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Abstract

In this paper, the punching shear resistance of slabs without

punching shear reinforcement is investigated. We assumed that

the punching shear resistance can be characterized by the shear

resistance of the concrete compression zone, and that the load

bearing near the column head can be investigated by the the-

ory of bent shallow shells. With these assumptions the punch-

ing control perimeter can be calculated. For analyzing the bent

shallow shell, the method of the generator function was applied.

This method is based on the generalization of the determinants

and cofactors of quadratic matrices. We also assumed that the

shape of the shell can be approximated by a paraboloid of revo-

lution. We compared the calculated result with the value accord-

ing to Eurocode 2. The good agreement between these values

shows the efficiency of the above-mentioned assumptions.
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1 Introduction

The design codes typically give empirical expressions for the

punching shear capacity of flat slabs, which are based on exper-

imental investigations. In these expressions the punching shear

strength and the defined control perimeter are both determined

by statistical methods. According to the code rules the control

perimeter is located at a distance of 1, 50 . . . 2, 00 d from the

face of the column.

In the following we assumed that the punching shear resis-

tance can be characterized by the shear resistance of the concrete

compression zone. Moreover, we assumed that the load bearing

near the column head can be investigated by the theory of bent

shallow shells, where the shape of the shell can be represented

as a paraboloid of revolution.

Based on the abovementioned assumptions, the punching

control perimeter can be calculated.

2 Punching tests for flat slabs and the punching shear

resistance

The punching shear resistance of a flat slab supported by

columns of a square mesh is investigated by considering a rep-

resentative slab element surrounding a column. The theory of

thin elastic plates shows that, in the case of small values of c / L,

where c is the radius of a circular column and L is the axis-

to-axis spacing of the columns (Fig. 1.a), the bending moments

in the radial direction practically form a zero circle of radius

r = 0, 22 L, as shown in Fig. 1.b. Thus the plate around the col-

umn and inside such a circle can be approximated as a circular

plate simply supported along the circle r = 0, 22 L [1].

Since the beginning of the 20th century a great number of

experiments on punching have been based on this rotationally

symmetric case. Concrete specimens with and without shear re-

inforcement have been investigated with additional parameters

[2].

In the expressions of code rules the punching shear resistance

of flat slabs emerges as a product of the punching shear stress,

the critical perimeter, and the effective depth. Eurocode 2 gives
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Fig. 1. Distribution of the radial moments of a flat slab under dead load [2]

the following expression

VRc = vRcud = 0, 18k (100ρl fck)
1
3 u d (1)

where vRc is the shear strength, u is the punching control

perimeter located 2d from the face of the column, d is the ef-

fective depth of the slab, k is a factor accounting for size ef-

fect defined by a function of the effective depth of the slab, ρl

is the flexural reinforcement ratio, and fck is the characteristic

compressive strength of concrete [3]. Actually, expression (1)

is equal to the shear resistance of a beam without shear rein-

forcement according to Eurocode 2, but there the width of the

cross-section bw emerges instead of the control perimeter u.

In the last two decades a new trend emerged in calculating the

punching shear resistance, where the semi-empirical failure cri-

terion is a function of the width of the critical crack. According

to [4] the failure criterion is formulated as follows

VR

b0 d
√

fc
=

3
4

1 + 15
ψd

dg0+dg

(2)

where ψ is the rotation, from which the width of the critical

crack can be assumed to be proportional to the product ψd, b0

is the perimeter of the critical section located d/2 from the face

of the column, fc is the concrete compressive strength, dg is the

maximum aggregate size, and dg0 is a reference size equal to

16 mm.

Due to the fact, that u and b0 have the same meaning, expres-

sion (2) can be given as VRc = vRc u d, thus the shear strength

can be expressed as

vRc =

3
4

1 + 15
ψd

dg0+dg

√
fc (3)

In these expressions the value of vRc and the defined control

perimeter are both determined by statistical methods, on the ba-

sis of the available experimental data.

