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ABSTRACT
Although the recently concluded CLEOPATRA trial showed clinical benefits of combining trastuzumab and
pertuzumab for treating HER2-positive metastatic breast cancer, trastuzumab monotherapy is still the
mainstay in adjuvant settings. Since trastuzumab resistance occurs in over half of these cancers, we
examined the mechanisms by which treatment of intrinsically trastuzumab-resistant and -sensitive tumors
can benefit from the combination of these antibodies. F(ab0)2 of both trastuzumab and pertuzumab were
generated and validated in order to separately analyze antibody-dependent cell-mediated cytotoxicity
(ADCC)-based and direct biological effects of the antibodies. Compared to monotherapy, combination of
the two antibodies at clinically permitted doses enhanced the recruitment of natural killer cells
responsible for ADCC, and significantly delayed the outgrowth of xenografts from intrinsically
trastuzumab-resistant JIMT-1 cells. Antibody dose-response curves of in vitro ADCC showed that antibody-
mediated killing can be saturated, and the two antibodies exert an additive effect at sub-saturation doses.
Thus, the additive effect in vivo indicates that therapeutic tissue levels likely do not saturate ADCC.
Additionally, isobole studies with the in vitro trastuzumab-sensitive BT-474 cells showed that the direct
biological effect of combined treatment is additive, and surpasses the maximum effect of either
monotherapy. Our results suggest the combined therapy is expected to give results that are superior to
monotherapy, whatever the type of HER2-positive tumor may be. The combination of both antibodies at
maximum clinically approved doses should thus be administered to patients to recruit maximum ADCC
and cause maximum direct biological growth inhibition.

Abbreviations: ADCC, Antibody-dependent cell-mediated cytotoxicity; DAPI, diamidino-2-phenylindole; EC50, half
maximal effective concentration; F(ab’)2, F(ab’)2, bivalent antibody fragment of 2 Fab domains connected by disul-
fide bonds, lacking the Fc domain; FCS, fetal calf serum; HER2, human epidermal growth factor receptor 2, (a.k.a.
ErbB2); MTT, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide; NK, natural killer; SCID, severe combined
immunodeficiency

KEYWORDS
Antibody-dependent cell-
mediated cytotoxicity
(ADCC); combination
antibody therapy; Herceptin
resistance; HER2;
pertuzumab; resistance;
trastuzumab

Introduction

Overexpression of HER2 is found in different types of human
malignancies, including 20–25% of breast cancers1,2 and 17–
22% of gastric cancers,3 and it is associated with aggressive
growth and poor clinical outcomes. The breakthrough finding
that some anti-HER2 antibodies can inhibit the growth of can-
cer cells overexpressing HER2 on their surface led to the devel-
opment of several antibodies against the extracellular domain
of the protein.4 Trastuzumab (Herceptin�), a humanized anti-
HER2 monoclonal antibody, was the first antibody approved as
a treatment for HER2-positive metastatic breast cancer,5 and,
due to its remarkable success, it is currently a first-line treat-
ment. Its ability to inhibit in vitro and in vivo tumor growth6,7

is attributed to internalization and down-regulation of cell sur-
face HER2,8 inhibition of the PI3K/Akt pathway,9 cell cycle

arrest in G1, inhibition of angiogenesis10 and antibody-
dependent cell-meditated cytotoxicity (ADCC).11,12

Despite encouraging clinical results, about half of the HER2-
positive cancers are primarily resistant to trastuzumab or
become resistant during prolonged treatment.6,7 Many poten-
tial mechanisms by which resistance to targeted antibody ther-
apy may develop have been described, including steric
hindrance by the extracellular matrix (ECM) proteins,13

increased signaling from the insulin-like growth factor-I recep-
tor,14 constitutive activation PI3K/Akt pathways15 or impaired
ADCC response.16,17

We previously showed that HER2-positive JIMT-1 human
breast cancer cells are intrinsically resistant to trastuzumab in
vitro due to steric hindrance caused by ECM components, such
as MUC413 and CD44-bound hyaluronic acid.18 However,
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trastuzumab treatment can delay the outgrowth of JIMT-1 xen-
ografts in severe combined immunodeficiency (SCID) mice, if
treatment is started at the time of tumor inoculation, but not if
treatment starts after the tumor has reached a few hundred
mm3.12 The antitumor effect is the result of ADCC mediated
by trastuzumab, and cells that have little or no ECM, such as
freshly trypsinized and injected tumor cells, as well as circulat-
ing and disseminated tumor cells,19 are the primary targets.

