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Abstract: In order to compare the coordination properties of 1,4,7-triazacyclononane (tacn) 

derivatives bearing varying numbers of phosphinic/carboxylic acid pendant groups towards 
68Ga, 1,4,7-triazacyclononane-7-acetic-1,4-bis(methylenephosphinic) acid (NOPA) and 1,4,7- 

triazacyclononane-4,7-diacetic-1-[methylene(2-carboxyethyl)phosphinic] acid (NO2AP) were 

synthesized using Mannich reactions with trivalent or pentavalent forms of H-phosphinic 

acids as phosphorus components. Stepwise protonation constants logK1–3 12.06, 3.90 and 

1.95, and stability constants with GaIII and CuII, logKGaL 24.01 and logKCuL 16.66, were 

potentiometrically determined for NOPA. Both ligands were labelled with 68Ga and 

compared with NOTA (tacn-N,N′,N″-triacetic acid) and NOPO, a TRAP-type [tacn-N,N′,N″- 

tris(methylenephosphinic acid)] chelator. At pH 3, NOPO and NOPA showed higher labelling 

efficiency (binding with lower ligand excess) at both room temperature and 95 C, compared 
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to NO2AP and NOTA. Labelling efficiency at pH = 0–3 correlated with a number of 

phosphinic acid pendants: NOPO >> NOPA > NO2AP >> NOTA; however, it was more 

apparent at 95 C than at room temperature. By contrast, NOTA was found to be labelled more 

efficiently at pH > 4 compared to the ligands with phosphinic acids. Overall, replacement of a 

single phosphinate donor with a carboxylate does not challenge 68Ga labelling of TRAP-type 

chelators. However, the presence of carboxylates facilitates labelling at neutral or weakly 

acidic pH. 

Keywords: positron emission tomography; metal complexes; macrocyclic ligands; 

radiopharmaceuticals; tacn derivative; phosphinate complexes; gallium complexes; 

radiolabelling; PET tracer development; molecular imaging 

 

1. Introduction 

In analogy to 99mTc, the most commonly used radionuclide for single-photon emission tomography 

(SPECT) [1], the generator-produced radiometal 68Ga with its favourable physical properties (89%  

β+-emission; t1/2 = 67.7 min; Eav(β+) = 740 keV) is a valuable resource for decentralised manufacturing 

of positron emission tomography (PET) radiopharmaceuticals [2–4]. For application in nuclear medicine, 
68Ga is attached to a biological vector as a complex with a suitable chelator that is conjugated to the 

targeting group, frequently through an additional linker.  

Current 68Ga-based PET is dominated by peptide conjugates of DOTA and NOTA (Figure 1), mainly 

due to the success of the corresponding radiolabelled octreotide analogues, such as 68Ga-DOTATOC, 
68Ga-DOTATATE, or 68Ga-DOTANOC for imaging of neuroendocrine tumours [5,6]. However, although 
68Ga3+ labelling of DOTA is feasible, this chelator has been mainly employed for 90Y, 111In, 152Tb, 
177Lu, 212Pb or 213Bi radioisotopes, whose coordination requires higher coordination numbers [7]. Since 

the coordination chemistry of the radiometal and the chelator determines the labelling conditions [8], an 

extensive effort has recently been dedicated to the development of improved bifunctional chelators tailored 

for gallium(III) [9–18]. For the development of 68Ga-based imaging agents, 1,4,7-triazacyclononane-based 

(tacn-based) NOTA-like bifunctional derivatives (3 [11], 2 [12], 4 or 5 [13], 1 [14,15]; Figure 1) have 

been shown as promising chelators for 68Ga3+ ion. Compared to DOTA, the NOTA-like derivatives can 

also be labelled efficiently at lower ligand concentrations/excess and lower temperatures [19]. However, 
68Ga labelling of NOTA proved to be influenced to a considerable extent by metal contaminants present in 

the 68Ge/68Ga generator eluates, most notably by Zn2+, the inevitable decay product of 68Ga [20]. Among 

the open-chain chelators, despite the lower kinetic inertness of their metal complexes compared to those 

of macrocyclic ligands, several conjugates of ligands derived from 6 and 7 showed promising results in 

preclinical and clinical studies [21–23]. 