By defining the control perimeter, the value of the punching

shear capacity includes effects which cannot be interpreted by

traditional plate theory of small deflections.

In [5] we assumed that the shear resistance of a beam without

shear reinforcement can be well characterized by the shear re-

sistance of the concrete compression zone, thus the shear resis-

tance can be defined as a function of the curvature of the cross-

section. Considering that the distribution of the shear stresses

is parabolic, we proposed the following expression for the shear

resistance

VRc =
2

3
τc,MOHRbxII (4)

where b is the width of the cross-section, xII is the depth of

the compressive zone, assuming that steel and concrete are both

in the elastic state, and τc,MOHR = 0, 5
√

fc fct. For the values of

shear slenderness λ = a / d ≥ 3, where a / d is the shear span-

to-depth ratio, the results of expression (4) are in good agree-

ment with the test results reported by Walther [6]. Depending on

the flexural reinforcement ratio, expression (4), is well approx-

imated by the function of 3
√

. Based on the test parameters by

Walther, for fcm = 30 MPa and k = 1 +
√

200 / d = 1, 86 ≤ 2,

where k is the size effect factor, we obtained the following ap-

proximation

VRc = 0, 17 k (100 ρl fck)1/3 b d (5)

Expression (5) is practically the same as the shear resistance

of a rectangular beam according to Eurocode 2. This good

agreement shows that our assumption was correct.

A similar conclusion was drawn by [7], in which the shear

resistance of a beam without shear reinforcement is given by the

following expression

VRc =
2

3

√
f 2
t + ft

σm

2
bwc (6)

where c is the depth of the concrete compression zone, ft =

0, 5
√

f ′c , σm = 0, 625
√

f ′c and f ′c is a specified concrete

strength.

In the following, according to the above mentioned assump-

tions, we suppose that the punching shear resistance of a flat

slab is determined by the shear resistance of the concrete com-

pression zone, and that the punching shear stress according to
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Eurocode 2 is derived from this resistance. In this case, the con-

trol perimeter must be determined by the cracked cross-section

along the perimeter of the column, hence the initial control

perimeter is u0 = 2πc.

Based on this assumption, using the punching tests results

of slabs without shear reinforcement of [2] with the value of

vRc according to Eurocode 2, we calculated the punching con-

trol perimeters. For these values, we determined the distances

between the calculated control cross-sections and the cracked

cross-section. The calculations were based on the test data

of the appendix I of bulletin [2], which contains 200 punch-

ing tests of slabs without shear reinforcement from the year

1956 to 2000. These test results are reported by authors such

as Elstner/Hognestad (1956), Kinnunen/Nylander (1960), Man-

terola (1966), Regan (1986), Lovrovich/McLean (1990), Ram-

dane (1993) and Hallgren (1996). The relative frequency his-

togram of the location of punching control perimeters is shown

in Fig. 2.

Fig. 2. The relative frequency histogram of the location of punching control

perimeters

As shown in Fig. 2, the cracked cross-section does not match

the calculated control cross-sections; instead the location of con-

trol cross-sections are typically farther than a distance 1,5d from

the face of the column. Based on these differences, we can

conclude that a portion of the loads is balanced without shear-

ing forces; thus, the membrane forces have a significant effect

around the column.

Hence the load bearing around the column can be investi-

gated more adequately on the basis of the theory of bent shallow

shells, than that of thin plates. The assumed shell around the

column and its geometry is shown in Fig. 3.

Fig. 3. Geometry of shell around the column head

Based on the above-mentioned assumptions, the membrane

action can be calculated. From this action the punching control

perimeter can also be determined. Actually, the critical perime-

ter is not directly related to the punching failure mechanism,

because it is defined on the basis of the test results, in order to

simplify the standard equations, and to make the punching re-

sistance independent of the column’s dimensions. However, if

our assumptions are right, with necessarily fixed parameters, the

model should predict this quantity in accordance with Eurocode

2.

