
1 

 

FNDC5/irisin, a molecular target for boosting reward-related 

learning and motivation 

 

Judit Zsuga1*, Gabor Tajti1, Csaba Papp1, Bela Juhasz2, Rudolf Gesztelyi3 

 

1 Department of Health Systems Management and Quality Management for Health Care, 

Faculty of Public Health, University of Debrecen, Nagyerdei krt 98, 4032 Debrecen, Hungary 

2 Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of 

Debrecen, Nagyerdei krt 98, 4032 Debrecen, Hungary 

3 Department of Pharmacology, Faculty of Pharmacy, University of Debrecen, Nagyerdei krt 

98, 4032 Debrecen, Hungary 

 

 

 

 

 

 

Running title: ‘FNDC5/irisin boosts reward-learning and motivation’ 

 

 

 

 

 

 

* Corresponding author: Judit Zsuga; Cell: +36 30 625-0144; fax: +36 52 411-717 ext. 55187; 

e-mail: zsuga.judit@med.unideb.hu  

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Debrecen Electronic Archive

https://core.ac.uk/display/161046131?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 

Abstract 

Interventions focusing on the prevention and treatment of chronic non-communicable diseases 

are on rise. In the current article, we propose that dysfunction of the mesocortico-limbic reward 

system contributes to the emergence of the WHO-identified risk behaviors (tobacco use, 

unhealthy diet, physical inactivity and harmful use of alcohol), behaviors that underlie the 

evolution of major non-communicable diseases (e.g. cardiovascular diseases, cancer, diabetes 

and chronic respiratory diseases). Given that dopaminergic neurons of the mesocortico-limbic 

system are tightly associated with reward-related processes and motivation, their dysfunction 

may fundamentally influence behavior. While nicotine and alcohol alter dopamine neuron 

function by influencing some receptors, mesocortico-limbic system dysfunction was associated 

with elevation of metabolic set-point leading to hedonic over-eating. Although there is some 

empirical evidence, precise molecular mechanism for linking physical inactivity and 

mesocortico-limbic dysfunction per se seems to be missing; identification of which may 

contribute to higher success rates for interventions targeting lifestyle changes pertaining to 

physical activity.  

In the current article, we compile evidence in support of a link between exercise and the 

mesocortico-limbic system by elucidating interactions on the axis of muscle – irisin - brain 

derived neurotrophic factor (BDNF) - and dopaminergic function of the midbrain. Irisin is a 

contraction-regulated myokine formed primarily in skeletal muscle but also in the brain. Irisin 

stirred considerable interest, when its ability to induce browning of white adipose tissue parallel 

to increasing thermogenesis was discovered. Furthermore, it may also play a role in the 

regulation of behavior given it readily enters the central nervous system, where it induces 

BDNF expression in several brain areas linked to reward processing, e.g. the ventral tegmental 

area and the hippocampus. BDNF is a neurotropic factor that increases neuronal dopamine 

content, modulates dopamine release relevant for neuronal plasticity and increased neuronal 

survival as well as learning and memory. Further linking BDNF to dopaminergic function is 

BDNF’s ability to activate tropomyosin-related kinase B receptor that shares signalization with 

presynaptic dopamine-3 receptors in the ventral tegmental area.  

Summarizing, we propose that the skeletal muscle derived irisin may be the link between 

physical activity and reward-related processes and motivation. Moreover alteration of this axis 

may contribute to sedentary lifestyle and subsequent non-communicable diseases. Preclinical 

and clinical experimental models to test this hypothesis are also proposed.  
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General background 

Physical inactivity, unhealthy diet, tobacco use and harmful use of alcohol are identified by the 

World Health Organization (WHO) as key risk factors for major chronic non-communicable 

diseases (NCDs) primarily responsible for premature death worldwide, e.g. cardiovascular 

diseases, cancer, diabetes and chronic inflammatory lung disease (1, 2). 

It is clear that combating NCDs is one of the greatest pressing challenges high-income countries 

must face, a challenge articulated in and reflected by several international policies, such as the 

Global Action Plan for the Prevention and Control of NCDs 2013-2020 resolution (1). This 

global action plan posits a paradigm shift by providing a road map and a menu of policy options 

that if implemented collectively could halt the rise in diabetes and obesity, lead to a 25% relative 

reduction in risk of premature mortality from cardiovascular diseases, cancer, diabetes, and 

chronic respiratory diseases.  

