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PROBLEMS AND CONJECTURES AROUND SHIFT RADIX SYSTEMS
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Abstract. Some basic open problems and conjectures concerning shift radix systems are listed and their

relations to well-known concepts and questions are outlined.
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1. Introduction and basic definitions

In 2005 Akiyama et al. [2] introduced the notion of a shift radix system and pointed out connections of
this simple dynamical system to well-known number systems such as beta-numeration and canonical number
systems. Let us first recall the definitions (here for y ∈ R we denote by byc the largest n ∈ Z with n ≤ y).

Definition 1.1. Let d ∈ N and r = (r0, . . . , rd−1) ∈ Rd.

(i) The mapping τr : Zd → Zd given by

τr(z) = (z1, . . . , zd−1,−brzc)t (z = (z0, . . . , zd−1)t ∈ Zd)
is called a shift radix system (SRS for short), where we set rz := r0z0 + · · ·+ rd−1zd−1.

(ii) We say that τr has the finiteness property if for each z ∈ Zd there is k ∈ N such that the k-fold
iterate of the application of τr to z satisfies τkr (z) = 0.

This definition agrees with the one in [11], but the SRS in [2] coincide with our SRS with finiteness
property. Our definition is equivalent to the property that τr(z0, . . . , zd−1) = (z1, . . . , zd−1, zd)

t, where zd is
the unique integral solution of the linear inequality

0 ≤ r0z0 + · · ·+ rd−1zd−1 + zd < 1 .

Therefore, we can write the mapping τr as the sum of a linear function and a small error term. More
explicitly, we have

τr(z) = Rr z + v(z) (z ∈ Zd),
where we put v(z) := (0, . . . , 0, rz − brzc)t (in particular, ||v(z)||∞ < 1) and Rr is a companion matrix of
the polynomial

χr(X) := Xd + rd−1X
d−1 + · · ·+ r1X + r0 (r = (r0, . . . , rd−1) ∈ Rd).
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Since χr agrees with the characteristic polynomial of the linear recurrence

zn = −rd−1zn−1 − · · · − r0zn−d,

SRS is viewed as an almost linear recurrence.

SRS and their relation to beta-numeration seem to have appeared for the first time in Hollander’s PhD
thesis [15] in 1996; two years earlier Vivaldi [26] had studied similar mappings in his detailed investigation
of discretized rotations (see also Reeve-Black and Vivaldi [22]). The dynamical aspects of SRS are described
in a broader context by Barat et al. [9].

The aim of the present paper is to provide a concise list of open problems and conjectures concerning
SRS thereby extending work of the first [1] and the third authors [21, Section 6]. The reader is referred to
[17] for detailed background information, illustrations and algorithms.

2. Problems and conjectures

The following sets play a central role in the study of various aspects of SRS.

Definition 2.1. For d ∈ N set

Dd :=
{
r ∈ Rd : ∀z ∈ Zd ∃k ∈ N ∃` ∈ N>0 : τkr (z) = τk+`r (z)

}
and

D(0)
d :=

{
r ∈ Rd : τr is an SRS with finiteness property

}
.

Our fundamental open problem can roughly be described in the following way:

Problem 2.2. Give a complete description of Dd and D(0)
d for each d ≥ 2.

In the sequel we break up Problem 2.2 into several subproblems and conjectures. Computational experi-
ments suggest the following (cf. [21]):

Problem 2.3. Prove that r ∈ D(0)
d ∩Qd cannot be verified in polynomial time. Is it true that this problem

does not belong to the NP complexity class?

SRS are closely related to number systems:

• For an algebraic integer β > 1 the restriction of the beta-transformation Tβ to Z[β] is conjugate to
an SRS associated to a parameter defined by β.

• Akiyama et al. [5] investigated number systems with rational bases and established relations of these
number systems to Mahler’s 3

2 -problem (cf. [20]). These number systems can also be regarded as
special cases of SRS (see Steiner and Thuswaldner [25]) and there seem to be relations between the
3
2 -problem and the length of SRS tiles (see below) associated with τ−2/3.