Pertuzumab (Perjeta�), another humanized monoclonal
antibody, targets the dimerization arm of HER2, which is dis-
tinct from the binding site of trastuzumab.20 Through blocking
HER2 dimerization with other HER (ErbB) family members, it
inhibits downstream mitogenic signaling processes.20 Because
trastuzumab and pertuzumab bind to distinct epitopes on
HER2, it has been hypothesized that a combination of the 2
agents might provide a more effective inhibition of tumor
growth than either agent alone. In fact, combining 2 HER2-tar-
geting antibodies against xenografted, in vitro trastuzumab-
sensitive N87 gastric cancer cells synergistically decreased
tumor growth, reciprocating the in vitro antiproliferative effect
of the combination.20,21 Since trastuzumab binds to HER2 close
to the cell membrane, while pertuzumab binds to the dimeriza-
tion arm, which is more distal from the membrane,20,22 it is
possible that, in tumors where ECM components interfere with
trastuzumab binding, pertuzumab can still bind to HER2.

Treating HER2-positive malignancies with the combination of
trastuzumab and pertuzumab has been explored in the preclinical
setting,23,24 and pertuzumab was approved for clinical use in com-
bination with trastuzumab and docetaxel as neoadjuvant treat-
ment for patients with HER2-positive locally advanced,
inflammatory, or early-stage breast cancer in the USA25,26 and
metastatic or locally recurrent unresectable breast cancer in
Europe.25,26 Final overall survival analysis from the CLEOPATRA
clinical trial showed that patients with metastatic HER2-positive
breast cancer treated with this combination lived 15.7 months lon-
ger than those who received trastuzumab and chemotherapy
alone, with a median overall survival of 56.5 vs. 40.8 months.27 For
postoperative adjuvant therapy of HER2-positive breast cancers,
however, trastuzumab in combination with chemotherapy is still
the current mainstay. The benefit of combination therapy is cur-
rently being further tested in the Phase 3 APHINITY trial (Clini-
calTrials.gov identifier NCT01358877), to determine if the
combination of pertuzumab and trastuzumab is better than trastu-
zumab alone, in terms of efficacy, for patients who have had sur-
gery for HER2-positive breast cancer.

Because trastuzumab resistance in HER2-overexpressing
breast cancers remains a central problem,28 we aimed to
explore the mechanisms by which the combination of trastuzu-
mab and pertuzumab could provide benefits in treating HER2-
positive tumors. We used the intrinsically trastuzumab-resis-
tant breast cancer cell line JIMT-1 as in vitro ADCC target, and
as xenograft tumors to show that, at tissue concentrations
expected in the clinical setting, neither of the antibodies satu-
rates ADCC, and consequently the combination of the 2 anti-
bodies significantly delays tumor outgrowth by additively
enhancing the recruitment of ADCC. In addition, isobole stud-
ies with the in vitro trastuzumab-sensitive BT-474 cells showed
that the direct biological effect of combined treatment is addi-
tive, and surpasses the maximum effect of either monotherapy.

Consequently, we recommend that the 2 antibodies should be
used in combination at the currently approved clinical dosage
regimes to achieve maximum effect both in ADCC and in
direct biological growth inhibition.

Results

In order to distinguish between direct biological effects of the
antibodies and their ability to recruit ADCC, F(ab’)2 of trastu-
zumab and pertuzumab were produced using pepsin digestion.
Since the digested F(ab’)2 still has some affinity for protein A
and protein G, the F(ab’)2 were purified using size-exclusion
chromatography. The product was a homogeneous band in
non-reducing SDS-PAGE, and bound with high affinity to
native HER2 on cell surfaces, but did not bind anti-Fc

Figure 1. In vitro effect of anti-Her2 antibodies and F(ab’)2 on the proliferation of
HER2C tumors. Proliferation inhibition of the trastuzumab-sensitive BT-474 cell
line (a,b) and the trastuzumab-resistant cell line JIMT-1 (c) was measured by an
MTT-based colorimetric assay. All measured points are average § SD of triplicates
from �3 independent experiments normalized to untreated control. Half maximal
effective inhibitory concentration (EC50) was calculated from the fitted dose-
response curves.
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polyclonal antibodies (Expanded View Fig. 1), and did not
mediate ADCC in vitro (Expanded View Fig. 2).

The in vitro effect of trastuzumab and pertuzumab, as well
as their F(ab’)2, on the proliferation of HER2-positive breast
tumor cell lines was tested with an MTT-based colorimetric
assay (Fig. 1). Both trastuzumab IgG and trastuzumab F(ab’)2
decreased the proliferation of the trastuzumab sensitive BT-474
cell line to a similar extent, with similar half maximal effective
concentrations of 0.5–0.8 nM (SEM D 0.1, Fig. 1a). Pertuzumab
IgG was less efficient in decreasing the proliferation of BT-474
(EC50 D 7.2 nM, SEM D 2.2); however, the EC50 of its F(ab’)2
was nearly 20-times smaller (EC50 D 0.4 nM, SEM D 0.1)
(Fig 1b). This can be explained by its ability to more effectively
disrupt the interactions of HER2 with other epidermal growth
factor receptor (EGFR) family members owed to its smaller
size.29 The trastuzumab-resistant JIMT-1 cell line showed in
vitro trastuzumab and pertuzumab resistance, and the removal
of the Fc region did not alter this (Fig. 1c).

