m2 − 1

,

with l ≥ 2 and m ≥ 2 · 107
√
l log2 l. Yuan [?] made the following conjecture.

Conjecture 1. Apart from when n has the form in (??), there is at most one

positive integer solution (x, y, z) to (??).

Le [?] showed that the conjecture is true if m and n are sufficiently large and
have sufficiently large common divisor. In this paper, we will verify the conjecture
when the difference of n and m is small. More precisely, we prove the following
result.

Theorem 1. If m < n ≤ m + mε, for some real number ε ∈ (0, 1), then the

simultaneous Pell equations (??) have only the positive integer solution (x, y, z) =

(m, 1, n) for m > 202304
1

1−ε .

When the constant ε is small, we have

Theorem 2. If m < n ≤ m + m
1
5 , then the simultaneous Pell equations (??)

possess the unique positive integer solution (x, y, z) = (m, 1, n).

For the organization of this paper, we will use the gap principle to prove some
lemmas in Section ??. By the means of a linear form in two logarithms, we prove
Theorem ?? in Section ??. We use the reduction method of Baker-Davenport [?]
is in Section ?? to solve the system of Pell equations (??) for the small values
of m,n, therefore we complete the proof of Theorem ??. In the last section, we
apply our main result to a family of Thue equations in two parameters studied
by Jadrijević [?]-[?].

2. Gap principles

We will rewrite the equations into an equality of two Lucas numbers. We have
y = Uj = Wk, i.e.

(4) y = Uj =
αj − α−j

2
√
a

=
βk − β−k

2
√
b

= Wk,

where j, k are odd positive integers, α = m+
√
m2 − 1, β = n+

√
n2 − 1 are the

fundamental solutions to the equations x2−ay2 = 1 and z2−by2 = 1 respectively,
with a = m2 − 1 and b = n2 − 1.

In this section, we will consider the following linear form in logarithms

(5) Λ = j logα− k log β + log

(
√

b

a

)

.

Lemma 1. If j, k > 1, then j > k.
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Proof. Since Uj =
αj−α−j

2
√
a

, by mathematical induction one can show that αj−1 <

Uj < (2m)j−1, for j > 1. Similarly, we have βk−1 < Wk < (2n)k−1, for k > 1.

From Uj = Wk, we get βk−1 < (2m)j−1. Since n ≥ m + 1, we have β =

n+
√
n2 − 1 ≥ 2n− 1 ≥ 2m+ 1. This implies (2m+ 1)k−1 < (2m)j−1 and then

k < j. �

Lemma 2. If equation (??) holds with k ≥ 1, then 0 < Λ < α2

α2−1
· α−2j .

Proof. One can verify that αj < βk. Indeed, if αj > βk, then αj−α−j > βk−β−k.

Since m < n, then we have αj−α−j√
m2−1

> βk−β−k
√
n2−1

. This contradicts (??). Therefore,

we get

0 < Λ = log

(

1− β−2k

1− α−2j

)

< − log(1− α−2j) <
α2

α2 − 1
· α−2j .

�

Lemma 3. If k > 1, then (j − 1) logα < (k − 1) log β.

Proof. The condition k > 1 and Lemma ?? give j > 1. By Lemma ??, we have
Λ < 1

(α2−1)α2 . Since

α
√
b− β

√
a = (m+

√
a)
√
b− (n+

√
b)
√
a = m

√
b− n

√
a

= m2(n2−1)−n2(m2−1)

m
√
b+n

√
a

= n2−m2

m
√
b+n

√
a
≥ (m+1)2−m2

m
√
b+n

√
a

> 2m+1
2m

√
b
> 1√

b
,

we obtain

(j − 1) logα− (k − 1) log β = Λ+ log
(

β
√
a

α
√
b

)

< Λ + β
√
a−α

√
b

α
√
b

< Λ− 1
αb

< 1
(α2−1)α2 − 1

αb = b−(α2−1)α
(α2−1)α2b

< 0.

