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Abstract

Let A be a commutative domain of characteristic 0 which is finitely generated over Z as

a Z-algebra. Denote by A∗ the unit group of A and by K the algebraic closure of the

quotient field K of A. We shall prove effective finiteness results for the elements of the

set

C := {(x, y) ∈ (A∗)2|F (x, y) = 0}

where F (X,Y ) is a non-constant polynomial with coefficients in A which is not divisible

over K by any polynomial of the form XmY n − α or Xm − αY n, with m,n ∈ Z≥0,

max(m,n) > 0, α ∈ K
∗
. This result is a common generalization of effective results

of Evertse and Győry (2013) on S-unit equations over finitely generated domains, of

Bombieri and Gubler (2006) on the equation F (x, y) = 0 over S-units of number fields,

and it is an effective version of Lang’s general but ineffective theorem (1960) on this

equation over finitely generated domains. The conditions that A is finitely generated and

F is not divisible by any polynomial of the above type are essentially necessary.
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2 A. Bérczes

1. Introduction.

Let A be a commutative domain of characteristic 0 which is finitely generated over

Z, K the quotient field of A and A∗ the unit group (multiplicative group of invertible

elements) of A.

Let F ∈ A[X,Y ] be a non-constant polynomial. By a result of Lang [20] from 1960,

the equation

F (x, y) = 0 in x, y ∈ A∗ (1.1)

has only finitely many solutions, provided F is not divisible by any polynomial of the

form

XmY n − α or Xm − αY n (1.2)

for any non-negative integers m,n, not both zero, and any α ∈ A∗. Lang’s proof is

ineffective. The conditions imposed in Lang’s theorem, i.e., that A be finitely generated

and F not be divisible by any polynomial of type (1.2), are essentially necessary. Bombieri

and Gubler [5] (Theorem 5.4.5) gave an effective proof of Lang’s result in the case that A

is the ring of S-integers in a number field, and this was made more precise, with explicit

upper bounds for the heights of x, y, by Bérczes, Evertse, Győry and Pontreau [4].

Using the method developed by Győry [15], [16] and Evertse and Győry [12], we give

an effective proof of Lang’s result for arbitrary finitely generated domains A, i.e. we show

that given suitable representations for A and the coefficients of F , one can in principle

effectively determine the solutions of (1.1) under a slightly stronger condition then (1.2),

namely in (1.2) we allow α ∈ K∗ instead of α ∈ A∗. In fact, we give a quantitative version

of this, with upper bounds for the sizes of x and y.

The precise statement of our result, together with the necessary definitions, is given in

Section 2. Below, we give a brief overview of further earlier work related to our result.

With the choice F (X,Y ) = ax+ by− c our equation contains as a special case the unit

equation

ax+ by = c in x, y ∈ A∗. (1.3)

The investigation of unit equations is one of the classical topics in diophantine number

theory. For the unit equation (1.3) over the unit group of a domain A, the first general

finiteness result is due to Siegel [24], who proved finiteness of the number of solutions

over the unit group of the ring of integers of a number field. Building further on results

of Mahler [22] and Parry [23] in 1960 Lang [20] extended the finiteness result to the case

when A is a finitely generated domain over Z. However, all these results were ineffective.

The first general effective finiteness result for S-unit equations is due to Győry [13], [14].

His proof depends on Baker’s method, i.e. on estimates for linear forms in logarithms.
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Later Győry [15], [16] introduced an effective specialization method and proved effective

finiteness theorems for unit equations over finitely generated domains from a restricted

class that have transcendental elements. Recently, Evertse and Győry [12] improved

the method of Győry and extended these finiteness results for the case when A is an

arbitrary domain which is finitely generated over Z. The main result of the present paper

is a common generalization of this result of Evertse and Győry [12], and the above

mentioned result of Bombieri and Gubler [5] (Theorem 5.4.5) and of Bérczes, Evertse,

Győry and Pontreau [4] (Theorem 2.1).

It is also worth recalling some historical facts on effective finiteness results for diophan-

tine equations over finitely generated domains. The first effective results for diophantine

equations over finitely generated domains date back to the 1980’s, when Győry ([15],

[16]) developed an effective specialization method and proved effective results for norm

form, index form and discriminant form equations, unit equations, and for polynomials

and integral elements of given discriminant over a wide class of finitely generated integral

domains. Using the method of Győry other types of equations have been studied in this

generality by Brindza, Pintér, Végső and others (see [6], [7], [9], [8]).

Recently, using results of Aschenbrenner [1], Evertse and Győry [12] extended the

specialization method of Győry, and proved effective finiteness results for unit equations

over arbitrary finitely generated domains. Later Bérczes, Evertse and Győry [3] proved

effective results for Thue equations, hyper- and super-elliptic equations, and the Schinzel-

Tijdeman equation over arbitrary finitely generated domains.

The organization of the paper is as follows. In Section 2 we present our main result.

The other sections are devoted to the proof of our main theorem. In Section 3 we present

preparatory results for the proof: on the one hand we reformulate condition (1.2) in a form

which can be easily checked effectively, on the other hand we prove effective estimates

for the gcd of polynomials. In Section 4 we construct a domain B ⊇ A that is easier

to handle and show that our result, proved for the domain B instead of A, implies our

result for A. Finally Sections 5 and 6 contain the proof of the above mentioned extended

result.

2. Results

2·1. Notation

Let r > 0 and let A := Z[z1, . . . , zr] be a domain of characteristic 0 which is finitely

generated over Z. Clearly, A can be expressed as a factor ring

A ∼= Z[X1, . . . , Xr]/I, (2.1)
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where I is the ideal of R := Z[X1, . . . , Xr] which consists of all polynomials f ∈ R with

the property f(z1, . . . , zr) = 0. The ideal I is finitely generated, so we may write

I = (f1, . . . , ft) with f1, . . . , ft ∈ Z[X1, . . . , Xr]. (2.2)

In fact in this way the polynomials f1, . . . , ft fix a representation for the domain A. Recall

that A is a domain of characteristic 0 if and only if I is a prime ideal, and I ∩ Z = ∅.
Given a set of generators f1, . . . , ft for I this property can be checked effectively (see [1]

and [18]).

Let K denote the quotient field of A. We say that the polynomial f ∈ R represents

α ∈ A if we have f(z1, . . . , zr) = α. Further we say that the pair (f, g) ∈ R2 represents

β ∈ K if g 6∈ I (i.e. g(z1, . . . , zr) 6= 0) and f(z1,...,zr)
g(z1,...,zr)

= β. We will also use the terminology

that f is a representative for α, or (f, g) is a pair of representatives for β. Clearly,

any element α ∈ A has infinitely many representatives, and any β ∈ K has infinitely

many pairs of representatives. However, since one can effectively decide whether a given

polynomial of R belongs to a given ideal of R or not (see [1]), one can also effectively

decide if two polynomials represent the same element ofA, or if two pairs of polynomials of

R represent the same element of K. Indeed, two polynomials f, f ′ ∈ R represent the same

element α ∈ A if and only if f − f ′ ∈ I, and two pairs of polynomials (f, g), (f ′, g′) ∈ R2

represent the same element β ∈ K if and only if fg′ − f ′g ∈ I.

We shall measure elements of A by their representatives. For a non-zero polynomial

f ∈ R let us denote by deg f the total degree of f and by h(f) the absolute logarithmic

height of f , i.e. the logarithm of the maximum of the absolute values of its coefficients.

Further we define the size of f by

s(f) := max(1,deg f, h(f)).

For the constant 0 polynomial we define s(0) := 1.

Throughout the paper we shall use the notation O(·) to denote a quantity which is

c times the expression between the parentheses, where c is an effectively computable

positive absolute constant which may be different at each occurrence of the O-symbol.

Further, throughout the paper we write log∗ a := max(1, log a) for a > 0, and log∗ 0 := 1.