The emerging membrane forces of flat slabs are shown in [8],

through nonlinear finite element simulation.

3 Analysis of the bent shallow shell

For analyzing the bent shallow shell, the method of the gener-

ator function was applied. The application of the method of the

generator function is shown in detail according to [9]. Let the

shape function of the flat shell in an r, ϑ, z cylindrical coordinate

system

z =
α

2
r2 (7)

in which α is the parameter of the shell, and

α =
2 f

a2
(8)

where a is the boundary radius, and f is the depth of the shell

(Fig. 3). The load and the supports of this paraboloid are as-

sumed axisymmetric. The material is assumed as homogenous

and isotropic with elastic constants E and ν.

The differential equation system of bent shallow shells is the

following [10]

− P (z, F) + K∆∆w = p

1

Et
∆∆F + P (z,w) = 0

(9)

in which w is the displacement normal to the middle surface,

F is the stress function of membrane forces, and p is the func-

tion of external loads. P is called Kármán’s shell operator, ∆

is the two-dimensional Laplace operator, which in cylindrical

coordinate system takes the form

∆ =
∂2

∂r2
+

1

r

∂

∂r
+

1

r2

∂2

∂ϑ2
(10)

and the flexural stiffness of the shell is

K =
Et3

12
(
1 − ν2

) (11)

where t is the thickness of the shell. The first row of the dif-

ferential equation system enforces equilibrium, and shows, that

the load p can be subdivided into two parts, namely pmembrane +

pplate = p, in such a manner that pmembrane is balanced by mem-

brane forces, and pplate is balanced by the bending moments and

shear forces calculated by means of the theory based on small
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deflections. The second row of the differential equation system

shows enforces compatibility, and shows that the membrane-like

and the plate-like deformations are corresponding.

The second order derivatives of function z in operator P, in

case of the paraboloid of revolution, are

∂2z

∂r2
= α,

1

r

∂z

∂r
= α and

∂z

∂ϑ
= 0 (12)

Thus, the following differential equation system is obtained:

K∆∆w − α∆F = p

α∆w +
1

Et
∆∆F = 0

(13)

The homogeneous linear differential equation system for un-

knowns y1 = w and y2 = F can be written in vectorial form

as

Θ

 w

F

 = Θy = 0 (14)

where Θ is the operator matrix

Θ =

 K∆∆ −α∆

α∆ 1
Et

∆∆

 (15)

The operator determinant and the cofactor matrix of Θ are

det (Θ) =
K

Et
∆∆∆∆ + α2∆∆ (16)

Co f (Θ) =

 1
Et

∆∆ −α∆

α∆ K∆∆

 (17)

Using the generator function H the following characteristic

equation emerges

K

Et
∆∆∆∆ {H} + α2∆∆ {H} = 0 (18)

After a further factorization of the determinant and introduc-

ing the characteristic length

L =
4

√
K

α2Et
(19)

we obtain

det (Θ) =
K

Et
∆∆

(
∆∆ +

α2Et

K

)
(20)

det (Θ) = α2L4∆∆

(
∆∆ +

1

L4

)
=

= α2L4∆∆

∆ +

√
−

1

L4

 ∆ − √
−

1

L4

 (21)

Eq. (21) shows that the solution of the eighth order character-

istic differential equation can be reduced to those of one fourth

order and two second order differential equations as follows:

∆∆H(1) = 0∆ + i

√
1

L4

 H(2) = 0∆ − i

√
1

L4

 H(3) = 0

(22)

The solutions of Eq. (22) are biharmonic functions, and a

combination of two solutions of the Bessel differential equa-

tions. The general solution can be represented in the following

form:

H = A (r) + c5ber (x) + c6bei (x) + c7kei (x) + c8 ker (x)

A (r) = c1 + c2r2 + c3 ln r + c4r2 ln (r)
(23)

where ber(x), bei(x), ker(x) and kei(x) are the zero order

Thomson functions, and

x =
r

L
(24)

is a dimensionless radial coordinate.