Previously, we have evaluated a number of 1,4,7-triazacyclononane-1,4,7-tris(methylenephosphinic 

acids) (TRAP ligands) for gallium(III) complexation/labelling [9,10,24–26]. The phosphinate ligands, 

8 [27] and 9 [28], reported earlier, were compared to NOTA, DOTA and phosphinate chelators, 10 and 

11 [25]. The TRAP-type chelators showed significantly improved labelling properties when compared 

with their acetic acid analogues. Apart from the feasibility of labelling at room temperature (RT) and at 
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low chelator concentrations, the higher acidity of phosphinic acids allowed for labelling at acidic 

conditions (pH < 2), where formation of insoluble 68Ga3+ hydroxide species is avoided [29]. Among 

the TRAP chelators, no statistically significant difference in labelling properties has been found; only 

labelling of the more lipophilic 9 resulted in slightly worse 68Ga incorporation efficiency. The TRAP 

motif was also employed for a straightforward preparation of a PET/MRI bimodal contrast agent, 

combining TRAP and DOTA structures for Ga3+ and Gd3+ chelation, respectively [30]. More recently, 

excellent labelling properties have also been reported for the monoconjugable TRAP-type chelator 

NOPO [10,31,32] (Figure 2) which combines the pendant arm moieties of 10 and 11. Interestingly, 

bringing the asymmetric element to the N-substitution pattern did not entail any loss of 68Ga-labelling 

performance. Moreover, NOPO and 10 were found to be highly chemoselective for Ga3+, even in the 

presence of high concentrations of contaminating metallic cations [20]. 

 

 

Figure 1. Macrocyclic and open-chain chelators for trivalent gallium. 

In order to gain a better understanding of the factors responsible for the 68Ga-labelling efficiency of 

TRAP chelators, we have now investigated two tacn-based bifunctional chelators with asymmetrical 

N-substitution patterns, involving both phosphinate and carboxylate coordination sites (NO2AP and 

NOPA, Figure 2). 

 

 

Figure 2. Chelators with acetic/phosphinic acid pendant arms compared in this paper. 

These mixed-donor ligands have been successfully investigated as ligands (e.g., 12 and 13, Figure 1) 

selective for Mg2+ over Ca2+ [33,34]. Their 68Ga labelling performance was compared to that of NOTA and 

NOPO as representatives of symmetrically substituted carboxylate-type and phosphinate-type chelators. 
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2. Results and Discussion 

2.1. Ligand Synthesis 

Synthesis of NOPA was carried out according to the reaction sequence shown in Scheme 1.  

1,4,7-Triazacyclononane was reacted with N,N-dimethylformamide dimethyl acetal to give aminal 14 [35] 

which was monoalkylated in situ [36,37], affording the ammonium salt 15 that crystallized from the 

reaction mixture. This one-pot alkylation followed by hydrolysis is—despite requiring several steps—

simple and easy to carry out on a large scale. Compound 16 [33,38–40] was then obtained by alkaline 

hydrolysis of 15. Moedritzer-Irani (phospho-Mannich) [41] reaction of 15 with phosphinic acid and 

paraformaldehyde readily afforded NOPA; similarly to the analogous reaction on N-monobenzylated 

tacn [32], the typical formation (according to NMR and MS spectra of the reaction mixture) of  

N-methylated by-products [42] in the last reaction step was suppressed by low reaction temperature. 

Pure NOPA was obtained in a zwitterionic form after simple purification on a strong cationic exchanger; 

surprisingly, separation of NOPA from the N-methylated by-product on cationic exchange resin was 

more efficient than that in previously published synthesis of the tris(phosphinic acid) ligand 8 [25]. 

 

 

Scheme 1. NOPA synthesis. Reagents and conditions: (a) (MeO)2CHNMe2, dioxane, 105 °C, 

4 h; (b) tBuO2CCH2Br, dioxane, room temp., 1 h; (c) NaOH, water/EtOH, reflux, 72 h, 89% 

based on tacn; (d) paraformaldehyde, H3PO2, water, room temp., 12 h, 63%. 