Furthermore, a relative reduction in the prevalence of risk factors such as insufficient physical 

activity and tobacco use in persons aged 15+ years, and harmful use of alcohol, is anticipated 

by 10%, 30% and 10%, respectively (1). Nonetheless rather than risk factors, all of them could 

be viewed as risk behaviors, with lifestyle changes or behavioral modifications being amongst 

the most effective means for preventing or slowing the progression of NCDs.  

In our current work, we put forward the hypothesis that the common denominator of risk 

behaviors underlying the most burdening NCDs may be the dysfunction (or untoward function) 

of the mesocortico-limbic system. Furthermore we propose that the irisin - brain derived 

neurotrophic factor (BDNF) pathway forms a significant the link between physical inactivity 

and the mesocortico-limbic system.  

A common denominator for change of behavior is motivation and allied reward-related 

processes driving change of said behavior. Motivation and reward processing are tightly linked 

to mesocortico-limbic dopaminergic activation, as laid out by the two major theoretical 

frameworks, the reward-prediction error and the incentive salience hypothesis (3-5).  

According to the reward prediction error hypothesis phasic dopamine response signals the 

discrepancy between expected and actual reward value of a cue governing future goal-directed 

activity (5, 6). Placing this concept into the reinforcement learning paradigm, the reward 

prediction error signal emitted by dopamine neurons is the neural correlate of model-free 

reinforcement learning’s prediction error and is used to compute the value of state without any 

attempt to build a model. This model-free system interacts with the model-based system (7) that 
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uses a model, possibly utilizing the continuous function of the brain’s default network, 

incorporating structures such as the hippocampus and the orbitofrontal cortex (8). 

On the other hand, Berridge and colleagues posit that reward associated processes are 

conceptualized using three psychological components, e.g. liking (the hedonic value of a cue), 

reward learning by means of associative learning and incentive salience that is ‘wanting’ 

(motivational incentive of a cue) (9). Accordingly, it attributes incentive (motivational) value 

to a cue making it more (or alternatively less) ‘wanted’ (4). This theoretical framework offers 

a different interpretation of the role attributed to mesocortico-limbic dopaminergic activation 

as it pointed to dopamine’s causal involvement in incentive salience as opposed to prior beliefs 

linking dopamine to hedonic attribute of cues (4, 10). Summarizing, incentive salience is the 

Pavlovian-guided attribution of motivational value to a previously reward-related neutral 

representation of a cue (conditioned stimulus (CS)) that results in a more attractive and ‘wanted’ 

cue/stimulus. Accordingly, the incentive salience value of a cue is the net of associative-

learning derived prior knowledge concerning the relationship between the cue and the reward 

(unconditioned stimulus (UCS)) (11). 

Either way, the central role of the dopaminergic mesocortico-limbic system has to be 

acknowledged (Fig. 1). 

Substantial evidence may be retrieved tying the influence of alcohol and nicotine to the 

mesocortico-limbic reward structures in the contemporary literature of addiction (for review 

see (12, 13)). There are also elaborate reviews focusing on the ‘hedonic control of eating’ (14-

16), moreover recently the term ‘hedonic obesity’ was coined to describe a form of obesity, in 

which the metabolic set-point is elevated due to hedonic over-eating linked to mesocortico-

limbic system dysfunction (17). Nonetheless, there seems to be missing a link between physical 

inactivity and mesocortico-limbic dysfunction per se, identification of which may contribute to 

higher success rates for interventions targeting lifestyle changes pertaining to physical activity. 