Generating functions w and F from Co f (Θ) {H} = y using

the second row of the cofactor matrix (17), we find

w = α∆ {H} = α
1

L2
[4c2 + 4c4 [1 + ln (x)]−

−c5bei (x) + c6ber (x) + c7 ker (x) − c8kei (x)]

(25)

F = K∆∆ {H} =

= −K
1

L4
[c5ber (x) + c6bei (x) + c7kei (x) + c8 ker (x)]

(26)

For the displacement at point x = 0 (r = 0) becomes infinitely

large, since 1 + ln (0) = −∞ and ker (0) = ∞, the coefficient

c4 and c7 must vanish. Thus, the solution functions are reduced

to

w =
α

L2
[4c2 − c5bei (x) + c6ber (x) − c8kei (x)] (27)

F = −
K

L4
[c5ber (x) + c6bei (x) + c8 ker (x)] (28)

The four constants can be determined on the basis of the cor-

responding boundary conditions. In fact, only three constants

can be calculated, because if there is no concentrated load P at

the point x = 0, the value of the shear force is (Qr)x=0 = 0, thus

we obtain c8 = 0. In the case of a shell carrying a concentrated

load P at the point x = 0, c2 = 0 because c2 represents a con-

stant displacement of the shell. The remaining constants can be

calculated from the boundary conditions as follows:

wr=a = 0, (Mr)r=a = 0, P = − lim
r→0

(2rπQr) (29)
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From the expression of displacement, for the radial bending

moment and the radial shear force, the following two expres-

sions are given:

Mr = −K

[
∂2w

∂r2
+ ν

(
1

r

∂w

∂r
+

1

r2

∂2w

∂ϑ2

)]
(30)

Qr = −K
∂

∂r
(∆w) (31)

For the expression of displacement w, the radial bending mo-

ment, and the radial shear force, we obtain

w =
α

L2
[−c5bei (x) + c6ber (x) − c8kei (x)] (32)

Mr = −
Kα

L4

{
−c5

[
ber (x) −

1 − ν

x
bei ′ (x)

]
+

+ c6

[
−bei (x) −

1 − ν

x
ber ′ (x)

]
−

− c8

[
ker (x) −

1 − ν

x
kei ′ (x)

]} (33)

Qr =
Kα

L5

[
c5ber ′ (x) + c6bei ′ (x) + c8 ker ′ (x)

]
(34)

Introducing Eqs. (32), (33) and (34) in Eq. (29), we find

c5 = −
PL4

2πKα
·

·

(
bei ξ + 1−ν

ξ
ber ′ ξ

)
kei ξ +

(
ker ξ − 1−ν

ξ
kei ′ ξ

)
ber ξ(

ber ξ − 1−ν
ξ

bei ′ ξ
)

ber ξ +
(
bei ξ + 1−ν

ξ
ber ′ ξ

)
bei ξ

(35)

c6 =
PL4

2πKα
·

·

(
ber ξ − 1−ν

ξ
bei ′ ξ

)
kei ξ −

(
ker ξ − 1−ν

ξ
kei ′ ξ

)
bei ξ(

ber ξ − 1−ν
ξ

bei ′ ξ
)

ber ξ +
(
bei ξ + 1−ν

ξ
ber ′ ξ

)
bei ξ

(36)

c8 =
PL4

2πKα
(37)

where

ξ =
a

L
(38)

By substituting these values of the constants in expression

(32), the final expression of the deflection is obtained. When

f tends to zero, this solution approaches the solution of a con-

centrated load acting at the center of a circular plate, where the

solution is determined by the theory of small deflections. This

gives

w0 =
Pa2

16πK

[
3 + ν

1 + ν

(
1 − ρ2

)
+ 2ρ2 ln ρ

]
(39)

where

ρ =
r

a
(40)

is a relative radial coordinate [11].