Next, isoboles were measured, also using MTT-based prolif-
eration assay, to assess whether combining trastuzumab and
pertuzumab IgGs, or their F(ab’)2 had an additive or synergistic
effect on the proliferation of the sensitive BT-474 cells in vitro
(Fig 2). Doses were gradated in logarithmic steps symmetrically
upwards and downwards of the half effective dose determined
in Fig. 1. Combining either trastuzumab and pertuzumab IgGs,
or their F(ab’)2s, resulted in stronger inhibition of proliferation
than using either whole antibody or F(ab’)2 alone. The isobole

bands corresponding to equal growth inhibitory effects (color
coded for better viewing) run straight across between equiva-
lent concentrations of the singly applied antibodies. This sug-
gests that the combination of trastuzumab and pertuzumab
exert an additive, but not a synergistic effect in decreasing cell
proliferation in vitro, regardless of being present as whole anti-
bodies or F(ab’)2. In the case of the trastuzumab-resistant
JIMT-1 cell line, none of the antibody combinations offered
any in vitro proliferation inhibition (data not shown).

We therefore tested both trastuzumab and pertuzumab,
as well as their F(ab’)2, either alone, or in combination, for
their ability to inhibit the growth of JIMT-1 tumor xeno-
grafts in SCID mice. Fig. 3 shows that both trastuzumab
and pertuzumab whole antibodies inhibited tumor out-
growth for a period of a month after inoculation, similarly
to our earlier findings. However, there was no conceivable
difference between the efficacy of trastuzumab and pertuzu-
mab. When the 2 antibodies were administered at the same
dose, but together, tumor outgrowth was delayed compared
to the effect of either antibody alone, and was significantly
slowed throughout the experiment. At the same time, no
effect on tumor growth was detected for either the F(ab’)2
or their combination compared to the solvent-treated con-
trol. This observation is coherent with JIMT-1 cells being in
vitro resistant to the biochemical effects of trastuzumab and
pertuzumab, and emphasizes the importance of ADCC dur-
ing in vivo antibody therapy.

Figure 2. Isobole analysis of in vitro biological growth inhibitory effect of trastuzumab and pertuzumab combinations. Proliferation of BT-474 cells was assessed with MTT
assay. Data are from �3 replicates from �3 independent experiments. The vertical axis of the 3D coordinate systems show how much the proliferation rate decreased
compared to the untreated control. The x and y axes represent trastuzumab and pertuzumab concentrations, or that of their F(ab’)2 variants. Doses are centered around
the EC50 values determined in Fig. 1. Bottom images show the top-view, smoothed images of the corresponding upper figures.
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To explore the mechanism behind improved ADCC medi-
ated by the combination of trastuzumab and pertuzumab, we
quantitatively assessed in vitro ADCC using an ECIS ZQ real
time adherent cell analyzer. The CD16.176V.NK-92

immortalized effector cell line was used to make the ADCC
measurements reproducible and independent of quality of
donor peripheral blood mononuclear cells (PBMCs), which
might fluctuate from experiment to experiment. To visually
verify NK cell immune synapse formation at saturating anti-
body concentration, confocal microscopy of eGFP-tagged
CD16.NK-92 cells targeting JIMT-1 cells was performed, after
labeling CD16 on the NK cells and HER2 on the target cells
(Fig. 4a). Next, we determined the range of antibody concentra-
tion where ADCC was evoked but was not saturated (Figs. 4b-
d). At 6.6 pM, the antibody has already caused a considerable
extent of cell killing, while this concentration applied without
NK cells had no effect on cell proliferation (Figs. 1a and 1b).
The extent of cell killing by 67 pM of either trastuzumab or per-
tuzumab was almost 90%, close to saturation (Figs. 4b, 4c), and
concentrations above that caused maximum killing (Fig 4d).

In order to define how the combined effect of trastuzumab and
pertuzumab relates to the ADCC evoked by their individual appli-
cation, concentrations for single treatment were set to 6.6 pM and
67 pM, and compared to combinations using the same concentra-
tions of the each antibody (Fig. 4b, 4c), as well as combinations
using half of these concentrations, 3.3 pM and 33 pM for each
antibody (Fig. 4c). The F(ab’)2 were not studied extensively in this
system because none of them decreased the cell index; neither
alone nor in combination did they induce ADCC (Supplementary
Fig. 2). Our data reveal that both trastuzumab and pertuzumab
IgG antibodies induced ADCC, and thus decreased the cell index
in a dose-dependent manner, pertuzumab being slightly less effi-
cient. Using combination treatments where the total antibody con-
centration (3.3 pM C 3.3 pM, or 33 pM C 33 pM) was equal to