In the following section we will compile evidence in support of the link between exercise and 

the mesocortico-limbic system by elucidating interactions on the axis of skeletal muscle – irisin 

– BDNF - and dopaminergic function of the midbrain (Fig. 2). 
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Figure 1. Dysfunction (or untoward function) of the mesocortico-limbic system may be a 
causative factor in development of risk behaviors leading to the evolution of major NCDs. Risk 
behaviors and NCDs are indicated as conceptualized by the WHO for the purpose of Global 
Action Plan for the Prevention and Control of NCDs 2013-2020 (1). Abbreviations: COPD: 
chronic obstructive pulmonary disease, BA: bronchial asthma 
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Figure 2. The effect of exercise on irisin-BDNF pathway and related neuronal and metabolic 
changes. Physical activity increases irisin levels by inducing the expression of both FNDC5 
(parent molecule of irisin) and its upstream regulator PGC1α and FNDC5. After proteolytic 
cleavage of FNDC5, irisin is released mainly from skeletal muscle (red box) but also from 
several brain areas (e.g.: hippocampus). Circulating irisin, on one hand, induces expression of 
UCP-1 in adipose tissue that induces thermogenesis by browning of beige adipocytes. On the 
other hand it irisin upregulates BDNF expression in many brain areas (VTA, hippocampus, 
etc.). Both irisin and BDNF readily cross the blood-brain-barrier thus irisin formed in the 
periphery is able to increase BDNF levels in the brain, and BDNF formed in the brain may 
influence peripheral tissues such as adipocytes. We propose that exercise induced increase in 
irisin levels leads to elevated BDNF in the brain that, by activating TrkB receptors located on 
dopaminergic neurons in the VTA, may exert considerable influence on the dopamine content, 
neuronal survival and plasticity leading to altered reward-related learning and motivation, 
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processes that may underlie the evolution of behaviors. There are considerable interactions 
between these molecular pathways as the ability of BDNF to inhibit FNDC5 expression was 
shown previously (18). Furthermore, BDNF released from the CNS was shown to induce UPC1 
expression and browning in peripheral adipocytes (19). It is worthy of notice that the 
signalization of TrkB and D3 dopamine receptors overlap. Dotted lines indicate connections 
suggested by the hypothesis outlaid in the current article. Abbreviations: Akt: protein kinase B, 
BDNF: brain-derived neurotrophic factor, CNS: central nervous system, D3: dopamine 3 
receptor, ERK: extracellular signal-related kinase, FNDC5: fibronectin type III domain-
containing 5, MEK: mitogen-activated protein kinase kinase, mTOR: mammalian target of 
rapamycin, PGC1α: peroxisome proliferator-activated receptor-gamma coactivator 1α, PI3K: 
phosphoinositide 3-kinase, UCP-1: uncoupling protein 1, TrkB: tropomyosin-related kinase B, 
VTA: ventral tegmental area 

 

Emergence of skeletal muscle as an endocrine organ 

The identification of several muscle-derived cytokines and peptides termed myokines has led 

to the re-conceptualization of skeletal muscle as an endocrine organ (20, 21). Myokines, by 

definition, are produced, expressed, and released by muscle fibers and exert local or remote 

effects in an autocrine/paracrine or endocrine fashion, respectively. Myokines may be clustered 

based on their postulated function e.g. their contribution to metabolism, angiogenesis and 

myogenesis (22). One subset of myokines, contraction-regulated myokines, has raised 

considerable interest recently, based on its potential to account for the beneficial effects of 

exercise, given that it allegedly assumes a fundamental role for the interplay between skeletal 

muscle, adipose tissue and brain (21).  

One aspect of muscle-fat-brain crosstalk relevant for exercise-related beneficial effects of 

myokines concerns the browning of white adipose tissue (23). Conventionally, white adipose 

tissue (WAT) and brown adipose tissue (BAT) are differentiated based on their developmental 

origin and the role they assume in energy homeostasis. While WAT serves as the primary 

energy storing organ enabling prolonged survival in the absence of meals, BAT is responsible 

for energy dissipation in the form of non-shivering thermogenesis. In line with this, expression 

of mitochondrial uncoupling protein UCP1, a key protein underlying thermogenic activity of 

BAT, is low in WAT and high in BAT (24). Nonetheless, recently an intermediate form of 

adipocytes was identified called beige or brite (brown in white) adipocytes (25, 26). These cells 

originate from cell lines resembling that of WAT and are consistently found at anatomical 

locations typical for WAT. At baseline, they have low expression of UCP1. Nevertheless, if 

activated these beige adipocytes have the capability to switch from energy storing to energy 
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dissipating mode, by changing from a baseline expression to increased expression of UCP1, 

parallel to phenotypic alterations rendering these activated beige cells phenotypically similar to 

BAT. In fact, it is now proposed that in humans BAT may be mostly made-up of beige 

adipocytes (27). It is expected that the identification of molecular determinants for browning 

will yield novel therapeutic targets for combating some risk factors of major NCDs (23). To 

date, of the several factors identified as relevant for browning of beige adipocytes, irisin, a 

contraction-regulated myokine, has stirred considerable interest based on its exercise related 

beneficial effects (28, 29).  