The last inequality is easy to get as α = m +
√
m2 − 1 > 2

√
m2 − 1 and n <

2m. �

Let ∆ = j − k. Then we have.

Lemma 4. If k > 1, m ≥ 8, then k − 1 ≥ 0.99∆m1−ε logα.

Proof. By Lemma ??, we have j−1
k−1 < log β

logα . This implies

∆

k − 1
<

log β

logα
− 1 =

log(β/α)

logα
=

log(1 + (β − α)/α)

logα
<

β − α

α logα

=
n+

√
b−m−√

a

α logα
=

n−m+ b−a√
b+

√
a

α logα
=

(n−m)
(

1 + n+m√
b+

√
a

)

(m+
√
a) logα

<
mε
(

1 + m√
m2−1

)

1.99m logα
.

Therefore, we have

k − 1 > ∆
1.99m1−ε

1 + m√
m2−1

logα > 0.99∆m1−ε logα.
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�

3. Linear forms in two logarithms

Now we recall the following result due to Laurent (see [?], Corollary 2, page
328) on linear forms in two logarithms. For any non-zero algebraic number γ

of degree d over Q, whose minimal polynomial over Z is a
∏d

j=1

(

X − γ(j)
)

, we
denote by

h(γ) =
1

d



log |a|+
d
∑

j=1

logmax
(

1,
∣

∣

∣γ(j)
∣

∣

∣

)





its absolute logarithmic height.

Lemma 5. Let α1 and α2 be multiplicatively independent, each of α1, α2, logα1

and logα2 is real and positive. b1 and b2 ∈ Z+ and

Λ = b2 logα2 − b1 logα1.

Let D := [Q(α1, α2) : Q]/[R(α1, α2) : R], for i = 1, 2 let

logAi ≥ max

{

h(αi),
|logαi|

D
,
1

D

}

and

b′ ≥ b1
D logA2

+
b2

D logA1
.

If |Λ| 6= 0, then we have

log |Λ| ≥ −17.9 ·D4

(

max

{

log b′ + 0.38,
30

D
, 1

})2

logA1 logA2.

In order to apply Lemma ??, we rewrite Λ, ( see (??)), into the form

(6) Λ = log

(

α∆ ·
√

b

a

)

− k log

(

β

α

)

.

Hence, we take

D = 4, b2 = 1, b1 = k, α2 = α∆ ·
√

b

a
, α1 =

β

α
.

If α1 and α2 are multiplicatively dependent, then we have αp
1 = αq

2 with nonzero
integers p and q. Without loss of generality, we suppose that p > 0. This implies
aqβ2p = bqα2p+2∆q. Define that αj = Vj+Uj

√
a and βk = Tk+Wk

√
b. Combining

with the fact Vj , Uj , Tk and Wk are both integers and equality

aq(T2p +W2p

√
b) = bq(V2p+2∆q + U2p+2∆q

√
a)

we get

aqT2p = bqV2p+2∆q, aqW2p

√
b = bqU2p+2∆q

√
a.

It follows that

a2q = a2q(T 2
2p − bW 2

2p) = b2q(V 2
2p+2∆q − aU2

2p+2∆q) = b2q.
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It results a = b, which is a contradiction. So α1 and α2 are multiplicatively
independent. It is easy to see that h

(

α∆
)

= 1
2∆ logα and

h

(
√

b

a

)

=
1

2
log b =

1

2
log(n2−1) <

1

2
log((2m−1)2−1) < log(2m−1) < logα.

Thus we have

h(α2) = h

(

α∆ ·
√

b

a

)

≤ h
(

α∆
)

+ h

(
√

b

a

)

<
1

2
(∆ + 2) logα =: logA2.

Moreover, γ = n+
√
n2−1

m+
√
m2−1

is a root of

X4 − 4mnX3 + (4m2 + 4n2 − 2)X2 − 4mnX + 1.

The absolute values of its conjugates greater than 1 are β/α and αβ. Hence

logA1 := h(γ) =
1

4
(log(β/α) + log(αβ)) =

1

2
log β.