2·2. Results

Let A be a finitely generated domain given in the form (2.1), where the ideal I is

generated by the polynomials f1, . . . , ft ∈ Z[X1, . . . , Xr]. Let K denote the quotient field

of A and denote by K the algebraic closure of K.

Let F (X,Y ) =
∑

(i,j)∈I aijX
iY j ∈ A[X,Y ] be a polynomial of total degree N :=
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degF , and suppose that F fulfils the following condition:

F is not divisible by any non-constant polynomial of the form

XmY n − α or Xm − αY n,where m,n ∈ Z≥0 and α ∈ K∗.
(2.3)

Further, suppose that we are given representatives ãij ∈ Z[X1, . . . , Xr] of aij ∈ A,

respectively. Put F̃ (X,Y ) :=
∑

(i,j)∈I ãijX
iY j . We assume that

 deg f1, . . . ,deg ft,deg ãij ≤ d for every (i, j) ∈ I

h(f1), . . . , h(ft), h(ãij) ≤ h for every (i, j) ∈ I,
(2.4)

where d, h are real numbers with d > 1 and h > 1. In Section 3 we show that condition

(2.3) is effectively decidable in terms of f1, . . . , ft and the ãij .

Theorem 2·1. If A is a finitely generated domain as above, and F fulfils the condition

( 2.3) then for all elements (x, y) of the set

C := {(x, y) ∈ (A∗)2|F (x, y) = 0} (2.5)

there exist representatives x̃, ỹ, x̃′ and ỹ′ of x, y, x−1 and y−1, respectively, such that

s(x̃), s(ỹ), s(x̃′), s(ỹ′) ≤ exp
{

(2d)expO(r)(2N)(log
∗N)·expO(r) · (h+ 1)3

}
. (2.6)

We mention that the above result is effective in the sense that it provides an algorithm

to determine, at least in principle, all elements of the set (2.5). Indeed, there are only

finitely many polynomials of Z[X1, . . . , Xr] below the bound in (2.6) and these can be

effectively enumerated. Further, (x, y) ∈ C is clearly fulfilled if and only if there are

polynomials x̃, ỹ, x̃′, ỹ′ ∈ Z[X1, . . . , Xr] with their sizes below the bound (2.6), which

fulfil

x̃ · x̃′ − 1, ỹ · ỹ′ − 1, F̃ (x̃, ỹ) ∈ I. (2.7)

So we can enlist all 4-tuples (x̃, ỹ, x̃′, ỹ′) with s(x̃), s(ỹ), s(x̃′), s(ỹ′) being smaller than

our bound, then (using an ideal membership algorithm) check if (2.7) is fulfilled. Finally,

we have to group all the tuples in which (x̃, ỹ) represent the same pair (x, y) ∈ (A∗)2

and pick out one pair from each group. So we get a list consisting of one representative

for each element of the set (2.5).
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3. Preparations for the proof of Theorem 2·1

3·1. Analyzing the condition ( 2.3) posed on F

Let A,K,K be as in Section 2·2 and let F (X,Y ) ∈ A[X,Y ] be a bivariate polynomial

given by

F (X,Y ) =
∑

(i,j)∈I

aijX
iY j ,

where I ⊂ Z2
≥0 is a finite set, and 0 6= aij ∈ A are fixed for (i, j) ∈ I. Denote by N the

total degree of F and by n(F ) the number of non-zero coefficients of F .

For any partition P = (I1, . . . , Ik) of I with |Il| ≥ 2 for l = 1, . . . , k we define the

Z-module

Λ(F,P) := 〈{(i1, j1)− (i2, j2) | (i1, j1), (i2, j2) ∈ Il for some l = 1, . . . , k }〉

i.e. the Z-module defined by all differences of pairs of exponents (i, j) belonging to the

same set in the partition P. Let r(F,P) denote the rank of the Z-module Λ(F,P).

In the sequel, for any solution (x, y) of the equation

F (x, y) = 0 in x, y ∈ A∗ (3.1)

we say that a partition P of I corresponds to F and (x, y) if P = (I1, . . . , Ik) such that

(i) I1 ∪ I2 ∪ · · · ∪ Ik = I, Ii ∩ Ij = ∅ for i 6= j, Il 6= ∅ for l = 1, . . . , k

(ii) x, y is a solution of the following system∑
(i,j)∈Il

aijx
iyj = 0 for l = 1, . . . , k. (3.2)

(iii)
∑

(i,j)∈I0 aijx
iyj 6= 0 for any proper subset I0 of any of the sets Il for l = 1, . . . , k.

In this case we shall also say that (x, y) is associated with the partition P. We mention

that aij 6= 0, x, y ∈ A∗ and (3.2) imply |Il| ≥ 2 for l = 1, . . . , k.

Let us analyze now the case when for a given partition P the rank of Λ := Λ(F,P) is

1. This means that there exists a pair (m,n) ∈ Z2 with gcd(m,n) = 1 such that for any

two elements (i, j), (i′, j′) ∈ Il for l = 1, . . . , k we have (i, j) − (i′, j′) = t · (m,n) with

t ∈ Z, |t| ≤ N . Fixing an element (il, jl) ∈ Il for l = 1, . . . , k we get that every (i, j) ∈ Il
can be written as (i, j) = (il, jl)+ tij(m,n), for l = 1, . . . , k, with some tij ∈ Z, |tij | ≤ N .

Thus the system (3.2) is equivalent to the system

XilY jl
∑

(i,j)∈Il

aij(X
mY n)tij = 0 for l = 1, . . . , k.

By multiplying these equations by suitable powers of XmY n we see that it is equivalent

to a system

gl(X
mY n) = 0 for l = 1, . . . , k, (3.3)
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where gl ∈ A[X], gl(0) 6= 0 for l = 1, . . . , k and

gl(X) :=
∑

(i,j)∈Il

aijX
sij , (3.4)

where 0 ≤ sij ≤ 2N . We shall call (g1, . . . , gk) the polynomial system corresponding to

the partition P. Now the fact that (3.1) has a solution associated with P is equivalent to

the system (3.3) having a solution x, y ∈ A∗ which can happen only if the polynomials

gk(X) have a common root α ∈ A∗, i.e. X − α divides gl for all l = 1, . . . , k, which

contradicts the assumption (2.3). Now we are ready to state two Propositions:

Proposition 3·1. Let F (X,Y ) ∈ A[X,Y ] be a polynomial. Then F satisfies condition

( 2.3) if and only if for any partition P = (I1, . . . , Ik) of I we have one of the following:

(i) r(P) = 2, or

(ii) r(P) = 1, and the polynomial system (g1, . . . , gk) ∈ A[X]k corresponding to P has

the property

gcd(g1, . . . , gk) = 1 in K[X].

Proof. First suppose that (2.3) holds. Let P be any partition of rank 1 and assume

gcd(g1, . . . , gk) 6= 1 over K. Thus there exists α ∈ K with gi(α) = 0 for i = 1, . . . , k, thus

XmY n − α or Xm − αY n divides F for some m,n ∈ Z≥0, which contradicts (2.3).

Conversely, we show that if F has a factor of the form XmY n − α or Xm − αY n with

m,n ∈ Z≥0 and α ∈ K then there exists a partition P of I such that r(P, F ) = 1 and

gcd(g1, . . . , gk) 6= 1 over K. To simplify the proof we consider F as a Laurent polynomial.

Then an equivalent formulation of our assumption is that F has a non-constant divisor

of the form XmY n − α with m,n ∈ Z and α ∈ K. Clearly, we may suppose (m,n) = 1,

thus there exist m′, n′ ∈ Z with mn′ − nm′ = 1. Put U = XmY n and V = Xm′Y n
′
, and

define the Laurent polynomial F ′ by F ′(U, V ) = F (X,Y ). Now F ′ is divisible by U − α,

thus we have F ′(α, V ) ≡ 0. If we write

F ′(U, V ) =

k∑
i=0

V igi(U)

then by F ′(α, V ) ≡ 0 we must have gi(α) = 0 for all i = 1, . . . , k, and thus gcd(g1, . . . , gk) 6=
1 in K[U ]. Writing F in the form

F (X,Y ) =

k∑
i=0

Xim′Y in
′
gi(X

mY n)

induces a partition P = (I1, . . . , Ik), with r(P, F ) = 1 and gcd(g1, . . . , gk) 6= 1 over K.

