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Abstract

In this note we present an elementary way to derive directly closed-form ex-
pressions for power sums. Applying this method, we deduce some general
results on power sums with arbitrary exponents. Finally, we give an out-
look on higher mathematical connections between power sums, Stirling and
Bernoulli numbers.
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1 Introduction

Zoltán Szvetits was a legendary teacher, one of the founders of special mathematics
education in Mihály Fazekas High School, Debrecen, 50 years ago. I have had the
distinct blessing to know him personally. When I started my studies in the first
six-year class in this school, the same school year was the very last for Mr. Szvetits
before finally retiring.

Once he heard that I learnt mathematical induction. He asked my teacher to
let me miss the mathematics lesson. We sat into the library, and he taught me that
although induction is a powerful tool, it has some disadvantages. First, one has
to know or at least conjecture the statement to be proved. On the other hand, in
many cases, proof by induction needs no or essentially no beautiful ideas.

If k and n are positive integers, we shall use the notation

Sk(n) = 1k + . . . + nk

for power sums.
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Typical basic exercises are proving by mathematical induction that the sums
of the first few positive integers, square numbers and cube numbers are

S1(n) = 1 + . . . + n =
n(n + 1)

2
, (1)

S2(n) = 12 + . . . + n2 =
n(n + 1)(2n + 1)

6
, (2)

S3(n) = 13 + . . . + n3 =
n2(n + 1)2

4
. (3)

Indeed, it is almost automatic to prove these identities by induction.
In this note we show that ingenious idea which I have learnt from Mr. Szvetits

and which gives a direct, elementary approach to identities (1), (2), (3). Up to
this day, I treasure his handwritten papers. It is typical of him that he used the
notation S♥n for S3(n).

Thereafter, we think over this method to obtain some general results on Sk(n).
Finally, we close our paper with an outlook on the connections of these expressions
with Stirling and Bernoulli numbers.

2 Sums of squares and cubes

Everybody knows the anecdote about the schoolchild Gauss who calculated S1(100)
rapidly, surprising his teacher. To explain his idea, write S1(n) in reverse order

S1(n) = n + . . . + 1,

and add it to S1(n) in the original order of terms to get 2S1(n) = n(n+1), therefore
(1) is proved.

In the next paragraphs we will consider identities (2) and (3), but we should
mention that the same argument can be also applied to obtain (1).

The first n + 1 positive cube numbers can be written in the following way:

(0 + 1)3 = 1
(1 + 1)3 = 13+ 3 · 12+ 3 · 1+ 1
(2 + 1)3 = 23+ 3 · 22+ 3 · 2+ 1

...
(n + 1)3 = n3+ 3 · n2+ 3 · n+ 1

Summing up these equations, we get

S3(n) + (n + 1)3 = S3(n) + 3S2(n) + 3S1(n) + (n + 1).

After some rearrangement and using (1), we have

S2(n) =
1
3

(
(n + 1)3 − (n + 1)− 3S1(n)

)
=

n(n + 1)(2n + 1)
6

.
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Similarly, write the fourth powers of the first n + 1 positive integers as

(0 + 1)4 = 1
(1 + 1)4 = 14+ 4 · 13+ 6 · 12+ 4 · 1+ 1
(2 + 1)4 = 24+ 4 · 23+ 6 · 22+ 4 · 2+ 1

...
(n + 1)4 = n4+ 4 · n3+ 6 · n2+ 4 · n+ 1

Summation of these equations gives

S4(n) + (n + 1)4 = S4(n) + 4S3(n) + 6S2(n) + 4S1(n) + (n + 1).

From the previously proved identities (1) and (2), by an easy calculation it
follows that

S3(n) =
1
4

(
(n + 1)4 − (n + 1)− 4S1(n)− 6S2(n)

)
=

n2(n + 1)2

4
.

3 Power sums in general

It is an immediate idea that the above argument applied in the general case allows
us to derive an identity for Sk(n) if we know the formulas for S1(n), . . . , Sk−1(n).
This will be carried out in the following theorem.