We assume from now and on that m1−ε ≥ 105. We have β = n +
√
n2 − 1 >

2m ≥ 2m1−ε ≥ 2 · 105. This implies |b2|
Dh1

= 1
2 log β < 0.041. This leads to

(7) b′ =
k

2(∆ + 2) logα
+ 0.041.

Notice that ∆ = j − k is a positive integer. From Lemma ??, we have

k − 1

2(∆ + 2) logα
>

0.99∆m1−ε logα

2(∆ + 2) logα
≥ 0.165m1−ε.

This implies log b′ + 0.38 ≥ 10 > 30/D. Therefore, by Lemma ?? we obtain

(8) log |Λ| ≥ −17.9 · 44
(

log b′ + 0.38
)2 · 1

2
log β · 1

2
(∆ + 2) logα.

On the other hand, from Lemma ??, we get

(9) log |Λ| < log

(

α2

α2 − 1

)

− 2j logα <
1

α2 − 1
− 2j logα.

Combining (??) and (??), we have

j

log β
<

1

2(α2 − 1) logα log β
+ 17.9 · 32

(

log b′ + 0.38
)2

(∆ + 2).

It is easy to show that j logα > (k − 1) log β, then above inequality imply

k

2(∆ + 2) logα
− 0.014 <

k − 1

2(∆ + 2) logα
< 0.001 + 17.9 · 16

(

log b′ + 0.38
)2

.

It follows that

(10) b′ < 0.055 + 286.4
(

log b′ + 0.38
)2

.

We calculate that b′ < 33380. Therefore, by (??) we get

k < 66760(∆ + 2) logα.
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Combining this and k − 1 ≥ 0.99∆m1−ε logα (see Lemma ??), we obtain

m1−ε <
66760

0.99
· ∆+ 2

∆
≤ 66760

0.99
· 3 < 202304.

Thus, we have m < 202304
1

1−ε . This completes the proof of Theorem ??.

4. Proof of Theorem ??

The Diophantine approximation algorithm called the Baker-Davenport reduc-
tion method, is used in many papers. The following lemma is a slight modification
of the original version of Baker-Davenport reduction method. (See [?, Lemma
5a]).

Lemma 6. Let M be a positive integer and let δ, µ, A and B be real numbers

with A > 0 and B > 1. Assume that p/q be the convergent of the continued

fraction expansion of δ such that q > 6M and let

η = ‖µq‖ −M · ‖δq‖,
where ‖ · ‖ denotes the distance from the nearest integer. If η > 0, then there is

no solution of the inequality

0 < jδ − k + µ < AB−j

in integers j and k with
log (Aq/η)

logB
≤ j ≤ M.

For any fixed ε ∈ (0, 1), we only need to check that these cases are determined

by 2 ≤ m ≤ 202304
1

1−ε . Since n satisfies m < n < m+mε, then there are about

N(ε) =

2023041/(1−ε)
∑

m=2

m+mε
∑

n=m+1

1 ≤
∫ 2023041/(1−ε)

1

∫ t+tε

t
dvdt

=

∫ 2023041/(1−ε)

1
tεdt =

t1+ε

1 + ε

∣

∣

∣

2023041/(1−ε)

1
≤ 1

1 + ε
202304

1+ε
1−ε

pairs (m,n).
When we choose ε = 1/5, then m < 4290478 and N(ε) < 7.6 · 107. This shows

(see equation (11) of [?]) that

j

log(ej)
< 4.26× 1013 log2 β.

In our case, we have j < 1018. By Lemma ?? we may apply Lemma ?? with

δ =
logα

log β
, µ =

log

(

√

b
a

)

log β
, A =

α2

(α2 − 1) log β
, B = α2

and M = 1018.
The program was developed in PARI/GP running with 200 digits. For the

computations, if the first convergent such that q > 6M does not satisfy the
condition η > 0, then we use the next convergent until we find the one that
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satisfies the condition. We checked in the ranges 2 ≤ m ≤ 4290478 and m+ 1 ≤
n < m+m1/5.