Figure 3. Effect of anti-HER2 antibodies and their F(ab’)2 on in vivo tumor growth.
Antiproliferative effect of the antibodies on JIMT-1 was examined in subcutane-
ously xenotransplanted SCID mice. Each group consisted of 6–8 mice. Compared
to untreated control, neither trastuzumab F(ab’)2, pertuzumab F(ab’)2, nor their
combination inhibited tumor growth in SCID mice. Trastuzumab or pertuzumab
whole antibodies significantly reduced tumor growth compared to control and to
all F(ab’)2 treatments from day 21 onwards (p D 0.05) and did not differ from each
other significantly. Combination of the 2 whole antibodies achieved greater tumor
growth inhibition, the difference from trastuzumab and pertuzumab alone was sig-
nificant from day 38 and 42 onwards, respectively (p D 0.05). Tumor sizes in the
shaded areas (white, light gray, dark gray) significantly differed between the areas,
but not within the areas (p < 0.05).

Figure 4. In vitro ADCC mediated by trastuzumab and pertuzumab. Confocal microscopy visualizes in vivo synapse formation induced by trastuzumab and pertuzumab.
Red: HER2, green: eGFP expressing NK-92 cells, blue: CD16, FOV 60 mm £ 60 mm. Quantitative, population level in vitro ADCC of JIMT-1 target cells with CD16.176V.NK-
92 effector cell line was measured on ECIS ZQ real-time cell analyzer. Traces from one experiment are show in (b). Effector/target cell ratio was 2.5:1 in all cases. Cell indi-
ces of antibody-free samples with NK-92 cells present were the same as double negative (NK-92 and antibody free) control and were used as reference for normalization.
Reduction of cell number (impedance) at the end-point of each trace, averaged for �2 replicates per � 3 independent experiments is shown in (c). Dose response curves
fitted to the Hill equation are presented in (d).
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the comparable single treatment (6.6 pM or 67 pM), we detected
very similar degrees of cytotoxicity that were statistically identical.
Also, for the nearly saturating concentrations, combination of the
two antibodies, to reach twice the concentration of singly applied
antibodies, could not significantly increase the efficacy of killing.
However, for the non-saturating antibody concentrations, the
combination yielding twice the concentration of single applica-
tions resulted in doubling the average efficacies of the single treat-
ments (Fig. 4b, 4c). Accordingly, the EC50 value for combined
treatment determined from Hill-plots (Fig 4d) was 6.1 pM, as
compared to 12.0 pM and 11.5 pM for trastuzumab- and pertuzu-
mab-mediated ADCC, which suggests an additive effect.

To verify that such an additive effect could also exist in vivo,
we quantitated the density of penetrating NK cells as a function
of penetration depth in frozen sections of the tumors removed
at the end of the in vivo experiment. NK cells were defined as
7–10 mm CD45-positive, HER2-negative cells, containing
unanimously identifiable DAPI stained nuclei. We imaged the
central 10 mm part of 14 mm thick tissue sections divided into
3 confocal slices to detect and evaluate the small, moderately
fluorescent murine NK cells. Images of vehicle-treated control
and combined antibody-treated tumors are shown in Fig. 5a.
HER2 of the tumor is shown in green, nuclei in blue, and CD45
on murine NK cells in red (or, when it overlaps along the z axis
with the nucleus, purple). NK cells were counted and their den-
sity plotted as a function of penetration depth (Fig. 5b). NK cell

concentration was higher at the margins of the section, and
decreased toward the center of the tumor. Both trastuzumab-
and pertuzumab-treated tumors showed elevated numbers of
NK cells compared to control. The tumors receiving combina-
tion treatment exhibited an even higher density of NK cells in
the deeper areas. We also observed that NK cells could pene-
trate the tumor (stroma and matrix) deeper in the case of IgG
combination treatment, creating longer and larger fissures
along which they could attack antibody-binding tumor cells.

A closer inspection also revealed that NK cells belong to 2
distinct morphological groups: flattened NK cells embracing
HER2-positive tumor cells are likely functionally active, while
round NK cells distant from tumor cells are not engaged. In
addition to the differences of absolute NK cell densities, it is
interesting to note the ratio of flattened to round NK cells. This
was 0.48 in F(ab’)2 treated tumors, increased to 1.17 in single
IgG treated ones, and was even higher, 1.68 in the case of
tumors treated with antibody combination, suggesting that the
NK cells in anti-HER2 IgG treated tumors were not only pres-
ent in higher numbers, but also taking an active role.