 

A putative contraction-regulated myokine: irisin 

Irisin was first identified by Boström and colleagues in mice and humans (30). It is a highly 

conservative 12 kDa polypeptide showing 100% homology of its amino acid sequence among 

most mammals, indicating a highly preserved function (31). Irisin is formed by proteolytic 

cleavage of the transmembrane protein fibronectin type III domain containing 5 (FNDC5). 

Expression of FNDC5 is regulated by peroxisome proliferator-activated receptor-gamma 

coactivator protein-1α (PGC1α), a transcriptional co-activator also known for regulating 

oxidative metabolism in BAT (32). Both the expression of PGC1α and FNDC5 show positive 

correlation with physical activity as well as with each other, reflected by their increased or 

decreased expression due to sustained physical training or sedentary lifestyle, respectively (33, 

34). Following the proteolytic cleavage of FNDC5, irisin is released into the circulation. Albeit 

FNDC5/irisin expression is most abundant in skeletal muscle, other tissues such as the adipose 

tissue (rendering irisin an adipokine as well) (31, 35), tongue, rectum, and brain also express 

FNDC5 and irisin. In addition, the kidney, liver and lung also contain irisin in low levels (36).  

The most profound effect of irisin is the activation of oxygen consumption and thermogenesis 

of fat cells (32) by induction of WAT browning in selected regions (30). A recent report showed 

the beneficial effect of recombinant irisin in mice by decreasing body weight and improving 

glucose homeostasis parallel to upregulating the expression of thermogenic genes such as UCP-

1 and PGC1α, possibly via p38 mitogen-activated protein kinase (p38 MAPK) and extracellular 

signal–related kinase (ERK) pathways (37). Furthermore using Laser-scanning cytometry, 

Kristof and colleagues were able to demonstrate irisin’s efficacy to induce beige differentiation 

of subcutaneous white adipocytes in human samples (38). Based on its influence on adipose 

tissue, the possible contribution of irisin to obesity and related metabolic disorders, such as 
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insulin resistance, Type II diabetes and polycystic ovarium syndrome has been proposed (29, 

36), although relating data are inconsistent at present (29, 36).  

While circulating irisin establishes a firm link between skeletal muscle and adipose tissue, it 

also exerts influence in the central nervous system (CNS). In rodents, FNDC5 mRNA was 

isolated in several structures such as the midbrain and the hippocampus (32), structures known 

for being involved in reward-related model-free and model-based reinforcement learning (8). 

Conversely, others have provided strong evidence for endurance exercise to elevate neuronal 

FNDC5 expression in the hippocampus of mice (18). In addition, exercise-derived irisin 

produced in the periphery is able to cross the blood-brain barrier (32). A further indirect 

evidence supporting the link between exercise and alteration of PGC1α/FNDC5 pathway comes 

from a study on mice where markers of brain and muscle mitochondrial biogenesis (including 

PGC1α) were quantified following 8 weeks of endurance training using a treadmill run to 

fatigue paradigm. The authors showed a significantly increased PGC1α level in muscle and 

several brain regions, including those involved in reward-related processes, e.g. the frontal lobe, 

hippocampus and midbrain, when compared with sedentary counterparts (39). Furthermore, the 

finding that the level of FNDC5 expression is reduced in PGC1α -/- mice indicates the ability 

of PGC1α to induce neuronal FNDC5 expression, similarly to that in muscle (18). Based on 

these results, the possible induction of FNDC5 expression in these areas may be postulated.  