4 Membrane action in the bent shallow shell

From expressions (39) and (32) with the constants c5, c6 and

c8, the membrane action can be expressed in the form

βr=0 =
pmembrane

p
= 1 −

(
w

w0

)
r=0

(41)

where p is the total load, and pmembrane is the part of p equi-

librated by membrane forces. Substituting in expression (41),

we conclude, that the membrane action only depends on the rel-

ative depth of the shell, denoted f / t. When f = t, we find

βr=0 = 0, 62. The variations of the membrane action and the

plate action with the ratio f / t are shown in Fig. 4, where the

plate action is determined by the expression 1 − βr=0.

Fig. 4. Membrane action and plate action as a function of the relative depth

of the shell

The membrane action can be expressed by the following ap-

proximate formulas

βr=0 ≈ 0, 62
f

t
− 0, 041 sin

(
2π

f

t

)
(42)

or

βr=0 ≈ 1 −
1

1 + 1, 753
f 2

t2

(43)

The membrane action can be represented by means of a circu-

lar plate on elastic foundation, where the intensity of the reaction

of the subgrade is given by the curvature of the middle surface

(Fig. 5).

Fig. 5. Bent shallow shell and its analogy as circular plate on elastic foun-

dation

This analogy as circular plate on elastic foundation can be

made visible by simplifying the cofactor matrix of Θ (17) with

the operator ∆. After this simplification and using the generator

function H, the characteristic equation is reduced to a fourth

order differential equation as follows

K∆∆ {H} + C {H} = 0 (44)

where the constant C is the modulus of a fictitious Winkler-

type foundation, assuming C = α2Et. The differential equation
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for the deflections of a circular plate on elastic foundation is the

following:

K∆∆w + Cw = p (45)

where K is the flexural rigidity of the plate and C is the mod-

ulus of the foundation. Comparing Eq. (44) with Eq. (45) the

analogy becomes evident.

5 Determination of punching cross-section

For determining the punching or control cross-section, all ef-

fects, which increase the punching shear resistance, were inter-

preted as an increase of the control perimeter. The control radius

rcont can be determined from the calculated perimeter, where the

control radius is the distance of the control cross-section from

the centroid of the column. In the calculations we assumed that

the shear resistance is determined by the shear resistance of the

concrete compression zone; therefore, the basic control section

u0 = 2πc is at the column face.

5.1 Effect of membrane action

The calculations are performed with the mean value of

the data on slabs without shear reinforcement of [2]. In

these tests for flat slabs when d � 0, 8 v, we find a / v =

1, 00 . . . 5, 88 . . . 12, 0 and c / a = 0, 03 . . . 0, 128 . . . 0, 50

(mean values are underlined), where v is the total height of slab,

the additional symbols are according to Fig. 1 and Fig. 3. In the

case of v = 25 cm and d = 20 cm, we obtain c = 18,82 cm. Thus,

we can calculate L = 6,50 m column distance and 30 x 30 cm

quadratic column. These obtained values are in good agreement

with the practical usage.

In our calculations we assumed that the slab-column connec-

tions are monolithic, therefore we determined the value of the

membrane action at the point r = c. For f = d, we find

βr=c = 1 − (w /w0)r=c = 0, 623 . . . 0, 637 . . . 0, 689.

In various test results that part of load, which is balanced by

membrane forces (without bending moments and shear), seems

like an effect increasing the punching shear resistance. Using

the mean value, we obtain

rcont =
p

pplate

c =

(
w0

w

)
r=c

c =
1

1 − βr=c

c = 2, 755 c (46)

For c = 0, 941 d, we find

rcont = c + 1, 65 d (47)

If the control perimeter is at a distance 1,65 d from the face of

the column, and the punching shear stress is defined according to

Eurocode 2, then we obtain the lower limit value of the punching

shear resistance, because the ultimate punching loads are larger

than those obtained by calculation in 96,5% of cases.