• The backward division mapping used to define canonical number systems1 is conjugate to τr for
certain parameters r; thus, characterizing all bases of canonical number systems is a special case
of describing certain vectors r ∈ Qd giving rise to SRS with finiteness property (cf. Akiyama et
al. [2]).

1In [16] the term “complete base” was coined.
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Problem 2.4. Characterize all parameters r for which the digits of the underlying number systems gives a
language of a sofic shift (see [18] for the definition).

The Schur-Cohn region Ed (see Schur [24]) is the set of all vectors r ∈ Rd which define a contractive
polynomial χr.

Conjecture 2.5. We have D(0)
d ⊂ Ed.

This conjecture has only been settled for d ∈ {1, 2, 3} (see [4, 14]).

Problem 2.6. What is the measure of D(0)
d ? What can we say about the topology of D(0)

d ? What is the

Hausdorff dimension of the boundary of D(0)
d ?

These problems have only been settled for d = 1.

Results on the topology of D(0)
2 are given by Weitzer [27], in particular, he showed that D(0)

2 is neither
connected nor simply connected, and explicitly exhibited “holes” and components. It would be interesting
to prove the following conjecture.

Conjecture 2.7. The fundamental group of D(0)
3 is non-trivial, i.e., it has a handle.

The following task was put forward and commented in [21].

Problem 2.8. Given r ∈ Ed ∩Qd, is r ∈ Dd algorithmically decidable?

Periodicity of the orbits on ∂Dd is an open problem even in dimension 2. For instance, the special case
(1, λ) ∈ ∂D2 can be expressed in the following simple arithmetical form:

Conjecture 2.9. Let λ ∈ R be such that −2 < λ < 2. Further, let a0, a1 ∈ Z and define

an+1 := −an−1 − bλanc (n ≥ 1).

Then the sequence a0, a1, a2, . . . is periodic.

Some partial results have been obtained in [3] (see also [19, 6]). A weaker conjecture is that for any λ
there exist infinitely many non-symmetric periodic orbits.

A remarkable conjecture of Schmidt [23] can be reformulated more generally in terms of the ultimate
periodicity of τr, where r belongs to the hypersurface

E
(C)
d := {r ∈ ∂Ed : Rr has a non-real eigenvalue of modulus 1}.

Problem 2.10. For which r ∈ E
(C)
d is each orbit of τr ultimately periodic, in particular the orbit of

(1, 0, . . . , 0)t ?

For particular orbits addressed in Problem 2.10 we suspect the following more explicit result.

Conjecture 2.11. Let r ∈ E
(C)
d be such that χr is irreducible. Let s be the number of pairs of complex

conjugate roots (α, ᾱ) of χr with |α| = 1. Then every orbit of (1, 0, . . . , 0)t under τr is periodic if s ∈ {1, 2},
and there exist r such that the orbit of (1, 0, . . . , 0)t is aperiodic if s ≥ 3 (see also [12], [13]).
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SRS also admit a geometric theory, in particular, it is possible to define so-called SRS tiles (see Berthé
et al. [11]). In the sequel we assume r0 6= 0.

Definition 2.12. Let r = (r0, . . . , rd−1) ∈ Ed and z ∈ Zd be given. The set

Tr(z) = Lim
n→∞

Rnr τ
−n
r ({z})

is called the SRS tile associated with r; here the limit is taken with respect to the Hausdorff metric.

A tiling is a collection of compact sets covering Rd with zero measure overlaps (see [25]). SRS tiles are
conjectured to induce tilings of their representation spaces. A special case of this conjecture implies the
Pisot substitution conjectures (see e.g. Arnoux and Ito [7], Baker-Barge-Kwapisz [8], Barge [10]) for Pisot
beta substitutions. We present two challenging tasks.

Conjecture 2.13. Let r ∈ Ed. Then {Tr(z) : z ∈ Zd} is a tiling of Rd.

Problem 2.14. Let r ∈ Ed and z ∈ Zd. Give criteria for Tr(z) being the closure of its interior.

Finally, we state a problem related to the connectivity of the so-called central SRS tiles Tr(0).

Problem 2.15. Describe the Mandelbrot sets

{r ∈ Ed : Tr(0) is connected}
for d ≥ 2.
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