Discussion

This study was undertaken to examine if the combination of
trastuzumab and pertuzumab provides any benefit in treating
HER2-positive tumors that are in vitro resistant to trastuzumab,
and to examine the mechanisms behind the possible beneficial
effect. To distinguish between direct biological (signaling-based)
effects of the antibodies and ADCC mediated by them in vivo,
we generated F(ab’)2 of both trastuzumab and pertuzumab. We
verified that these F(ab’)2 do not bind anti-Fc polyclonal anti-
bodies, do not mediate ADCC in vitro, but exert equal or greater
antiproliferative effect in vitro on the trastuzumab sensitive BT-
474 cells. This model, reflecting the direct biological effect of the
antibodies, also allowed us to study quantitatively the interaction
between trastuzumab and pertuzumab when applied in combina-
tion. Isoboles revealed that the combination of the two whole
antibodies, as well as that of their F(ab’)2, exerted an additive
effect, with no evidence for synergism. The maximum effect of
the combined administration of the two antibodies is higher
than the maximum effect of either antibody alone. This reflects
the distinct mechanism by which each of them affects HER2 sig-
naling, downregulation of HER2 by trastuzumab8 and inhibition
of its dimerization with EGFR family members by pertuzumab,20

which can independently inhibit cell growth.
While neither of the antibodies or their F(ab’)2, nor their

combination had any direct biological effect on the JIMT-1
cells, the whole antibodies could mediate ADCC against these
cells in vitro. This ADCC showed an additive effect for non-sat-
urating concentrations of the antibodies; however, under satu-
rating concentration of each antibody, the maximum ADCC
did not increase when both antibodies were applied together.
This is explained by the single mechanisms of ADCC, which
can be made more efficacious by engaging twice as many Fcg
receptors on the same target, with two antibodies binding to
different epitopes, but is saturated when enough Fcg receptors
are collected into the immune synapse of the NK cell.

In vivo growth of trastuzumab-resistant JIMT-1 tumors was
not affected by the F(ab’)2 of either trastuzumab, pertuzumab, or

Figure 5. NK cell infiltration of JIMT-1 tumor xenografts. Frozen sections of excised
tumors were fluorescently labeled for HER2 (green), NK cells (CD45, red/magenta),
and nucleic DNA (blue). Sections from an untreated control (left) and one treated
with trastuzumab plus pertuzumab combination (right) are shown in (a). Treat-
ment with antibodies enhances NK cell invasion, which results in extensive tumor
lesion and a less dense tumor tissue structure. NK cell penetration into the tumor
was quantitatively analyzed by counting CD45C nucleated cells in 0.05 mm2 areas
starting from the side of the tumor toward the center (b).
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their combination, consistent with the lack of their effect in vitro
and their inability to recruit ADCC. Trastuzumab prevented the
outgrowth of tumors as established earlier.12 Also, pertuzumab
exerted a similar antitumor effect. Combination of the two anti-
bodies prolonged the tumor-free period and significantly slowed
tumor growth. This implies that ADCC is a valuable therapeutic
mechanism of action in the case of in vitro trastuzumab-resistant
HER2-positive tumors, and that combining two distinct mono-
clonal antibodies, which can both mediate ADCC against the
same molecular target, can be highly beneficial. In fact, we
observed that the combination treatment increased the number
of invading NK cells, as well as the proportion of NK cells
actively engaged in killing, and this enhanced recruitment nega-
tively correlated with tumor progression and size.

To analyze how the combination of the two antibodies
enhances ADCC, we measured ADCC efficacy in vitro as well,
as a function of antibody concentration. Using the same JIMT-
1 cells as targets, we found that ADCC was saturable with
increasing doses, and the combination of the 2 antibodies
enhanced ADCC additively only in non-saturating concentra-
tions. Since the same combination in vivo also produced an
antitumor effect that was at least additive, it is likely that in
vivo doses used in these experiments do not saturate ADCC
either. One obvious possibility is that the in vivo administered
antibody doses of 5 mg/kg resulted in non-saturating tissue
concentrations in the tumor.30 Although it is highly challenging
to give a correct estimate of antibody tissue levels,30,31 since the
doses are comparable to those in clinical application but
administration in mice was done even more frequently (twice
per week) than the clinical administration (bi-weekly or even
less frequently), tissue levels in the clinical setting might even
be lower than those we achieved in mice.

Other factors to consider are the lower NK cell to target
ratios in vivo, and the lower affinity FcgRIII receptors on native
NK cells compared to those in CD16.NK92 cells. These factors
together can all contribute to a decreased saturation of ADCC
in vivo, which implies that if the two antibodies are applied in
combination, each at their usual therapeutic dose, in vivo
ADCC can be additively enhanced.