A significant effect of neuronal FNDC5/irisin is the ability to induce BDNF expression in 

several brain areas. For example, forced hippocampal expression of FNDC5 induced 

hippocampal expression of BDNF per se and elevation of the level of irisin in the circulation 

also increased BDNF expression in the hippocampus. Furthermore, manipulations of FNDC5 

expression by means of RNAi, small noncoding RNA transcripts that regulate mRNA 

expression-mediated knockdown in cortical neurons, showed corresponding decrease of 

cortical BDNF expression as well (18). 

 

BDNF, a link between FNDC5/irisin and mesocortico-limbic system 

BDNF is a neurotrophin assumed to possess significant role in the maturation, preservation and 

plasticity of the brain (40) as BDNF modulates the release of neurotransmitters, especially 

dopamine and serotonin (41). Conversely, lower BDNF levels influence the strength of synaptic 

connection (42), evoke long-term potentiation inherent of reward-learning related changes, 

consequently resulting in modified behavior (43). Additionally, BDNF has recently emerged as 
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a possible mediator of cognition-enhancing effects of exercise and intermittent fasting (44). 

Voluntary aerobe exercise enhances cognitive performance and increases serum BDNF levels 

in both humans and rodents (45-47). The exercise-responsive upregulation and subsequent 

release of FNDC5/irisin from the periphery together with the direct upregulation of FNDC5 in 

the neurons jointly contribute to the upregulation of BDNF (18).  

BDNF is synthetized throughout the neurons of the CNS including the midbrain’s ventral 

tegmental area, hippocampus and peripheral organs such as skeletal muscle, liver and adipose 

tissue (44). Thus, BDNF distribution shows a pattern similar to that of FNDC5. BDNF is 

synthetized in a pre-pro form and released into the circulation either as mature BDNF (this 

being the active form and is referred to as BDNF further on) or pro-BDNF (converted to BDNF 

in the plasma). BDNF readily crosses the blood-brain barrier and exerts its effects by binding 

to its high affinity receptor tropomyosin-related kinase B (TrkB), a tyrosine kinase receptor 

(44). 

Several lines of evidence underline the connection between BDNF and the mesocortico-limbic 

system, with BDNF being expressed (43) and affording direct influence on brain circuits 

activated during reward-processing (48). BDNF plays a role in the development of 

dopaminergic system, as it seems to be a potent trophic factor in rat and human mesencephalic 

dopaminergic neuron cultures, reflected by increased survival and elevated neuronal dopamine 

and tyrosine hydroxylase content (43). Recently, microRNAs were identified in the midbrain 

dopaminergic neurons, microRNA124a specifically was shown to influence BDNF expression 

and related dopamine neuron survival and plasticity (41, 49). 

Prior work has indicated that mesencephalic dopaminergic neurons express TrkB receptors 

rendering these neurons susceptible to autocrine and paracrine effects of BDNF (50). BDNF-

induced TrkB receptor activation influences several signaling pathways including the 

phosphoinositide 3-kinase –Akt and MEK/ERK pathways (51) two signaling paths linked to 

dopamine 3 (D3) receptor signalization, as well (52). In fact, presynaptic D3 receptor expression 

depends on BDNF levels in reward-related dopaminergic neurons of the ventral tegmental area 

(53, 54). Upon their stimulation, D3 receptors mediate dopamine’s effect on structural plasticity 

via phosphorylation of MEK/ERK and PI3/Akt/mTOR pathways, paths also being under the 

control of BDNF (52). Specific activation of D3 receptors by quinpirole, a D3 receptor agonist, 

increased soma size and number as well as the length of primary dendrites, which effect may 

be inhibited by D3 receptor antagonists (52).  
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Further robust evidence for BDNF’s influence on the mesocortico-limbic system comes from 

substance abuse studies. It is well-established that the common neural structure underlying 

substance abuse is the mesocortico-limbic system (52, 55). Chronic drug use increases BDNF 

levels in the ventral tegmental area (VTA), concordantly BDNF infusion into this area induced 

behavioral effects characteristic of drug addiction including drug seeking and psychomotor 

agitation (56). In an elegant experiment, Vargas-Perez and colleagues showed that BDNF may 

be responsible for inducing a switch to a drug-dependent motivational state, reliant on the 

dopaminergic rewarding effects. They investigated BDNF’s ability to change the 

neurobiological substrates mediating opioid reward and found that BDNF’s ability to induce 

this transition is dependent on dopamine, as this effect could be readily blocked by 

administration of the dopamine receptor antagonist alpha-flupenthixol (57). Likewise, in 

humans the single nucleotide polymorphism of BDNF resulting in val66met substitution 

influenced the activity of neurotransmitters involved in reward processes alongside with 

alterations in neural responses to reward and alcohol-related risk phenotypes (48). 