Two synthetic pathways were evaluated for the preparation of NO2AP. In the first approach, reaction 

of the phosphinic acid 17 with tacn-1,7-diacetic acid (NO2A) and formaldehyde in conc. aq. HCl at 

elevated temperatures (50–70 °C) resulted in the formation of complex mixtures, difficult to separate 

mainly due to the formation of the N-methylated side products. Furthermore, the presence of the free 

acetic acid pendant arms discourages utilisation of the chelator for selective coupling to a primary amine 

group in e.g., peptides. Therefore, another route employing a precursor with ester protected N-acetates was 

investigated, in which the phosphite intermediate 18 was generated in-situ by reaction of acid 17 with 

hexamethyldisilazane (HMDSA). The latter intermediate was reacted with tacn-1,7-bis(t-butyl acetate) 

19 under anhydrous conditions according to our previously reported synthetic procedure [32] to give 

ester 20 (Scheme 2) [34]. Comparing to the published synthesis (the esterified mixed acetate-phosphinate 

tacn derivatives have been prepared from the t-butyl ester of 16 or from 19 by reaction with 

paraformaldehyde and MeP(OEt)2 or EtP(OEt)2, respectively, in anhydrous solvents but the product 

was isolated in very low overall yields and after difficult purification procedures [34]), the latter procedure 

is characterized by simple purification and higher overall yield despite the seemingly more demanding 

synthetic protocols. The silyl groups were removed by treatment with methanol and the free chelator 

NO2AP was obtained by deprotection with trifluoroacetic acid. The reaction sequence confirmed that 
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silylated phosphites derived from H-phosphinic acids are valuable, readily available reagents for the 

anhydrous variant of Mannich reaction. Utilization of the silylated phosphinic acids for the formation 

of the >N–CH2–P pendant arm might represent a feasible general approach for the synthesis of mixed 

and/or selectively protected phosphorylated polyazamacrocycles. 

 

 

Scheme 2. Synthesis of NO2AP through ester 20. Reagents and Conditions: (a) HMDSA, 

130 C, 24 h, quantitative; (b) (i) paraformaldehyde, HMDSA, 130 C, 24 h; (ii) MeOH, 

HPLC purification; 46% (based on 19); (c) CF3CO2H:CH2Cl2 1:1, room temp.. 

2.2. Equilibrium Studies 

Protonation constants and gallium(III) complex stability constants of NOPA were determined by 

potentiometry (Table 1); for the species distribution diagram, see Figure 3. As expected, values of the 

protonation constants of NOPA were found to be between those of the mother ligands, NOTA and 8, and, 

taking into account different experimental conditions, are in a good agreement with the data reported for 

its methyl- (12) and ethyl phosphinate (13) analogues (Figure 1) [33,34]. The first protonation constant 

is relatively high as it should correspond to protonation of the ring amine with the attached acetate moiety, 

whereas the second protonation constant should be connected with an amine substituted with methyl 

phosphinate group [34]. Gallium(III) complexation in acidic solution was very fast and complete complex 

formation was observed at the beginning of titrations at pH 1.5. In this region, formation of a protonated 

complex was observed (HLGa = 25.14(8), logKa = 1.10). The Ga3+ complex stability constant was thus 

determined through competition with hydroxide anions in alkaline solution. Similarly to other tacn-based 

ligands [9,25,32], equilibration above pH ~ 6 was slow (more than two weeks) and “out-of-cell” titration 

method had to be used. Mixed hydroxido species were also found (H–1LGa = 16.04(5), logKa = 8.00). 