From these observations, we can conclude that ADCC medi-
ated by anti-HER2 antibodies is able to efficiently combat even
those HER2-positive tumors that are resistant to trastuzumab,
which in the case of breast cancer can be over half of the cases.6,7

Since both ADCC and the direct biological effects are additive at
the maximum tolerated/clinically permitted doses, combination of
trastuzumab and pertuzumab is the best choice for all HER2-posi-
tive tumors. Specifically, if the tumor is trastuzumab resistant, the
higher total tissue concentration of the antibodies, and possibly
their sterically distinct attachment sites can improve the efficacy of
the patient’s own NK cells. If the tumor is trastuzumab sensitive,
the antitumor effects of the distinct molecular mechanisms are
also added to the effect of ADCC. These two additive mechanisms
underpin the findings of the clinical biomarker analysis conducted
during the CLEOPATRA trial, which revealed that “HER2 is the
only marker suited for patient selection” and “only HER2, HER3,
and PIK3CA were relevant prognostic factors.”32

Once the principle of additively applying the maximum toler-
able doses has been established, it seems evident to look for addi-
tional agents with similar molecular targeting specificity. In the

case of HER2-positive tumors, the dual (HER2 and EGFR) tyro-
sine kinase inhibitor lapatinib has successfully been applied in
combination with chemotherapy and approved by the Food and
Drug Administration (FDA).33 It has recently (March 2016)
been announced at the Official 10th European Breast Cancer
Conference that in the EPHOS-B randomized trial, the combina-
tion of lapatinib and trastuzumab shrunk HER2-positive breast
cancer significantly in 11 d after diagnosis, providing an advan-
tage over trastuzumab alone: pathologically complete response
was observed in 11% vs 0%, and minimal residual disease in
17% vs 3% of the patients.34 The beneficial effect of the combi-
nation is probably based on providing an alternative blocking of
HER2 (and EGFR) function through kinase inhibition also in
those cells that do not bind trastuzumab well, or do not respond
with a downregulation of HER2. This complementarity appears
to be also true for the reverse situation, wherein addition of tras-
tuzumab to lapatinib monotherapy was found to improve
median overall survival by 4.5 months.35 In light of this, the tri-
ple combination of lapatinib, trastuzumab and pertuzumab could
be even more efficacious than combining trastuzumab and per-
tuzumab, although the tolerability of kinase inhibition in the
long run, especially that of EGFR, could be an issue.36

Overall, it appears safe and highly beneficial to use combina-
tion antibody therapy against HER2-positive tumors from the
start, which is currently being tested in the Phase 3 APHINITY
clinical trial. Switching to combination in the case of ongoing
trastuzumab monotherapy is also supported both by clinical
and preclinical data. On the one hand, the combined use of
trastuzumab and pertuzumab was beneficial in cases where the
tumor has progressed following trastuzumab monotherapy.24

On the other hand, we observed earlier that circulating and dis-
seminated tumor cells are still sensitive to ADCC when the pri-
mary tumor has already become resistant,19 probably owed to
their lack of a well-developed ECM.13,18 Consequently, ADCC
enhanced by combination antibody therapy could better pre-
vent the dissemination of tumor cells even when the primary
tumor or larger inoperable metastases become resistant to the
combination. Swain et al.27 conclude their account of the
CLEOPATRA trial by stating: “Finally, the question of when, if
ever, therapy with pertuzumab plus trastuzumab for metastatic
breast cancer should be stopped remains unanswered.” Consid-
ering the additive effect of this combined treatment in mediat-
ing ADCC and the importance of ADCC in preventing tumor
dissemination, including that from previously dormant tumor
cells, we propose that in the adjuvant setting combination anti-
body therapy of HER2-positive breast cancer should be the first
choice, and possibly it should not be stopped.

Collectively, in any clinical setting the combination of both
antibodies at maximum clinically approved doses should be
applied to recruit maximum ADCC and cause maximum direct
biological growth inhibition. This is the mechanistic back-
ground, based on which the combined therapy is expected to
give results that are superior to monotherapy, whatever the
type of HER2-positive tumor may be.

Materials and methods

All materials were from Sigma-Aldrich (St. Louis, MO), unless
otherwise indicated.
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Cells

BT-474 (HTB-20TM) and SKBR-3 (HTB-30TM) cells derived
from trastuzumab-sensitive, HER2-positive invasive ductal
adenocarcinomas were obtained from the American Type Cul-
ture Collection. The cells were grown in RPMI (R6504) that
was supplemented with 20% FCS, insulin, glutamin and antibi-
otics and in DMEM (D7777) that was supplemented with 10%
FCS (F9665), glutamin and antibiotics in a 5% CO2 humidified
incubator with glutamine antibiotics and passaged 3 times
weekly. JIMT-1 is a HER2-positive, trastuzumab-resistant
human breast cancer cell line, established from pleural metasta-
sis in the laboratory of Cancer Biology, University of Tampere,
Finland.37 JIMT-1 cells were cultured in 1:1 ratio of Ham’s F-
12 (N6760) and DMEM supplemented with 20% FCS, 300 U/L
insulin (I9278), glutamine and antibiotics and split every 3–4 d.
For in vitro ADCC, the cell line CD16.176V.NK-92, here
abbreviated NK92 (from Dr. Kerry S. Campbell, the Fox Chase
Cancer Center, Philadelphia, PA) was used. These cells are
derived from a human NK-like phenotype non-Hodgkin’s lym-
phoma,38 and have been transduced to express a high affinity
variant (176V) of FcgRIIIA receptor (CD16).39,40 A variant of
this cell line co-expresses eGFP with CD16. The cell lines were
cultured in special NK medium of a-MEM (M0644) containing
10% FCS and 10% horse serum (Hyclone SH 30070), supple-
mented with glutamine, non-essential amino acids, Na-pyru-
vate (S8636), antibiotics and IL-2 at 100 IU/ml (Proleukin 18 £
106 NE, Novartis). All cell cultures were routinely checked for
the absence of mycoplasma contamination.