Summarizing the above-mentioned findings, we propose that the exercise-related myokine 

irisin forms a possible link between sedentary lifestyle and mesocortico-limbic processes such 

as reward learning and motivation by influencing BDNF’s effect in reward-related structures, 

e.g. VTA and hippocampus. Given the findings in clinical investigations suggestive of the 

presence of irisin resistance in the periphery (31), similar mechanism may be present on the 

muscle-brain axis contributing to the lack of motivation related to physical activity.  

Based on prior works, our hypothesis is unique in a sense that it offers a novel, common 

pathomechanism at the heart of the evolution of NCDs that, upon using multidisciplinary 

approaches (involving genetic, behavioral and clinical data capture and analysis), could yield a 

novel framework for personalized therapeutic and preventive interventions. 

 

Models for investigation 

Preclinical models 

The role that endurance training has on the FNDC5 expression and irisin level in reward-related 

structures may be assessed by experiments similar to that described by Steiner and colleagues, 

who investigated the influence of prolonged endurance training on neuronal changes of PGC1α 

and other mitochondrial substrates in areas involved in reward processing (39). Given that only 

Boström’s initial publication in 2012 (30) stirred considerable interest towards the role of 
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increased FNDC5 expression and related irisin production, quantification of FNDC5 gene 

expression and irisin protein levels was omitted.  

To elucidate the molecular mechanisms linking FNDC5 expression to elevated BDNF levels, 

in vitro investigations on human mesencephalic dopaminergic neuron cultures could be 

performed. Addition of upstream modulators of FNDC5 expression (e.g. PGC1α) or irisin per 

se to the culture medium followed by the mRNA and protein level quantification of molecules 

linked to already known (e.g. p38 MAPK or ERK) and putative signalization pathways of irisin 

along with BDNF levels could shed light on the possible mechanism.  

 

Interventional study on healthy male volunteers  

Given prior findings that circulating irisin levels are most reliably increased in energy deficient 

states (36), endurance exercise training for 10 weeks should be initiated in untrained male 

volunteers. Since skeletal muscle mass was found to be the main predictor of circulating irisin 

level, elevation of irisin should be normalized to either biceps circumference or fat-free mass. 

Following the establishment of increased circulating level of irisin, serum BDNF (a surrogate 

for BDNF level in the CNS, given its free passage through the blood-brain-barrier) should be 

assessed. To account for the alleged influence of altered BDNF levels have on reinforcement 

learning, the Iowa gambling task, developed to characterize decision-making in an experimental 

setting, could be used (58). Altered performance on the Iowa gambling task was shown to be 

linked to addiction, pathological gambling, obsessive-compulsive disorder and diseases that 

have a pathomechanism linked to dopamine neuron dysfunction of the midbrain (59, 60). In 

addition, change of functional connectivity of relevant structures (ventral striatum, 

hippocampus, orbitofrontal cortex, amygdala) may be assessed by task fMRI (60). Furthermore, 

combined PET-fMRI examinations by enabling the conjoint acquisition of molecular, 

functional and anatomical information may shed light to the relevance of the physical activity-

irisin-BDNF-dopamine axis. Using PET tracers (e.g. [11C]raclopride and [18F]fallypride 

specific for dopamine D2/D3 receptors, 6-[18F]fluoro-L-DOPA for characterizing presynaptic 

dopamine level and turnover or [11C]McN5652 for assessing dopamine transporter binding 

(61)) dopaminergic function in the VTA may be characterized, while simultaneously assessing 

neural activity and metabolism, information derived from fMRI’s BOLD signal. These, 

together with changes in functional connectivity of reward-related regions, could yield new 

means for understanding of behavioral changes (e.g. endurance exercise) reward and motivation 

in health and disease states.  
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