As NOTA derivatives are now commonly used as ligands of choice for complexation of 64Cu, stability 

constants for Cu2+-NOPA system were determined as well. The respective complex (LCu = 16.66(2)) is 

formed even in very acidic solutions, which nevertheless contained 25% free Cu2+ at pH 1.7, enabling the 

stability constant determination; the chemical model also required a hydroxido species (H–1LCu = 5.36(2), 

logKa = 11.30). Thermodynamic stabilities of the [Ga(NOPA)] and [Cu(NOPA)]– complexes correlate 

with the overall ligand basicity [43] (defined as basicity of the ring nitrogen atoms, logK1 + logK2) of 

NOPA and, thus, are between those for the NOTA and 8 complexes. 

The protonated [Ga(HNOPA)]+ species should be the “in-cage” complex as the proton is probably 

attached to the phosphoryl oxygen atom of the coordinated phosphinate pendant arm [9,25]. Abundance 

of the [Ga(OH)(NOPA)]– species (Figure 3) is relatively high, and its possible formation during 

radiolabelling might explain lower radiolabelling yields at higher pH (see below). 
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Figure 3. Species distribution diagram of the Ga3+-NOPA system. 

Table 1. Stepwise protonation (logKn) and thermodynamic stability (logKGaL) constants of 

free ligands and their gallium(III) complexes, respectively (25 C, I = 0.1 M (Me4N)Cl). 

Literature data are given for comparison. 

Constant 
Ligand 

NOPA a 12 b [34] 8 [25] 10 [15] NOPO [32] NOTA [44]

logK1 
12.06  

12.058(4) 
11.7 10.48 11.48 11.96 13.17 

logK2 
3.90  

15.958(6) 
4.24 3.28 5.44 5.22 5.74 

logK3 
1.95  

17.910(6) 
2.10  4.84 3.77 3.22 

logK4    4.23 1.54 1.96 
logK5    3.45   
logK6    1.66   

logKGaL c 
24.04  

24.04(6) 
 21.91 26.24 25.0 29.60 [25] 

a This work; experimentally determined overall protonation/stability constants (loghlm) are in italics; b 25 C, 

I = 0.1 M KCl; c Equilibrium constant for reaction Ga3+ + Ln− ↔ [Ga(L)](n−3)− where Ln− is the fully 

deprotonated ligand. 

2.3. 68Ga Radiolabelling  

Radiolabelling of the chelators at pH 3 exhibited similar shapes and relations of the curves for 95 C 

and 25 C (Figure 4) while, as expected, increased chelator concentrations were required for labelling at 

ambient temperature. In all cases, the tris(phosphinate) ligand NOPO showed superior labelling compared 

to the mixed-pendant arm ligands and NOTA. Interestingly, the presence of a single carboxylate donor in 

NOPA did not significantly affect the labelling performance at pH 3 in comparison to NOPO. Likewise, 

the behaviour of the monophosphinate ligand NO2AP closely resembled that of NOTA at 95 °C. 

However at 25 °C, NO2AP showed slightly improved labelling efficiency compared to that of NOTA, 
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although more than 90% radiolabelling yield was not reached, even at fairly high concentrations. 

Hence, in terms of chelator concentration required for 68Ga labelling, the largest difference is observed 

between the chelators possessing one and two carboxylates or phosphinates. At both temperatures 

investigated, NOPA could be labelled with three-times better efficiency than NO2AP (comparing at 

50% activity incorporation), while NOPO and NOTA are separated by a factor of ten. In addition, the 

data for NOPO showed a much better reproducibility than those for the other ligands. All this indicates 

that no less than three phosphinate donors are required to observe high indifference of the TRAP 

ligand to non-Ga3+ ions in the labelling solution, rooted in the exceptional gallium(III) selectivity. 

 

Figure 4. Labelling efficiency of the discussed chelators at 25 and 95 C at different chelator 

concentrations (pH = 3, n = 3). 

Since all the investigated compounds showed almost quantitative radiolabelling at 3 µM (95 C) 

and 30 µM (25 °C), those concentrations were selected for further investigation of labelling efficiency 

at various pH (Figure 5). At 95 C, an increasing number of phosphinate side arms mainly resulted in 

higher labelling yields at lower pH due to the high acidity of phosphinic acids. In accordance with 

previous results [19], NOPO could be labelled quantitatively already at pH 0.5 and even to a small extent 

at pH 0. In turn, NOTA showed better performance in the neutral and mildly acidic region. Above  

pH 8, none of the compounds was labelled anymore. 