This concludes the proof of the proposition.

Proposition 3·2. Let F (X,Y ) be a polynomial satisfying ( 2.3) and fix a solution

(x, y) of ( 3.1). Let P = (I1, . . . , Ik) be a partition of I corresponding to F and (x, y) and
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let Λ := Λ(F,P) be the Z-module corresponding to the solution (x, y) and the partition

P. Then we have

r(P) = 2.

Proof. This is a direct consequence of Proposition 3·1, since for a solution (x, y) and a

partition P associated with it, with r(Λ(F,P)) = 1 the corresponding polynomial system

must consist of co-prime elements, which contradicts (ii) of Proposition 3·1, i.e. only

r(Λ(F,P)) = 2 is possible.

The above two propositions mean in fact, that for a polynomial fulfilling condition (2.3)

there might exist partitions of I of rank 1, but these are never partitions corresponding

to a solution.

3·2. Effective estimates for the gcd of polynomials

For a polynomial P ∈ C[X] let ||P ||1 denote the sum of the absolute values of the

coefficients of P .

Proposition 3·3. Let A be a finitely generated domain as in Section 2·2 and K its

quotient field. Let k, ρ ∈ N be with 2k−1 ≤ ρ ≤ 2k and let

gi(X) :=

δ∑
j=0

xijX
j ∈ A[X] for i = 1, . . . , ρ

be non-zero polynomials such that gcd(g1, . . . , gρ) in K[X] has degree δ0. Let x := (xij :

i = 1, . . . , ρ, j = 0, . . . , δ) be the vector consisting of the coefficients of the polynomials

g1, . . . , gρ.

Then there exist polynomials P0, . . . , Pδ0 with integer coefficients, in ρ(δ+ 1) variables

with the following properties:

(i) degPi ≤ (2δ)k, and ||Pi||1 ≤ (2δ)2δ+(2δ)2+···+(2δ)k ;

(ii) There are polynomials u1, . . . , uρ ∈ A[X] such that

u1g1 + · · ·+ uρgρ =

δ0∑
j=0

Pj(x)Xj ,

where not all Pj(x) are 0.

For the proof of Proposition 3·3 we need the following:

Lemma 3·4. Let A be a finitely generated domain as in Section 2·2 and K its quotient

field. Let g1, g2 ∈ A[X] be non-zero polynomials with deg g1 = n1, deg g2 = n2, and such

that gcd(g1, g2) in K[X] has degree δ0. Then there exist polynomials u1, u2, g ∈ A[X] with

u1g1 + u2g2 = g, (3.5)
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with deg u1 ≤ n2−δ0−1, deg u2 ≤ n1−δ0−1, deg g = δ0, and such that the coefficients of

g are determinants of order n1 +n2−2δ0 of which n2− δ0 columns consist of coefficients

of g1 and n1 − δ0 columns consist of coefficients of g2. Further, in this case we have

automatically g = gcd(g1, g2) in K[X].

Proof. By properties of the gcd of polynomials over a field there exist g = gcd(g1, g2) ∈
K[X] and u1, u2 ∈ K[X] with (3.5), and reducing u1 modulo g2/g, and u2 modulo g1/g

it is clear that we may choose u1, u2 such that deg u1 ≤ n2 − δ0 − 1 and deg u2 ≤
n1 − δ0 − 1. Further the triple (u1, u2, g) is unique up to a common constant factor

from K. Multiplying the identity by a common multiple of all the denominators of the

coefficients of g, u1, u2 we can guarantee also g, u1, u2 ∈ A[X]. Write

u1 :=

n2−δ0−1∑
i=0

xiX
i, u2 :=

n1−δ0−1∑
i=0

yiX
i g =

δ0∑
i=0

ziX
i.

Then by equating coefficients, the polynomial identity

u1g1 + u2g2 − g = 0

is equivalent to a system of linear equations(
−I F11 F12

0 F21 F22

)
·

z

x

y

 = 0.

in the variables xi, yi, zi, consisting of n1 + n2 − δ0 linearly independent equations. In

this system the block −I is the negative of a unit matrix of order δ0 + 1, F11 and F21

are blocks (of n2− δ0 columns) consisting of coefficients of g1 and F12 and F22 blocks (of

n1 − δ0 columns) consisting of coefficients of g2.

The solution subspace of this system of equations is one-dimensional, and we have

one more unknown than the number of equations. Hence the equations in the system

are linearly independent. Further, this system of equations has the non-zero solution

(∆1,−∆2, . . . ,±∆n1+n2−δ0+1)T, where ∆i denotes the determinant of the matrix ob-

tained from the matrix of our system by removing the ith column. So we may take

g(X) = ∆1 −∆2X + ∆3X
2 + · · · ±∆δ0+1X

δ0 .

This concludes the proof of our lemma.

Proof of Proposition 3·3 We may assume without loss of generality that ρ = 2k, oth-

erwise we copy some of the polynomials g1, . . . , gρ to have 2k polynomials.

Now we use induction on k. For k = 1 the statement is true by Lemma 3·4. So we

assume that the statement of our proposition is true for k − 1 and we prove it for k.

Suppose that

deg gcd(g1, . . . , g2k−1) = d1, deg gcd(g2k−1+1, . . . , g2k) = d2 in K[X].
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Then by the inductive assumption there are polynomials v1, . . . , v2k−1 ∈ A[X] with

2k−1∑
i=1

vigi =

d1∑
j=0

Q1j(x1)Xj ,

where not all Q1j are zero and where x1 is the vector consisting of all coefficients of the

polynomials g1, . . . , g2k−1 , and there also exist polynomials v2k−1+1, . . . , v2k ∈ A[X] with

2k∑
i=2k−1+1

vigi =

d2∑
j=0

Q2j(x2)Xj ,

where not all Q2j are zero and where x2 is the vector consisting of all coefficients of the

polynomials g2k−1+1, . . . , g2k . Further, by the induction hypothesis we may assume

degQij ≤ (2δ)k−1, ||Qij ||1 ≤ (2δ)2δ+···+(2δ)k−1

:= c(δ)

for i = 1, 2 and j = 0, . . . , di. By Lemma 3·4 there are w1, w2 ∈ A[X] such that

w1

d1∑
j=0

Q1j(x1)Xj + w2

d2∑
j=0

Q2j(x2)Xj =

δ0∑
j=0

Pj(x)Xj ,

with Pδ0 6= 0, and where Pj is a determinant of order d1 + d2 − 2δ0 of which d2 − δ0
columns consist of polynomials Q1j (j = 1, . . . , d1) and d1 − δ0 columns of polynomials

Q2j (j = 1, . . . , d2). This implies

degPj(x) ≤ (d2 − δ0)(2δ)k−1 + (d1 − δ0)(2δ)k−1 ≤ δ(2δ)k−1 + δ(2δ)k−1 ≤ (2δ)k,

and

||Pj ||1 ≤ {(d1 + d2 − 2δ0) · c(δ)}d2−δ0 · {(d1 + d2 − 2δ0) · c(δ)}d1−δ0

≤
{

(2δ)δ · (2δ)δ·(2δ+···+(2δ)k−1)
}2

≤ (2δ)2δ+···+(2δ)k .

This concludes the proof of Proposition 3·3.

Corollary 3·1. Let A be a finitely generated domain as in Section 2·2 and K its

quotient field. Let k, ρ ∈ N be with 2k−1 ≤ ρ ≤ 2k and define the polynomials

gi(X) :=

δ∑
j=0

xijX
j ∈ A[X] for i = 1, . . . , ρ.