All the computations were done in about 18 hours. The use of the second con-
vergent was needed in 6147425 cases (5.57%), the third convergent was used in
986330 cases (0.26%), etc., the 11th was needed only in (m,n) = (1219283, 1219292).
In all cases we obtained j ≤ 18. By Lemma ??, if m ≥ 6, then we have

0.99m4/5 log(m+
√

m2 − 1) < k − 1 < j − 1 ≤ 17.

This implies m ≤ 8. In this range, n has to be m + 1 with the inequalities
m < n < m+m1/5. One can refer to Theorem 4 of [?], there is only the solution
j = k = 1. Thus, in any case there is no positive integer solution with jk > 1.
This completes the proof of Theorem ??.

5. An application to a family of Thue equations with two

parameters

We consider the following two-parametric family of Thue equations

(11) X4−4mnX3Y +(4m2+4n2−2)X2Y 2−4mnXY 3+Y 4 = 1, 1 < m < n,

in unknown integers X and Y . As a corollary of Theorems ?? and ??, we have:

Corollary 1. If m < n ≤ m + mε, for some real number ε ∈ (0, 1), then

the Thue equation (??) has only integer solutions (X,Y ) = (0,±1), (±1, 0), for

m > 202304
1

1−ε . Furthermore, for m < n ≤ m+m
1
5 , the Thue equation (??) has

only integer solutions (X,Y ) = (0,±1), (±1, 0).

Proof. Let (X,Y ) be an arbitrary, but fixed solution. On setting

(12) x = mX2 − 2nXY +mY 2, y = |X2 − Y 2|, z = nX2 − 2mXY + nY 2,

we have the system of equations (??), so Theorems ?? and ?? complete the proof
since 1 = y = |X2 − Y 2| implies that (X,Y ) = (±1, 0), (0,±1). �

In 2005, Jadrijević [?]-[?] studied the two-parametric family of Thue equations

x4 − 2mnx3y + 2(m2 − n2 + 1)x2y2 + 2mnxy3 + y4 = 1

and transformed it into the system of Pell equations

(13) V 2 − (m2 + 2)U2 = −2, Z2 − (n2 − 2)U2 = 2.

She proved that for every 0.5 < ε ≤ 1, there exists an effectively computable
constant C(ε) such that if m 6= 0, max{|m|, |n|} ≥ C(ε) and gcd(m,n) ≥
max{|m|ε, |n|ε}, then the system of Pell equations (??) has only the trivial solu-
tions (V,Z, U) = (±m,±n, 1), and gave some particular values of C(ε). Further,
she proved that this family of Thue equations has no solutions if gcd(xy,mn) = 1
and xy 6= 0.

Using a little more work and a method similar to that above, one can obtain
the following result.

Theorem 3. If |m − n| ≤ max{m,n}ε, ε ∈ (0, 1), then the system of Pell equa-

tions (??) has only integer solution (V,Z, U) = (±m,±n, 1), for max{m,n} ≥
C(ε), where C(ε) is an effectively computable constant depending on ε.
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The outline of proof of Theorem ?? is the following: Transform equations (??)
into the intersections of two Lucas sequences such as

(14) y = Hj =
νj − ν̄j

√

2(m2 + 2)
= Kk =

δk − δ̄k
√

2(n2 − 2)
,

where j, k are odd positive integers and

ν =
m+

√
m2 + 2√
2

, ν̄ =
m−

√
m2 + 2√
2

, δ =
n+

√
n2 − 2√
2

, δ̄ =
n−

√
n2 − 2√
2

.

Notice that the shapes of these two Lucas numbers are a little different. In order
to deal with equation (??), we need to consider two cases: m < n < m+mε′ and

n < m < n+mε′ . In the case n < m, one can change the order of j and k (also,
α and β) and follow the lines of Lemmas ??-??. For the part of the proof related
to the linear form in two logarithms, one can easily see that ν

δ is a root of

1 + 2nmX + (2m2 − 2n2 + 2)X2 − 2nmX3 +X4.
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