F(ab’)2 preparation from whole immunoglobulins

Trastuzumab (Herceptin�, Roche) and pertuzumab (Perjeta�,
Roche) antibodies were dissolved in 20 mM acetate buffer (pH
4.5), dialyzed thrice against the same buffer and concentrated
using Amikon Ultra filters (Millipore, UFC 801096.). The Fc
domain was digested by immobilized pepsin (ThermoScientific,
20343). The reaction was stopped by 10 ml 2 M TRIS-HCl, pH
8.2. Immobilized pepsin was cleared by 5 min centrifugation at
300 xg, and the supernatant was filtered sterile and concen-
trated on Amikon Ultra filters. Sephacryl S300 and Superdex
200 (GE Health Care Life Science, 17-0438-09 and 17-1043-99)
gel filtration columns were used for size-exclusion chromatog-
raphy purification of trastuzumab F(ab’)2 and pertuzumab F
(ab’)2, respectively. Absorbance of fractions was measured with
a NanoDrop ND 1000 (Thermo Science), protein content was
assessed with non-reducing SDS-PAGE, and fractions contami-
nated with smaller fragments and partially digested or undi-
gested antibodies were pooled and re-chromatographed. F
(ab’)2 were tested for lack of the Fc, for preserved HER2 bind-
ing affinity and for inability to mediate ADCC (see supplemen-
tary data).

Flow cytometric assessment of F(ab’)2 quality

SKBR-3 cells were grown in DMEM supplemented with 10%
FCS in a 5% CO2 humidified incubator with antibiotics and
passaged twice weekly. Freshly detached SKBR-3 cells were
treated with trastuzumab, pertuzumab, or their F(ab’)2 at

10 mg/ml concentration for 10 min at RT, then labeled with
Alexa Fluor 488 conjugated goat-anti-human Fc or Alexa Fluor
488 (A11013) conjugated goat anti-human (HCL) antibodies at
10 mg/ml for 10 min. HER2-positivity of SKBR-3 cells was veri-
fied with Alexa Fluor 647 conjugated 76.5 antibody. Measure-
ments were performed on a BD FACSCalibur flow cytometer,
20,000 events were collected and the median of histograms is
displayed.

In vitro cell proliferation

The effect of the antibodies on in vitro proliferation of HER2-
expressing, trastuzumab sensitive and resistant cell lines were
tested using an MTT-based colorimetric cell proliferation assay
(EZ4U, Biomedica GmbH, BI-5000). Cells were incubated in
96-well plates for 3 d in the presence or absence of antibodies
or their F(ab’)2 at the given concentrations. After incubation
with EZ4U, absorption (λ D 488 nm, corrected with absorption
at λ = 620 nm) of the metabolic substrate was measured on
Synergy HT Multi-Detection microplate Reader (BioTek). Rep-
licates (n � 3) were averaged, and growth inhibition was
expressed as normalized to untreated control.

In vitro ADCC

Inability of the F(ab’)2 to recruit ADCC was tested with PBMC
as effectors using the xCELLigence (Roche) real time cell ana-
lyzer. Cell index was calculated by the analyzer based on the
measured impedance. BT-474 cells were seeded in 8-well cham-
bers (Applied Bioscience, 8W10E) with gold electrodes and
allowed to proliferate until 80% confluence (50 hours). Mono-
nuclear leukocytes freshly separated from human PBMC were
added at a 5:1 ratio to the BT-474 cells and impedance was
monitored for 24 h. Data from 3 wells were averaged and traces
normalized to impedance measured at the start of ADCC.

For quantitative analysis of ADCC efficiency in vitro, an
ECIS ZQ real-time cell analyzer was used. JIMT-1 target cells
were grown in 8W10E PET 8well arrays with gold electrodes at
the bottom. The complex impedance spectrum of cells adhered
to the electrodes was assessed in a the range of 1 Hz to
100,000 Hz. Effector/target ratio was set at 2.5:1, considering
that NK cells constitute around 15% of the freshly separated
PBMC, and both in our previous experiments and in the litera-
ture a 15:1 PBMC to target cell ratio was determined to be
highly efficient. NK92 effector cells or antibodies at defined
concentration were administered after impedance of the target
cells has reached a plateau.