Further, suppose that the coefficients xij ∈ A have representatives x̃ij with

deg x̃ij ≤ d, h(x̃ij) ≤ h,

where d > 1 and h > 1 are given real numbers. Suppose that

gcd(g1, . . . , gρ) = 1 in K[X].

Then there exist polynomials u1, . . . , uρ ∈ A[X] such that

u1g1 + · · ·+ uρgρ = R,
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where R ∈ A, R 6= 0, and R has a representative R̃ with

deg R̃ ≤ d(2δ)k, h(R̃) ≤ (2δ)k+2(d+ 1)rh.

Proof. Put x := (xij : i = 1, . . . , ρ, j = 0, . . . , δ) be the vector consisting of the

coefficients of the polynomials g1, . . . , gρ. By Proposition 3·3 there exist polynomials

u1, . . . , uρ ∈ A[X] such that

u1g1 + · · ·+ uρgρ = P0(x),

where P0(X) is a polynomial in ρ(δ + 1) variables with integer coefficients and with

degP0 ≤ (2δ)k, ||P0||1 ≤ (2δ)2δ+(2δ)2+···+(2δ)k .

This together with deg x̃ij ≤ d proves

deg R̃ ≤ d(2δ)k.

Clearly by the assumptions of the corollary we have

||x̃ij ||1 ≤ (d+ 1)rh,

thus

||R̃||1 = ||P0||1((d+ 1)rh)(2δ)
k

≤ (2δ(d+ 1)rh)(2δ)
k+1

.

and finally we get

h(R̃) ≤ log ||R̃||1 ≤ (2δ)k+2(d+ 1)rh.

4. Extending A to a larger ring

First we shall extend our domain A to a larger domain B and prove an effective result

for the set

C′ := {(x, y) ∈ (B∗)2|F (x, y) = 0}

The main advantage of this will be, that we choose the larger domain B such that it will

be easier to do effective computations with elements of B then it is with elements of A.

Recall that A = Z[z1, . . . , zr] is a finitely generated domain, and let us denote by K

the quotient field of A. Let f1, . . . , ft be the generators of the ideal I that defines our

domain A (see (2.1), (2.2)) and put

d0 := max(1,deg f1, . . . ,deg ft), h0 := max(1, h(f1), . . . , h(ft)). (4.1)

Let q ≥ 0 denote the transcendence degree of K and suppose without loss of generality

that z1, . . . , zq is a transcendence basis of K/Q. Put

K0 := Q(z1, . . . , zq), A0 := Z[z1, . . . , zq], (4.2)
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with the convention that in the case q = 0 we put K0 = Q and A0 = Z. For elements

0 6= f ∈ A0 we will use the notation deg f and h(f) for the total degree and logarithmic

height of f , respectively, viewed as a polynomial in the unknowns z1, . . . , zq, with the

convention that in the case q = 0 we put deg f := 0 and h(f) := log |f |.

The field K is clearly a finite algebraic extension of K0, so we have K = K0(w) for

some w ∈ K. We shall see that w may be chosen in such a way that it is integral over

A0, the degree of its minimal polynomial, and the degree and height of the coefficients of

its minimal polynomial are bounded. Further, there exists an element f ∈ A0, such that

A ⊂ A0[w, f−1] := B, some ”important” elements are units in B, and the degree and

height of f is also bounded. This is described more precisely in the following proposition.

Recall that aij denote the coefficients of F and N is the total degree of F in Theorem

2·1. Let us use the notation log∗2 x := max(1, log2 x).

Proposition 4·1. (i) There exists an element w ∈ A which is integral over A0 such

that K = K0(w) and having minimal polynomial

F(X) = XD + F1X
D−1 + · · ·+ FD ∈ A0[X]

over K0 of degree D ≤ dr−q0 , such that

degFk ≤ (2d0)expO(r), h(Fk) ≤ (2d0)expO(r)(h0 + 1) (4.3)

for k = 1, . . . , D.

(ii) Let R ∈ A and suppose that R has a representative R̃ with

deg R̃ ≤ d(4N)log
∗
2 N , h(R̃) ≤ (4N)log

∗
2 N+2(d+ 1)rh. (4.4)

Then there exists a non-zero f ∈ A0 such that

A ⊆ A0[w, f−1],

aij ∈ A0[w, f−1]∗ for (i, j) ∈ I

R ∈ A0[w, f−1]∗

(4.5)

and

deg f ≤ (2d)expO(r) · (2N)log
∗N ·expO(r),

h(f) ≤ (2d)expO(r) · (2N)log
∗N ·expO(r) · h.

(4.6)

Remark. The element R above for the moment may be any R ∈ A with (4.4), and it

will be specified at the very end of our proof in equation (6.18).

Proof of Proposition 4·1 In the proof for convenience we shall use Proposition 3.1 of

[3]. However, this proposition is just a suitable reformulation and combination of Propo-

sition 3.4, Lemma 3.2, (i), and Lemma 3.6. of Evertse and Győry [12]. In principle (i) of

the present proposition is exactly (i) of Proposition 3.1 of [12].
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To prove (ii) we will use (ii) of Proposition 3.1 of [3] with the choice

{α1, . . . , αk} = {aij , for (i, j) ∈ I} ∪ {R}.

Thus we have k = n(F ) + 1 < O(N2), where n(F ) denotes the number of non-zero

coefficients of F . Further, we may choose vl to be 1, and ul to be one of the polynomials

ãij for l = 1, . . . , k − 1, and we also may choose vk = 1 and uk = R̃ which gives the

estimates

d∗∗ = d(4N)log
∗
2 N and h∗∗ = (4N)log

∗
2 N+2(d+ 1)rh.

Now we use statement (ii) of Proposition 3.1 of [3] and we choose a larger constant in

the O(·) symbol to simplify the expressions in the bounds. This concludes the proof of

our Proposition 4·1.

Next we introduce a new representation for the elements of the field K. As in Propo-

sition 4·1 we denote the degree of K over K0 by D. Since K = K0(w) every element

α ∈ K can be written uniquely in the form
∑D−1
j=0 Rα,jw

j , where Rα,j ∈ K0. Since K0 is

the fraction field of A0, and A0 is a unique factorization domain (indeed, z1, . . . , zq are

algebraically independent), there exist Pα,0, . . . , Pα,D−1, Qα ∈ A0 such that the above

representation can be rewritten in the form

α = Q−1α

D−1∑
j=0

Pα,jw
j with Qα 6= 0, gcd(Pα,0, . . . , Pα,D−1, Qα) = 1. (4.7)

Further, the tuple (Pα,0, . . . , Pα,D−1, Qα) in the representation (4.7) of α is up to sign

uniquely determined.

Using this representation we introduce two new concepts which will turn out to be

useful to measure elements of K. Let us define degα := max(degPα,0, . . . ,degPα,D−1,degQα)

h(α) := max(h(Pα,0), . . . , h(Pα,D−1), h(Qα)),
(4.8)

with the convention that for q = 0 we define degα = 0 and h(α) = log max(|Pα,0|, . . . , |Pα,D−1|, |Qα|).

The following Lemma shows that degα and h(α) may be bounded by the height and

degree of representatives for α, the bound being dependent also on parameters of A, and

conversely, α ∈ A has a representative whose height and degree are bounded by degα

and h(α), the bound again being dependent also on parameters of A.

Lemma 4·2. (i) Let α ∈ K∗ and let (a, b) be a pair of representatives for α with

a, b ∈ Z[X1, . . . , Xr], b 6∈ I. Put

d∗ = max(d0,deg a,deg b) and h∗ := max(h0, h(a), h(b)).
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Then

degα ≤ (2d∗)expO(r), h(α) ≤ (2d∗)expO(r)(h∗ + 1). (4.9)

(ii) Let α be a nonzero element of A, and put

d̂ := max(d0,degα), ĥ := max(h0, h(α)).