In addition, if we perform multiplications in (1), (2), (3), formulas

S1(n) =
1
2
n2 +

1
2
n,

S2(n) =
1
3
n3 +

1
2
n2 +

1
6
n,

S3(n) =
1
4
n4 +

1
2
n3 +

1
4
n2

suggest us several observations on these expressions. It will turn out that our
method is suitable to prove these properties, as well.

Theorem. Sk(n) is a polynomial in n with rational coefficients.
The polynomial Sk(x) possesses the following properties:

• the degree of the polynomial is k + 1,

• the leading coefficient (the coefficient of xk+1) is 1
k+1 ,

• the coefficient of xk is 1
2 ,

• the constant term is 0, i.e., 0 is a root of the polynomial, and

• −1 is also a root of the polynomial.
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Proof. Similarly as above, for the (k+1)st powers of the first n+1 positive integers,
binomial theorem gives

(0 + 1)k+1 = 1
(1 + 1)k+1 = 1k+1+

(
k+1

k

)
· 1k+

(
k+1
k−1

)
· 1k−1+ . . .+

(
k+1
1

)
· 1+ 1

(2 + 1)k+1 = 2k+1+
(
k+1

k

)
· 2k+

(
k+1
k−1

)
· 2k−1+ . . .+

(
k+1
1

)
· 2+ 1

...
(n + 1)k+1 = nk+1+

(
k+1

k

)
· nk+

(
k+1
k−1

)
· nk−1+ . . .+

(
k+1
1

)
· n+ 1

The sum of these equations is

Sk+1(n) + (n + 1)k+1 =

Sk+1(n) +
(

k + 1
k

)
Sk(n) +

(
k + 1
k − 1

)
Sk−1(n) + . . . +

(
k + 1

1

)
S1(n) + (n + 1),

which yields

Sk(n) =
1

k + 1

(
(n + 1)k+1 − (n + 1)−

(
k + 1

1

)
S1(n)− . . .−

(
k + 1
k − 1

)
Sk−1(n)

)
.

Now, each of the properties listed in the theorem follows from this identity by
induction on k.

Remark. By further consideration, it could be shown that

• − 1
2 is a root of Sk(x) if k is even,

• 0 and −1 are multiple roots if k ≥ 3 is odd.

4 Stirling and Bernoulli numbers

However, this is not the whole story. The polynomials Sk(x) have a far-reaching
theory. We highlight only two possible directions.

On the one hand, they can be expressed using Stirling partition numbers and
Stirling cycle numbers as

Sk(x) =
k+1∑
i=1

k∑
j=i−1

(−1)j+1−i 1
j + 1

{
k

j

}[
j + 1

i

]
xi,

where
{

m
`

}
counts the number of partitions of an m-element set into ` non-empty

subsets, and
[
m
`

]
denotes the number of permutations of m elements which are the

product of ` disjoint cycles (` ≤ m).
On the other hand, calculating the polynomials Sk(x) for further small values

of k, we can observe that the coefficient of xi is 0 if i < k and they have the same
parity. By a much deeper analysis, in the remaining cases it is more difficult to
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realize that the coefficient of xi is a constant multiple of 1
k+1

(
k+1

i

)
, which constant

depends only on the difference of k + 1 and i. Indeed, these polynomials satisfy
Bernoulli’s identity (sometimes called Faulhaber’s identity)

Sk(x) =
1

k + 1

k+1∑
i=1

(
k + 1

i

)
Bk+1−ix

i,

where Bm denotes the mth Bernoulli number with the convention B1 = 1
2 . It is

known that Bm = 0 if m ≥ 3 is odd. (Some authors define Bernoulli numbers such
that B1 = − 1

2 . In this case Bernoulli numbers agree for any other indices, therefore
the formula should contain an additional factor (−1)k+1−i inside the summation.)

For more details, one should consult the references listed below.
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