 

Figure 5. The 68Ga activity incorporation into the discussed chelators at 25 C and 95 C at 

different pH values at constant ligand concentrations of 30 and 3 µM, respectively (n = 3). 
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At ambient temperature, labelling of all chelators was restricted to a much narrower pH region. While 

NOPO still performed slightly better at lower pH, NOPO, NOPA and NO2AP reached their optimum 

between pH 3 and 4. However, 68Ga incorporation by the latter ligand again did not exceed 90%,  

while the first two ligands were labelled quantitatively. Above pH 4, labelling efficiency of NOPO was 

decreasing to a larger extent than that observed for the other chelators. By contrast, and similarly to the 

situation observed at 95 C, NOTA performed better than the other ligands between pH 4 and 7, with an 

optimum at pH 4. Notably, some radioactivity can be clearly incorporated by NOTA even at pH 8. 

Overall, radiolabelling results are in line with the previously obtained data on TRAP ligands. Due to 

the selectivity of phosphinate-containing tacn derivatives for gallium(III) [10,19,20], a lower ligand 

excess is required for efficient radiolabelling with an increasing number of phosphinate pendant arms. A 

similar decrease in 68Ga incorporation due to presence of the acetate pendant arms has been very recently 

observed for a diacetate-phosphinate tacn derivative with the P-bound –CH2CH(PO3H2)2 group [45]. 

More phosphinate pendant arms also means a better incorporation of 68Ga in more acidic solutions due 

to the higher acidity of phosphinic acids. On the other hand, ligands with more acetate pendant arms are 

more suitable for 68Ga labelling at pH > 4–5. This might be caused by competition with the hydroxide 

anion, which is more pronounced for complexes exhibiting lower overall thermodynamic stability [25], 

i.e., for the phosphinate-containing tacn derivatives (see e.g., Figure 3) than for all-carboxylate NOTA. 

3. Experimental Section 

3.1. General Information 

NOPO [10] and NOTA [46] were synthesized by a published procedure. Ester 19 and  

1,4,7-triazacyclononane (tacn) were purchased from CheMatech (Dijon, France). Characterization 

NMR spectra were recorded using Bruker (600 MHz), Varian UNITY Inova (400 MHz) or VNMRS 

(300 MHz) spectrometers. 1H- and 13C-NMR chemical shifts were referenced to t-BuOH as internal 

standard, and 31P-NMR chemical shifts were referenced relative to 85% aq. H3PO4 as external standard. 

Electrospray mass spectra (ES-MS) spectra were measured with Varian Ion-trap 500 spectrometer in 

negative or positive modes. High-resolution mass spectra (HR-MS) were measured on UPLC/MS system 

consisting of Accela 1250 quaternary gradient pump coupled to LTQ Velos Pro/Orbitrap ELITE mass 

spectrometer (both Thermo, Waltham, MA, USA); samples were dissolved 50% aq. MeOH. Analytical 

experiments were performed on a HPLC system composed of a Beta 10 gradient pump (ECOM, Prague, 

Czech Republic) equipped with an active mixer Knauer A0285 and a Topaz dual-UV detector (ECOM), 

and on Luna RP8, 5 μm, 150 × 4.6-mm column (Phenomenex, Torrance, CA, USA) equipped with a 

Security Guard system (Phenomenex) holding a C8-cartridge. The mobile phase was continuously 

vacuum-degassed in a DG 3014 degasser (ECOM, Czech Republic). Semi-preparative HPLC was run 

with LCD 50K gradient pump (ECOM) and UV-Vis detector LCD2083 (ECOM) on a Luna RP8, 10 μm, 

250 × 21.2-mm column (Phenomenex). For the radiolabelling studies, Ultrapur® water, HCl and NaOH 

were obtained from Merck KGaA (Darmstadt, Germany); all other materials used were commercially 

available and of analytical grade. At all cases, incorporation of 68Ga was determined by radio-TLC on 

silica-impregnated chromatography paper (Agilent, Santa Clara, CA, USA) with 1 M aq. NH4OAc:MeOH 
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1:1 as mobile phase; scanning and evaluation were performed with a MiniGITA Star TLC-scanner 

(Raytest, Straubenhardt, Germany). 