Xenograft tumors and in vivo antibody treatment

SCID (C.B-17/Icr-Prkdcskid/IcrIcoCrl, Fox-Chase) mice were
purchased from Charles River Laboratories, and housed in a
specific-pathogen-free environment. All animal experiments
were performed in accordance with FELASA guidelines and
recommendations and DIN EN ISO 9001 standards. Only non-
leaky SCID mice with murine IgG levels below 100 ng/ml were
used. Each seven-week-old female SCID mouse participating in
the study was given a subcutaneous injection of 5 £ 106 JIMT-
1 cells suspended in 100 ml Hanks’ A buffer and mixed with an
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equal volume of Matrigel (BD Matrigel, BD Biosciences,
356237) in both flanks. Tumor volumes were derived as the
product of the length, width and height of the tumor measured
2 times a week with a caliper. Trastuzumab (n D 8), trastuzu-
mab F(ab’)2 (n D 7), pertuzumab (n D 8), pertuzumab F(ab’)2
(n D 7), trastuzumabCpertuzumab (n D 8), trastuzumab F
(ab’)2 C pertuzumab F(ab’)2 (n D 7), and, as a control, HEPES
buffer (n D 7) was injected intraperitoneally in a volume of
100 ml HEPES buffer twice weekly. The injected dose was
100 mg of each antibody or F(ab’)2 used. Treatment com-
menced at the time of JIMT-1 inoculation and was continued
until the end of the experiment. At the end of the experiment
the animals were euthanized by cervical dislocation. The
experiments were done with the approval of the National Ethi-
cal Committee for Animal Research (# 4/2012/DE M�AB).

In vitro immune synapse formation by CD16.NK-92 Cells

JIMT-1 cells were seeded in Poly-L-Lysine (81804) coated 2 £
9 well m-slides (Ibidi) at 50,000 cells/cm2 density and incubated
for 2 d in JIMT-1 medium. After that, cells were treated with
trastuzumab and pertuzumab whole antibodies at 10mg/ml
concentration in 20 ml indicator-free NK medium at 37�C, 5%
CO2, for 10 minutes. After 10 minutes, 120,000 NK92 eGFP
cells/well were added in 20 ml medium and coincubated at
37�C, 5% CO2, for 10 minutes. Fluorescently labeled antibodies
were added at 10 mg/ml final concentration; CD16 was labeled
with Alexa Fluor 647 conjugated anti-CD16 antibody (clone
3G8, BD PharMingen, 302023), HER2 was labeled with an
Alexa Fluor 555 conjugated Fab, clone 76.5.

Tumor xenograft sections

At termination, mice were dissected and fresh tumors were
embedded in cryomatrix (Thermo Fischer Scientific, 6769006)
and snap frozen in liquid nitrogen. Serial 14 mm thick cryosec-
tions were made with a Shandon Cryotome (Thermo Fischer
Scientific) at ¡24�C and air-dried. Labeling was carried out at
room temperature and all antibodies were diluted in HEPES
buffer supplemented with 1% BSA (A7906). After 5 min of
rehydration in HEPES buffer containing 1% BSA and 0.01%
TritonX-100 (Thermo Fischer Scientific, 28314) HER2 was
labeled with Alexa Fluor 488 conjugated 76.5 antibody, NK
cells were labeled with Alexa Fluor 647 conjugated anti-CD45
(clone CD45.1). Both antibodies were used at 2 mg/ml concen-
tration at 4�C for 10 hours. Nuclei were stained with DAPI
(D9564) at 10 mg/ml for 2 hours. Sections were washed for 5,
20, and 60 minutes, fixed in formaldehyde, and mounted in
Mowiol (Sigma, 81381) antifade.

Confocal laser scanning microscopy

Fluorescence-labeled cells and tissue sections were analyzed
with confocal laser scanning microscope (LSM 510, Carl Zeiss
GmbH) using a 40£ C-Apochromat water immersion objective
(NA D 1.2). DAPI was excited at 351 nm, Alexa Fluor 488 and
eGFP were excited at 488 nm, Alexa Fluor 546 and Alexa Fluor
555 at 543 nm, and Alexa Fluor 647 at 633 nm. Corresponding
fluorescence emission was separated with an appropriate quad-

band dichroic mirror, and detected through 385 to 470 nm, 505
to 550 nm, 560 to 615 nm bandpass and 650 nm longpass fil-
ters, respectively. For tissue samples, 3 consecutive, 4 mm thick
optical sections were taken at 3 mm intervals, covering the cen-
tral 10 mm part of the sections. For detecting immune synapses
between NK cells and target cells, 1.5 mm optical sections were
used.

Statistical evaluation of data

To analyze dose effect curves, data were fitted with the Hill
equation. For comparison of the efficacy of ADCC evoked by
trastuzumab, pertuzumab and their combination, data points
in each experiment were normalized to the maximum effect
reached with saturating concentrations, and the mean for each
treatment and concentration was normalized to the overall
maximum effect. In vivo tumor sizes at each sampling time
point were compared with one-way ANOVA followed by
Tukey’s multiple comparison test, at a D 0.05. SigmaPlot 12
and GraphPad Prism 6 were used for analysis.
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