Then α has a representative α̃ ∈ Z[X1, . . . , Xr] such that{
deg α̃ ≤ (2d̂)expO(r log∗ r)(ĥ+ 1),

h(α̃) ≤ (2d̂)expO(r log∗ r)(ĥ+ 1)r+1.
(4.10)

Moreover, if α ∈ A∗ then α−1 has a representative α̃′ ∈ Z[X1, . . . , Xr] with{
deg α̃′ ≤ (2d̂)expO(r log∗ r)(ĥ+ 1),

h(α̃′) ≤ (2d̂)expO(r log∗ r)(ĥ+ 1)r+1.
(4.11)

Proof. Statement (i) is Lemma 3.5 in Evertse and Győry [12], while (ii) is a special

case of Lemma 3.7 of Evertse and Győry [12] with the choice λ = 1 and a = b = 1. See

also Lemma 3.4 and Lemma 3.5 of [3].

In the following proposition we shall state a generalization of our Theorem 2·1 and

then we show how our Theorem 2·1 follows from that. Then the rest of the paper will be

devoted to the proof of this more general proposition.

Proposition 4·3. Let w and f be as in Proposition 4·1 and put

B := A0[f−1, w].

Then for every element (x, y) of the set

C′ := {(x, y) ∈ (B∗)2|F (x, y) = 0}

we have

deg x, deg y ≤ (2d)expO(r) · (2N)log
∗N ·expO(r), (4.12)

h(x), h(y) ≤ exp
{
·(2d)expO(r)(2N)log

∗N ·expO(r) · (h+ 1)3
}
. (4.13)

Now we give the proof of Theorem 2·1 using Proposition 4·3, which will be proved in

the next two sections.

Proof of Theorem 2·1 Let (x, y) ∈ C. Since A ⊆ B we also have (x, y) ∈ C′ where

B = A0[f−1, w], with f, w satisfying the conditions specified in Proposition 4·1. Then

we use Proposition 4·3, to infer (4.12) and (4.13), and then we apply Lemma 4·2 (ii) to

x and y, to show that x, y, x−1 and y−1 have representatives x̃, ỹ, x̃′, ỹ′ ∈ Z[X1, . . . , Xr]

with (2.6).
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5. Bounding the degree in Proposition 4·3

In this section we shall consider K as a function field in one variable, and we shall

prove (4.12) using earlier results of Brownawell and Masser [10] for function fields.

We recall the definition of valuations and height on function fields in one variable.

Let k be an algebraically closed field of characteristic 0, z a transcendental element over

k and M a finite extension of k(z). Denote by gM/k the genus of M , and by MM the

collection of valuations of M/k, which are the discrete valuations of M with value group

Z which are trivial on k. Recall that these valuations satisfy the sum formula∑
v∈MM

v(α) = 0 for α ∈M∗.

For a finite subset S of MM , an element α ∈ M is called an S-integer if v(α) ≥ 0 for

all v ∈ MM \ S. The S-integers form a ring in M , denoted by OS . The (homogeneous)

height of a = (α1, . . . , αl) ∈M l relative to M/k is defined by

H∗M (a) = H∗M (α1, . . . , αl) := −
∑

v∈MM

min(v(α1), . . . , v(αl)).

The height of α ∈M relative to M/k is defined by

HM (α) := H∗M (1, α) = −
∑

v∈MM

min(0, v(α)).

We have HM (α) = 0 if and only if α ∈ k.

First we recall a Lemma of [3] which will be useful for bounding the genus:

Lemma 5·1. Let k be an algebraically closed field, z a transcendental element over k
and put M = k(z). Let

F = f0X
l + f1X

l−1 + · · ·+ fl ∈M [X]

be a polynomial with f0 6= 0 and with non-zero discriminant. Let L be the splitting field

of F over M . Then we have

gL/k ≤ [L : M ] · lmax(deg f0, . . . ,deg fl).

Proof. This is a special case of Lemma 4.2 of [3].

Proposition 5·2. Let k be an algebraically closed field of characteristic 0, z a tran-

scendental element over k and M a finite extension of k(z). Denote by gM/k the genus

of M and let S be a finite set of valuations of M . Denote by OS the ring of S-integers

of M , and by O∗S its unit group. Consider the equation

u1 + · · ·+ un = 0 in u1, . . . , un ∈ O∗S . (5.1)
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For every non-degenerate solution u1, . . . , un of the above equation we have

H∗M (u1, . . . , un) ≤ 1

2
(n− 1)(n− 2)(|S|+ gM/k).

Proof. This is in fact a variant of Corollary I of Brownawell and Masser [10], modified

according to the remark after Theorem B of [10].

Proposition 5·3. Let k be an algebraically closed field of characteristic 0, z a tran-

scendental element over k, M a finite extension of k(z), and M the algebraic closure

of M . Denote by gM/k the genus of M and let S be a finite set of valuations of M .

Denote by OS the ring of S-integers of M , and by O∗S its unit group. Let F (X,Y ) =∑
(i,j)∈I aijX

iY j ∈ OS [X,Y ] with aij ∈ O∗S for (i, j) ∈ I, be a polynomial which fulfils

the condition that

F is not divisible by any non-constant polynomial of the form

XmY n − α or Xm − αY n,where m,n ∈ Z≥0 and α ∈M.
(5.2)

Assume that HM (aij) ≤ H0 for all (i, j) ∈ I. Then for every x, y ∈ O∗S with

F (x, y) = 0

we have

HM (x), HM (y) ≤ 2 degF
(
n(F )2 ·

(
|S|+ gM/k

)
+ 2H0

)
, .

where n(F ) denotes the number of non-zero terms of F .

Proof. Since the coefficients of the polynomial F are S-units, we may consider the

equation ∑
(i,j)∈I

aijx
iyj = 0 in x, y ∈ O∗S (5.3)

as an equation of type (5.1). Let us fix a solution x, y of the equation. If there are

vanishing sub-sums in the left hand side of (5.3) then all these vanishing sub-sums form

individually an equation of type (5.1), and we get a system of the form
∑

(i,j)∈I1 aijx
iyj = 0 in x, y ∈ O∗S

. . . . . . . . . . . . . . . . . .∑
(i,j)∈Ik aijx

iyj = 0 in x, y ∈ O∗S ,

(5.4)

such that none of these equations has a proper vanishing subsum. Let P = (I1, . . . , Ik).

As explained in Section 3 condition (5.2) implies that rank Λ(F,P) = 2. By dividing each
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equation of (5.4) by one of its terms we get
1 +

∑
(i,j)∈I1\{(i1,j1)}

aij
ai1j1

xi−i1yj−j1 = 0 in x, y ∈ O∗S

. . . . . . . . . . . . . . . . . .

1 +
∑

(i,j)∈Ik\{(ik,jk)}

aij
aikjk

xi−ikyj−jk = 0 in x, y ∈ O∗S ,

(5.5)

where we have (il, jl) ∈ Il for l = 1, . . . , k. Now we apply Proposition 5·2 to these

equations. The number of terms of each equation is bounded above by n(F ), so we get

HM

(
aij
ailjl

xi−ilyj−jl
)
≤ H∗M

((
1,

aij
ailjl

xi−ilyj−jl : (i, j) ∈ Il \ {(il, jl)}
))

≤ H∗M ((aijx
iyj : (i, j) ∈ Il)) ≤ n(F )2 ·

(
|S|+ gM/k

)
for every l = 1, . . . , k and every (i, j) ∈ Il \ {(il, jl)}. Thus we have

HM

(
xi−ilyj−jl

)
≤ n(F )2 ·

(
|S|+ gM/k

)
+HM

(
aij
ai0j0

)
≤ n(F )2 ·

(
|S|+ gM/k

)
+ 2H0,

which means that we have

HM

(
xayb

)
≤ n(F )2 ·

(
|S|+ gM/k

)
+ 2H0,

for every (a, b) = (u1 − u2, v1 − v2) with (u1, v1), (u2, v2) ∈ Il for some l = 1, . . . , k.