3.2. Syntheses 

3.2.1. Synthesis of (1,4,7-Triazacyclononan-1-yl)acetic Acid (16) 

Tacn (4.00 g, 31 mmol) was dissolved in dioxane (30 mL) and N,N-dimethylformamide dimethyl 

acetal (4.40 g, 36.9 mmol) was added. The mixture was heated at 105 C (in bath) for 4 h, then cooled 

to room temperature, and t-butyl bromoacetate (7.24 g, 37.1 mmol) was added dropwise. Immediately 

formed suspension was diluted by addition of dioxane (10 mL) and stirred at room temperature for 1 h. 

Diethyl ether (20 mL) was added and yellow microcrystalline solid was filtered off, washed with Et2O 

and dissolved in solution of NaOH (5.00 g, 125 mmol) in 50% aq. EtOH (40 mL). The solution was 

refluxed for 72 h, then evaporated to dryness in vacuum and the residue was purified on Dowex 50 in 

H+-form (column size ~3 × 20 cm). The column was washed with water and the product was eluted by 

5% aq. NH3. The fraction containing pure product was evaporated. The residue was dissolved in water 

(50 mL) and evaporated in vacuum to dryness; the procedure was repeated twice. The product was 

isolated as yellow oil (5.20 g, 89%) which solidified upon standing at 4 C. 1H-NMR (300 MHz, D2O): 

δ (ppm) 2.82–2.95 (m, HO2CCH2NCH2CH2NH, 8H), 3.11 (s, HNCH2CH2NH, 4H), 3.30 (s, CH2CO2H, 

2H). 13C{1H} NMR (75.4 MHZ, D2O): δ (ppm) 43.88, 43.98, 50.09 (s 3×, ring CH2), 58.26 (s, 

NCH2CO2H), 180.44 (s, CO2H). MS (ESI, positive mode, m/z): 188.3 [M + H]+. calc. for M 

(C8H17N3O2) 187.2. 

3.2.2. Synthesis of 1,4,7-Triazacyclononane-7-(carboxymethyl)-1,4-bis(methylenephosphinic 

acid) (NOPA) 

Compound 16 (6.20 g, 33.2 mmol) was dissolved in 50% aq. H3PO2 (36.3 mL, 33.2 mmol) and 

paraformaldehyde (1.96 g, 65.3 mmol) was added. The mixture in a closed flask was stirred at room 

temperature for 12 h and paraformaldehyde slowly dissolved. The mixture was evaporated in vacuum 

to dryness, dissolved in small amount of water and the solution was soaked on Dowex 50 in H+-form 

(column size ~3 × 20 cm). The column was eluted by water and the first acidic fraction, containing 

phosphinic acid, was discarded, and the product was eluted in further neutral fractions. The fractions 

containing pure product were collected, evaporated in vacuum and finally freeze-dried to give 

transparent solid of NOPA (7.20 g, 63%). 1H-NMR (300 MHz, D2O): δ 3.34 (d, 2JPH = 9.9 Hz, NCH2P, 

4H), 3.39–3.56 (m, ring CH2, 8H), 3.62 (s, ring CH2, 4H), 3.91 (s, NCH2CO2H, 2H), 7.23 (d,  
2JPH = 546 Hz, PH, 2H). 13C{1H} NMR (75 MHz, D2O): δ 49.97 (s, ring CH2), 51.83 (d, 3JPC = 5.0 Hz, 

ring CH2), 52.07 (d, 3JPC = 3.8 Hz, ring CH2), 56.35 (s, NCH2CO2H), 56.21 (d, 2JPC = 88.0 Hz, 