5.2 Effect of the failure criteria of the concrete compression

zone

The concrete compressive zone in a reinforced concrete beam

subjected to bending is a typical case of plane stress conditions,

whose behaviour can be adequately studied by Mohr’s criterion

[12]. For Mohr envelope usually a parabolic form or a sim-

ple straight line is used in practice. The straight-line envelope

is called Coulomb’s line. From the different envelopes of the

Mohr circles, different τ (σ) failure criteria and different values

of concrete shear strength can be calculated. The shear strength

of concrete, which is calculated from the parabolic envelope,

is named τc,WALT HER [6] and that, which is calculated from the

straight line envelope, is named τc,MOHR [5]. For σmax = fc

the value of τc,WALT HER is 42,3 percent more than the value of

τc,MOHR. The test results reported by Kármán [13] show τc,MOHR

as the lower limit value and τc,WALT HER as the upper limit value.

Based on expression (4) the following lower limit to the

punching shear resistance is obtained:

VR,min =
2

3
τc,MOHR u0 xII (48)

Assuming that the maximum value of the concrete shear

strength is calculated from the parabolic envelope, the upper

limit to the punching shear resistance is given by

VR,max =
2

3
τc,WALT HERu0xII (49)

When the upper limit value of the ultimate shear stress

τc,WALT HER = 1, 423 τc,MOHR is interpreted as an increase of

the control perimeter, for c = 0, 941 d, we obtain

rcont = c + 0, 40 d (50)

6 Calculation of the punching resistance

The value of the punching shear resistance, considering the

effect of the membrane action and the effect of the failure criteria

of the compressive zone, can be expressed as

VRc =
C

1 − βr=c

2

3
τc,MOHR u0 xII (51)

Using the former notations, C = 1,000 . . . 1,423 and

τc,MOHR = 0, 5
√

fc fct.

We compared the results of expression (51) with test results

of flat slabs without punching shear reinforcement by [2]. For

C = 1,000 the expression (51) gives a lower limit value of the

punching resistance. For C = 1,423 the mean square error of the

results of expression (51) is 14% worse than the value of the

punching resistance according to Eurocode 2.

The results of expression (51) versus the value of the char-

acteristic compressive strength of concrete fck are represented

graphically in Fig. 6. For the purpose of comparison, the figure

also includes test results reported by Ramdane [2]. In these ex-

periments, with constant geometry and reinforcement ratio, the

compressive strength of concrete is varied.

Period. Polytech. Civil Eng.410 Béla Bogdándy, István Hegedűs



(a)

(b)

Fig. 6. Comparison of expression (51) with test results reported by Ramdane

[2].

As shown in Fig. 6, the values of VRc (51) for C = 1,000 rep-

resent lower limit values to the punching resistance. These test

results suggest a relationship between the values of C and the

compressive strength of concrete, which actually means a re-

lationship between the failure criteria of the concrete and the

compressive strength of concrete.

7 Conclusions

The final results of the investigation show that our assump-

tions were correct. For the distance from the centroid of

the column to the control section we obtained rcont = c +

1, 65 . . . 2, 05 d. This result is in good agreement with the value

according to Eurocode 2, where the control perimeter at a dis-

tance 2d should be considered. The uncertainty of the calculated

value is due to the uncertainty of failure criteria of the concrete

compression zone.

The good agreement of the calculated result of the punching

control perimeter shows that the membrane effect is an impor-

tant part of the load bearing around a column. For calculating

the punching shear resistance, the shape of the shell can be ap-

proximated as a paraboloid of revolution and the height of the

shell can be determined with f = d.

On the basis of the above mentioned assumptions a simple

mechanical model and an expression for the punching shear ca-

pacity can be given. This simple mechanical model can be made

more complex by taking into account the effect of the displace-

ment, the effect of the normal forces, the effect of the flexural

reinforcement and the effect of the bending cracks, in order to

achieve a lower coefficient of variation.

References

1 Timoshenko S, Woinowsky-Krieger S, Lemezek és héjak elmélete,
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