However Λ(F,P(x,y)(F )) is the Z-module generated by these elements, and it has rank

2. Thus among these generators there exist (a1, b1), (a2, b2) with a1b2 − a2b1 6= 0. By

putting z1 := xa1yb1 and z2 := xa2yb2 we have

xa1b2−a2b1 = zb21 z
−b1
2 ya1b2−a2b1 = za12 z−a21 ,

and we get the estimate

HM (x) ≤ 1

|a1b2 − a2b1|
HM (zb21 z

−b1
2 ) ≤ |b2|HM (z1) + |b1|HM (z2)

|a1b2 − a2b1|
≤ 2 degF

(
n(F )2 ·

(
|S|+ gM/k

)
+ 2H0

)
,

and similarly

HM (y) ≤ 2 degF
(
n(F )2 ·

(
|S|+ gM/k

)
+ 2H0

)
.

This concludes the proof of the proposition.

Recall that A = Z[z1, . . . , zr], K denotes the quotient field of A, z1, . . . , zq form a

transcendence basis for K, A0 := Z[z1, . . . , zq], and K0 := Q(z1, . . . , zq). Further, let w

be a primitive element of the extension K/K0, which is integral over A0 and has the

properties specified in (i) of Proposition 4·1, and let f ∈ A0 be an element with the

properties specified in (ii) of Proposition 4·1. As above, put B := A0[w, f−1].
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Now let us fix i ∈ {1, . . . , q} and for each such fixed i put

ki := Q(z1, . . . , zi−1, zi+1, . . . , zq).

Clearly, we shall have A0 ⊆ ki[zi], where ki denotes the algebraic closure of ki. Let

w(1) = w, . . . , w(D) denote the conjugates of w over K0, and put

Mi := ki
(
zi, w

(1), . . . , w(D)
)
,

Bi := ki
[
zi, w

(1), . . . , w(D), f−1
]
.

Then clearly Mi is the splitting field of the polynomial

F(X) = XD + F1X
D−1 + · · ·+ FD ∈ A0[X]

over ki[zi], where F(X) is the minimal polynomial of w over K0. Further, we have

B ⊂ Bi.

Let ∆i := [Mi : ki(zi)] and denote by gMi/ki the genus of Mi/ki, and by HMi the height

taken with respect to Mi/ki. In the following lemma we shall use the quantity

d1 := max(d0,deg f, degF1, . . . ,degFD), (5.6)

and later we will use that by Proposition 4·1 we have the estimate

d1 ≤ (2d)expO(r) · (2N)log
∗N ·expO(r). (5.7)

To bound the deg of an element of K we shall use the following:

Lemma 5·4. Let α ∈ K∗ and let by α(1), . . . , α(D) be the conjugates of α corresponding

to w(1), . . . , w(D), respectively. Then we have:

degα ≤ qDd1 +

q∑
i=1

∆−1i

D∑
j=1

HMi
(α(j)).

Proof. This is Lemma 4.4 in Evertse and Győry [12].

Conversely, we have the following:

Lemma 5·5. Let α ∈ K∗ and α(1), . . . , α(D) be as in Lemma 5·4. Then we have

max
i,j

HMi
(α(j)) ≤ ∆i

(
2Ddegα+ (2d0)expO(r)

)
. (5.8)

Proof. This is Lemma 4.4 of [3].

Now we use Proposition 5·3 and Lemma 5·4 to prove statement (4.12) of Proposition

4·3:
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Proof of ( 4.12). We denote by w(1) := w, . . . , w(D) the conjugates of w overK0, and for

α ∈ K we denote by α(1), . . . , α(D) the conjugates of α corresponding to w(1), . . . , w(D).

For i = 1, . . . , n let ki, ki, Mi, ∆i have the same meaning as above. Let

Si := {v ∈MMi
: v(zi) < 0 or v(f) > 0}.

Since w(j) ∈Mi and is integral over ki[zi], we have w(j) ∈ OSi for j = 1, . . . , D. Since also

f−1 ∈ OSi
thus we have α(j) ∈ OSi

for α ∈ B = A0[f−1, w], j = 1, . . . , D, i = 1, . . . , q.

Let (x, y) ∈ C′. Then x(j), y(j) is a solution of the equation

F (j)(x(j), y(j)) = 0 in x(j), y(j) ∈ O∗Si

for every j = 1, . . . , D, i = 1, . . . , q. Clearly the non-zero coefficients of F (j)(X,Y ) are in

O∗Si
, so by Proposition 5·3 we obtain that

max(HMi
(x(j)), HMi

(y(j))) ≤ 2N
(
n(F )2

(
|Si|+ gMi/ki

)
+ 2H0

)
, (5.9)

where H0 := max
i,j,u,v

HMi(a
(j)
uv ). By deg ãuv ≤ d and Lemma 4·2 we have deg auv ≤

(2d)expO(r), which together with Lemma 5·5 gives

H0 ≤ ∆i(2d)expO(r). (5.10)

Now we have to estimate the genus of Mi/ki and the cardinality of Si. First, using

Lemma 5·1 for ki[zi] and the polynomial F(X) = XD +F1X
D−1 + · · ·+FD, in view of

the bounds in (i) of Proposition 4·1 we get

gMi/ki ≤ ∆iD max
1≤k≤D

degzi Fk ≤ ∆iD(2d0)expO(r) ≤ ∆i(2d)expO(r). (5.11)

To bound |Si| we mention that every valuation of ki(zi) can be extended to at most

[Mi : ki(zi)] = ∆i valuations of Mi. Thus the number of valuations v of Mi with v(zi) < 0

is bounded by ∆i and similarly, the number of valuations v of Mi with v(f) > 0 is

bounded above by ∆i degzi f . Hence altogether we have

|Si| ≤ ∆i + ∆i degzi f ≤ ∆i(1 + deg f)

≤ ∆i(2d)expO(r) · (2N)log
∗N ·expO(r),

(5.12)

where in the estimates we have used (ii) of Proposition 4·1.

Now turning again our attention to the estimate (5.9), and using (5.11) and (5.12) we

get

max(HMi(x
(j)), HMi(y

(j))) ≤ ∆i(2d)expO(r) · (2N)log
∗N ·expO(r). (5.13)

Now it is the time to use Lemma 5·4, which together with (5.13), D ≤ dr, q ≤ r and
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(5.7) proves that

deg x, deg y ≤ qDd1 +

q∑
i=1

∆−1i

D∑
j=1

HMi
(x(j))

≤ (2d)expO(r) · (2N)log
∗N ·expO(r).

This concludes the proof of (4.12) of Proposition 4·3.

6. Bounding the height in Proposition 4·3

For a number field K the set of places of K is denoted by MK . For every place v ∈MK

we choose an absolute value | · |v in such a way that for x ∈ Q we have

|x|v = |x|[Kv:R]/[K:Q] if v is infinite, |x|v = |x|[Kv :Qp]/[K:Q]
p if v is finite,

where p is the prime below v.

For any finite set of places S of K, containing all infinite places, we define the ring of

S-integers and group of S-units by

OS = {x ∈ K : |x|v ≤ 1 for v ∈MK \ S},

O∗S = {x ∈ K : |x|v = 1 for v ∈MK \ S},

respectively.

The (absolute logarithmic Weil) height of x ∈ Q is defined by picking any number field

K such that x ∈ K and putting

h(x) :=
∑
v∈MK

max(0, log |x|v);

this does not depend on the choice of K. For a polynomial f we put K := Q(a1, . . . , ag)

where a1, . . . , ag are the non-zero coefficients of f , and we define the height of f by

h(f) :=
∑
v∈MK

log max1≤i≤g |ai|v.

6·1. The result for the number field case

In this section we present a version of Theorem 2.1 of [4]. Let Γ be a finitely generated

subgroup of (Q∗)2. Let {w1, . . . ,wr} be a basis of Γ modulo Γtors. Put

hw := max
(
1, h(w1), . . . , h(wr)

)
.