NCH2P), 172.33 (s, CO2H). 31P-NMR (121 MHz, D2O): δ 16.76 (d, 1JPH = 542 Hz). MS (ESI, positive, 

m/z): 366.6 [M + Na]+, 344.0 [M + H]+; calc. for M (C10H23N3O6P2) 342.8. HR-MS (positive mode, 

m/z): 344.1143 [M + H]+, calc. for C10H23N3O6P2: 343.1062. 
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3.2.3. Synthesis of 1,4,7-Triazacyclononane-4,7-bis(t-butyloxycarbonylmethyl)-1-[methylene(2-

carboxyethyl)phosphinic acid] (20) 

(2-Carboxyethyl)phosphinic acid 17 (0.260 g, 1.9 mmol) [9,47] was dissolved in hexamethyl-disilazane 
(HMDS, 5 mL) in dry glassware under argon and the solution was heated at 140 C (in oil bath) for 24 h 

to give intermediate 18. Ester 19 (0.200 g, 0.56 mmol) was separately dissolved in HMDS (7 mL) and 

added into the cooled solution of 18. Dried paraformaldehyde (0.050 g, 1.6 mmol) was added in one 

portion, flask was tightly closed and the reaction mixture was heated at 130 C (in oil bath) for 24 h 

and then cooled to 25 C. MeOH (5 mL) was slowly added to remove the trimethylsilyl groups. The 

reaction mixture was evaporated in vacuum to yield a yellow oil. It was divided into 200 mg portions 

and each portion was dissolved in water (1 mL), solution was filtered through a 0.5-μm syringe filter 

and purified using semi-preparative HPLC in gradient mode using solution A (20% MeCN, 20% 0.1 M 

aq. NH4OAc and 60% H2O) and B (33% MeCN, 20% 0.1 M aq. NH4OAc and 47% H2O); flow rate  

20 mL/min, gradient: 100% of A to 100% of B in 19 min. The fraction containing pure product  

(rt = 5.7 min) was collected, evaporated in vacuum and finally freeze-dried. Yield 0.130 g (46%, based 

on tBu2NO2A). 1H-NMR (600 MHz, D2O): δ (ppm) 1.49 (s, CH3, 18H), 1.87 (m, PCH2CH2, 2H), 2.41 

(m, PCH2CH2, 2H), 2.89 (bs, ring CH2, 4H), 3.30 (d, 2JPH=7.5 Hz, NCH2P, 2H), 3.12 (bs, ring CH2, 

4H), 3.35 (bs, ring CH2, 4H), 3.63 (s, NCH2CO, 4H). 13C{1H} NMR (150 MHz, D2O): δ (ppm) 27.63 

(d, 1JPC = 72.0 Hz, PCH2CH2), 28.03 (s, CH3), 30.0 (d, 2JPC = 3.0 Hz, PCH2CH2), 47.56 (s, ring CH2), 

49.66 (s, ring CH2), 53.30 (s, ring CH2), 53.77 (d, 1JPC = 88.0 Hz, NCH2P), 56.62 (s, NCH2CO), 84.27 

(s, Cq), 172.98 (s, NCH2CO), 181.29 (d, 3JPC = 16.7 Hz, PCH2CH2CO2H). 31P{1H} NMR (121 MHz, 

D2O): δ (ppm) 32.42 (s). MS (ESI, positive, m/z): 508.3 [M + H]+, calc. for M (C22H42N3O8P) 507.6. 

HR-MS (positive mode, m/z): 508.2797 [M + H]+, calc. for C22H42N3O8P 507.2710. 

3.2.4. Synthesis of 1,4,7-Triazacyclononane-4,7-bis(carboxymethyl)-1-[methylene(2-carboxy-

ethyl)phosphinic acid] (NO2AP) 