Denote by K the smallest number field such that Γ ⊂ (K∗)2, and put d := [K : Q]. Let S

be the minimal finite set of places of K containing all the infinite places of K and having

the property that Γ ⊂ (O∗S)2 and denote by s the cardinality of S. Define

P (v) := 2 if v is infinite, P (v) := #OK/pv if v is finite, (6.1)
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where pv is the prime ideal of OK corresponding to v, and put

P := max
v∈S

P (v). (6.2)

The discriminant of the field K is denoted by DK .

Let f(X,Y ) ∈ Q[X,Y ] be a polynomial which is not divisible by any non-constant

polynomial of the shape aXmY n − b or aXm − bY n for some a, b ∈ Q, m,n ∈ Z≥0. We

mention that in this case f is also not divisible by any polynomial which depends on

exactly one of the variables X,Y , since then it would be divisible by a polynomial of the

shape aX − b or aY − b, respectively. Put N := deg f for the total degree of f . Let L be

the field extension of K generated by the coefficients of f . Put

δ := degX f + degY f, H := max(1, h(f)),

C0 :=
(
e13δ7d3r

)r+3
s · P

2δ2

logP
hrw · log∗

(
max(δdsP, δhw)

)
..

C1 :=
(
δ · d · s · logP ·DK(log∗DK)d−1

)O(s2) ·P2δ2 .

Let C ⊂ (Q∗)2 be the curve defined by f(x, y) = 0.

Proposition 6·1. Assume that f is absolutely irreducible. Then for every point x =

(x, y) ∈ C ∩ Γ we have

h(x) + h(y) ≤ C0H.

Proof. This is just Theorem 2.1 of [4]

Proposition 6·2. Assume that Γ = O∗S. Then for every point x = (x, y) ∈ C ∩ Γ we

have

h(x) + h(y) ≤ C1(H + 2N).

Proof. This is a weaker version of Proposition 6·1. We shortly explain how this result

is deduced from Proposition 6·1. If f(x, y) = 0 then there exists an absolutely irreducible

factor g(X,Y ) of f , which then fulfils the conditions of Proposition 6·1, thus we may

apply that for g. Further, since g divides f it is also well known that h(g) ≤ h(f) + 2N

(see Proposition B.7.3 of [19]).

We also have to take care of the dependence on hw and r, more precisely to estimate

hw and r in the case Γ = O∗S . If we take Γ := (O∗S)2 then one can bound the number of

generators r of Γ by 2s − 2 and we may choose a system of fundamental S-units to get

a set of generators for (O∗S)2, so that the height of these elements in this fundamental

system is bounded. More precisely by Lemma 2 of [17] we can choose the generators such

that

h0 ≤ c1RS ,
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where c1 := 29e
√
s− 2ds−1(log∗ d) · ((s− 1)!)2/(2s−2ds−1), and RS is the S-regulator of

K. For the S-regulator by using Lemma 3 of [11] and Lemma 2.1 of [2] (for the original

result see Louboutin [21]) we can derive the bound

RS ≤ |DK |
1
2 (log∗ |DK |)d−1 · (logP )s.

Combining these estimates the bound of our proposition follows by a simple computation.

We mention that a much sharper bound could have been deduced, but this estimate is

more than enough for our purpose.

6·2. Specializations

In this section we shall use many specializations which map K to a number field, in

order to be able to profit from our results from Section 6·1. The main feature of these

specializations, called Győry-Kronecker specializations is that using sufficiently many of

them, there will be at least one, which makes possible to extend effective results over

number fields to similar results over finitely generated domains. Such specializations were

first used by Győry [15] and [16], however, here we introduce and use the refined version

of this specialization method due to Evertse and Győry [12].

First for every u ∈ Zq we may replace zi by ui for i = 1, . . . , q. This defines a homo-

morphism from a subring of K0 to Q. More precisely, for fixed u ∈ Zq we consider the

homomorphism ϕu : K0 → Q defined by

ϕu(α) := α(u) =
g1(u)

g2(u)

for every α = g1
g2
∈ K0 with g1, g2 ∈ A0, and with the additional property g2(u) 6= 0.

Now we wish to extend this to a ring homomorphism from B to Q. Thus we will impose

some restrictions on u. Recall that K = K0(w), B = A0[f−1, w], and F is the minimal

polynomial of w, and f ∈ A0, both with properties specified in Proposition 4·1. Let ∆F

denote the discriminant of F with the convention ∆F = 1 if F is a linear polynomial.

Put

H := ∆F · FD · f,

observe that H ∈ A0 and assume that u is chosen such that H(u) 6= 0. Put d∗0 = max(degF1, . . . ,degFD)

h∗0 = max(h(F1), . . . , h(FD))

 d∗1 = max(d∗0,deg f)

h∗1 = max(h∗0, h(f)).
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By Proposition 4·1 we infer that
d∗0 ≤ (2d0)expO(r) ≤ (2d)expO(r)

h∗0 ≤ (2d0)expO(r)(h0 + 1) ≤ (2d)expO(r)(h+ 1)

d∗1 ≤ (2d)expO(r) · (2N)log
∗N ·expO(r)

h∗1 ≤ (2d)expO(r) · (2N)log
∗N ·expO(r) · (h+ 1).

(6.3)

Thus we clearly have

degH ≤ (2D − 2) · d∗0 + d∗0 + d∗1 ≤ (2d)expO(r) · (2N)log
∗N ·expO(r). (6.4)

Now let u ∈ Zq be fixed such that H(u) 6= 0. Thus the polynomial

Fu := XD + F1(u)XD−1 + · · ·+ FD(u)

has non-zero discriminant, and since FD(u) 6= 0 it has D distinct non-zero roots. Let us

denote these numbers by w(1)(u), . . . , w(D)(u).

To extend our map ϕu to B we use the representation (4.7) of elements α ∈ B. Namely,

for each j = 1, . . . , D we may define the function ϕu,j such that for α ∈ B written as

α =

D−1∑
i=1

(Pi/Q)wi, (6.5)

where P0, . . . , PD−1, Q ∈ A0, gcd(P0, . . . , PD−1, Q) = 1,

we define

ϕu,j(α) :=

D−1∑
i=1

(Pi(u)/Q(u))
(
w(j)(u)

)i
. (6.6)

This is well-defined, since for α ∈ B the polynomial Q must divide a power of f , hence

Q(u) 6= 0. By this we described exactly D ways to extend ϕu from K0 to B. Clearly,

the map ϕu,j defined above is a ring homomorphism from B to Q, thus any unit of B is

mapped to a non-zero element of Q by any of the above defined specializations. Put

Ku,j := Q(w(j)(u)) for j = 1, . . . , D, (6.7)

and denote by ∆Ku,j
the discriminant of the algebraic number field Ku,j .

In the sequel we recall three lemmas of Evertse and Győry [12], which are necessary

for our proof.

Lemma 6·3. Let u ∈ Zq with H(u) 6= 0. Then for j = 1, . . . , D we have [Ku,j : Q] ≤ D
and

|∆Ku,j
| ≤ D2D−1

(
(d∗0)qeh

∗
0 max(1, |u|d

∗
0 )
)2D−2

.

Proof. This is Lemma 5.5 in Evertse and Győry [12].
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The following lemma bounds the height of α(j)(u) := ϕu,j(α) for u ∈ Zq in terms of

the size of α ∈ B and some parameters of B.

Lemma 6·4. Let u ∈ Zq with H(u) 6= 0, and let α ∈ B. Then for j = 1, . . . , D,

h(α(j)(u)) ≤ D2 + q(D log d∗0 + log degα) +

+Dh∗0 + h(α) + (Dd∗0 + degα) log max(1, |u|).

Proof. This is Lemma 5.6 in Evertse and Győry [12].