Ester 20 (48.2 mg, 0.095 mmol) was dissolved in dry CH2Cl2:TFA 1:1 (10 mL) and the solution 

was stirred in dark at room temperature for 12 h. Solvents were evaporated in vacuum and the crude 

product was dissolved in water and evaporated, and the procedure was repeated twice. The residue was 

dissolved in water and the solution was freeze-dried. Product yield 37.1 mg as the trifluoroacetate salt. 
1H-NMR (600 MHz, D2O): δ (ppm) 2.13 (m, PCH2CH2, 2H), 2.67 (m, PCH2CH2, 2H), 3.45 (d,  
2JPH = 5.7 Hz, NCH2P, 2H), 3.50–3.56 (m, ring CH2, 8H), 3.66 (s, ring CH2, 4H), 4.14 (s, NCH2CO, 4H). 
13C{1H} NMR (150 MHz, D2O): δ (ppm) 24.72 (d, 1JPC = 92.3 Hz, PCH2CH2) , 27.01 (s, PCH2CH2), 

51.44 (s, ring CH2), 52.19 (s, 2× ring CH2), 55.01 (d, 1JPC = 96.4 Hz, NCH2P), 57.39 (s, NCH2CO), 

116.7 (q, 1JCF = 290.4 Hz), 163.1 (q, 2JCF = 36.5 Hz), 170.92 (s, NCH2CO), 177.14 (d, 3JPC = 13.5 Hz, 

PCH2CH2CO2H). 31P{1H} NMR (121 MHz, D2O): δ (ppm) 43.77 (s). MS (ESI, positive, m/z): 396.1 

[M + H]+, calc. for M (C14H26N3O8P) 395.3. HR-MS (positive mode, m/z): 396.1534 [M + H]+, calc. 

for C14H26N3O8P: 395.1457. 
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3.3. Potentiometry 

Potentiometry was carried out (preparation of stock solutions and chemicals, electrode system 

calibration, titration procedures, equipment and data treatment) according to the previously published 

procedures [48]. The Ga(NO3)3 stock solution contained known amount of HNO3 to protect it against 

hydrolysis. Protonation and stability constants were determined in 0.1 M (NMe4)Cl at 25.0 °C and they 

are concentration constants. Protonation constants of NOPA (cL = 0.004 M) and Cu-NOPA stability 

constants (cL = cCu = 0.004 M) were determined by normal (“in-cell”) titrations in pH range 1.6–12 

with ≈40 points per titration and four parallel titrations. The stability constants in the Ga3+–NOPA 

system were obtained by “out-of-cell” method as described previously (cL = cGa = 0.004 M, pH range 

1.5–11.5, 25 points per titration, two parallel titrations, equilibration time three weeks) [10,48]. The 

titration data were treated with OPIUM [49] program. Stability constants of gallium(III) hydroxide 

species and pKw = 13.81 were taken from literature [50,51]. Throughout the text, the pH means −log[H+]. 

3.4. 68Ga Labelling 

The labelling was done manually according to the procedure described in ref. [19]. Briefly, 68Ga 

was eluted from a SnO2-based 68Ge/68Ga-generator (iTHEMBA Labs, Cape Town, South Africa) with 

1 M aq. HCl. A 1250-µL fraction containing the highest activity (≈70 MBq) was collected and buffered 

with 2-[4-(2-hydroxyethyl)-piperazin-1-yl]ethanesulfonic acid (HEPES; 800 µL, 2.7 M aq.). Aliquots 

of that solution (90 µL) were added to ligand stock solutions of appropriate concentration (10 µL,  

pH ≈3.0) and left to incubate at 95 C or 25 C for 5 min. For pH dependence experiments, pH was 

adjusted with aq. HCl and/or aq. NaOH. 

4. Conclusions 

A detailed comparison of a series of four tacn-based chelators with various phosphinic/carboxylic 

acid substitution patterns provided a better understanding of the structural factors governing metal ion 

complexation properties of this class of ligands. The presence of at least two phosphinic acid pendant 

arms is a key to the unique 68Ga-labelling properties of TRAP-like chelators. Apparently, one phosphinate 

coordination site of the TRAP motif can be exchanged with a different donor, e.g. carboxylate, without 

compromising its affinity to gallium(III). On the other hand, the presence of carboxylate groups facilitates 

the complex formation at neutral or weakly acidic pH. Overall, our findings help with the fine-tuning of 

metal-binding properties of the pendant-armed 1,4,7-triazacyclononanes and, thus, provide a strong basis 

for future rational design of these ligands for medical applications. 
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