The following lemma shows that if we take a large enough number of specializations,

then there is at least one specialization among them (say corresponding to u ∈ Zq),
such that h(α) for α ∈ B can be bounded by the heights of the images of α by the

specializations ϕu,j for j = 1, . . . , D.

Lemma 6·5. Let α ∈ B, α 6= 0, and let N0 be an integer with

N0 ≥ max(degα, 2Dd∗0 + 2(q + 1)(d∗1 + 1)). (6.8)

Then the set

S := {u ∈ Zq : |u| ≤ N0,H(u) 6= 0}

is non-empty, and

h(α) ≤ 5N4
0 (h∗1 + 1)2 + 2D(h∗1 + 1)H, (6.9)

where H := max{h(α(j)(u)) : u ∈ S, j = 1, . . . , D}.

Proof. This is Lemma 5.7 in Evertse and Győry [12].

6·3. Conclusion of the proof of Proposition 4·3

In this subsection we combine the specialization method and the result for the number

field case presented in the first two subsections of this section, in order to prove (4.13).

Proof of ( 4.13) of Proposition 4·3 Since in the case q = 0 we are in the number field

case our Theorem 2.1 of [4] will give a much better bound than stated in Proposition

4·3. So we may consider the case q > 0. Let P be a fixed partition of I and (x, y) ∈ C′ be

a fixed solution associated with P. Choose u ∈ Zq with H(u) 6= 0 and k ∈ {1, . . . , D},
and consider the corresponding specialization ϕu,k defined in (6.6), where later we shall

specify some further requirements on u and k when we shall apply Lemma 6·5. Then we

have the notation

ϕu,k (x) = x(k)(u), ϕu,k (y) = y(k)(u),

ϕu,k (aij) = a
(k)
ij (u) for (i, j) ∈ I.

(6.10)
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Put Fu,k(X,Y ) :=
∑

(i,j)∈I a
(k)
ij (u)XiY j , let Ku,k be the field defined in (6.7), Su,k be

the set of places of Ku,k containing all infinite places and those finite places which lie

above prime ideals dividing f(u). Since we clearly have

ϕu,k(B) ⊆ OSu,k
,

thus from (x, y) ∈ C′ we get

Fu,k

(
x(k)(u), y(k)(u)

)
= 0 in x(k)(u), y(k)(u) ∈ O∗Su,k

. (6.11)

Now we shall apply Lemma 6·5. Since in the previous section we have proved (4.12),

i.e.

deg x,deg y ≤ (2d)expO(r) · (2N)log
∗N ·expO(r),

now in view of (6.3) we may apply Lemma 6·5 with some

N0 ≤ (2d)expO(r) · (2N)log
∗N ·expO(r)

to infer that the set

S := {u ∈ Zq : |u| ≤ N0, H(u) 6= 0}

is non-empty. Taking also (6.3) in account we have

h(x) ≤ (2d)expO(r) · (2N)log
∗N ·expO(r)(h+ 1)2Hx,

h(y) ≤ (2d)expO(r) · (2N)log
∗N ·expO(r)(h+ 1)2Hy,

(6.12)

where Hx := max{h(x(k)(u)) : u ∈ S, k = 1, . . . , D} and Hy := max{h(y(k)(u)) : u ∈
S, k = 1, . . . , D}.

To finish the proof, the last step is to estimate Hx and Hy using Proposition 6·2 for

equation (6.11). We fix any u ∈ S and k = 1, . . . , D. By Lemma 6·3 and in view of (6.3)

we get that

|∆Ku,k
| ≤ D2D−1

(
(d∗0)qeh

∗
0 max(1, |u|d

∗
0 )
)2D−2

≤ exp
{

(2d)expO(r) · (h+ 1) · (log∗N)2
}
,

(6.13)

and [Ku,k : Q] ≤ D.

To estimate h(Fu,k) we bound the height of its coefficients, i.e. h(a
(k)
ij (u)) for (i, j) ∈ I.

For this we use first Lemma 4·2, which in view of deg ãij < d and h(ãij) < h gives

deg aij ≤ (2d)expO(r) h(aij) ≤ (2d)expO(r)(h+ 1).

This together with Lemma 6·4 gives for every (i, j) ∈ I the estimate

h
(
a
(k)
ij (u)

)
≤ (log∗N)2(2d)expO(r)(h+ 1),

which in turn proves

h(Fu,k) ≤ n(F ) ·maxh
(
a
(k)
ij (u)

)
≤ N2(log∗N)2(2d)expO(r)(h+ 1). (6.14)
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We also have to estimate the cardinality of SKu,k
. For this, we first bound the absolute

value of f(u) by the elementary computation

|f(u)| ≤ (deg f)q · eh(f) · (max(1, |u|))deg f ≤ (d∗1)q · eh
∗
1 · (max(1, |u|))d

∗
1

≤ exp
{

(2d)expO(r) · (2N)log
∗N ·expO(r) · (h+ 1)

}
.

Clearly we have s := |SKu,j | ≤ D(1 + ω(f(u))), where ω(f(u)) denotes the number of

distinct prime factors of f(u). Thus we get

s ≤ O (dr log∗ |f(u)|/ log∗ log∗ |f(u)|)

≤ (2d)expO(r) · (2N)log
∗N ·expO(r) · (h+ 1).

(6.15)

Further, for the maximum of the norm of the prime ideals belonging to SKu,k
we have

the estimate

P ≤ |f(u)|D ≤ exp
{

(2d)expO(r) · (2N)log
∗N ·expO(r) · (h+ 1)

}
. (6.16)

Now we shall show that for the polynomial Fu,l we have

Fu,l is not divisible by any non-constant polynomial of the form

XmY n − α or Xm − αY n,where m,n ∈ Z≥0 and α ∈ Ku,l.
(6.17)

The coefficients aij of F are units in B, thus all these coefficients are mapped to

non-zero elements a
(l)
ij (u) by the specialization ϕu,l, so the partitions of the polyno-

mial F are just the same as the partitions of the polynomial Fu,l. If rank Λ(F,P) = 2

then we also have rank Λ(Fu,l,P) = 2. Further, if rank Λ(F,P) = 1 then we also have

rank Λ(Fu,l,P) = 1 and by Proposition 3·1 the corresponding system of polynomials

g1, . . . , gk (see Section 3) has the property gcd(g1, . . . , gk) = 1 in K[X]. Thus there exist

polynomials u1, . . . , uk ∈ A[X] and a constant R ∈ A with

u1g1 + · · ·+ ukgk = R, (6.18)

and by Proposition 3·3 we see that R can be chosen such that it has a representative R̃

with

deg R̃ ≤ d(4N)log
∗
2 N , h(R̃) ≤ (4N)log

∗
2 N+2(d+ 1)rh.

This R fulfils all assumptions made for R in Proposition 4·1, so assume that f and B

have been chosen in Proposition 4·1 such that R ∈ B∗. Now we apply the specialization

ϕu,l to (6.18) to infer that

(u1)u,l(g1)u,l + · · ·+ (uk)u,l(gk)u,l = R(l)
u .

Since R ∈ B∗ we have R
(l)
u 6= 0 hence gcd((g1)u,l, . . . , (gk)u,l) = 1 in Ku,l. By Proposition

3·1 this proves (6.17). So the polynomial Fu,l cannot have any non-constant factor of the

shape aXmY n− b or aXm− bY n for some a, b ∈ Q, m,n ∈ Z≥0. Thus the solution set of

equation (6.11) fulfills the conditions of Proposition 6·2, so combining this by statements
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(6.14), (6.15), (6.16), (6.13) and [Ku,k : Q] ≤ D we get the estimate

h(x(k)(u)), h(y(k)(u)) ≤ exp
{

(2d)expO(r)(2N)log
∗N ·expO(r) · (h+ 1)3

}
,

for every u ∈ S and k = 1, . . . , D, which provides the same upper bound for Hx and Hy.

Now combining this latter estimate with (6.12) we get the desired bound (4.13). This

concludes the proof of Proposition 4·3.
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