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Immunologic Pathomechanism of Hodgkin’s lymphoma
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Hodgkin’s lymphoma is a lymphoid malignancy of the immune system. The pathognomonic
Hodgkin and Reed-Sternberg cells (HRS) are derived mainly from monoclonal, preapoptotic
B cells, and they carry rearranged, somatically mutated immunoglobulin heavy chains. In an
appropriate microenvironment, HRS cells escape from apoptosis by several mechanisms,
including single mutations, aberrant signaling pathways. Eventually, weakened immune sur-
veillance leads to uncontrolled, disproportional B cell proliferation. This review summarizes
the latest findings on the pathogenesis of Hodgkin lymphoma, with a special emphasis on
immunologic processes, and depicts current and future immunotherapeutic regimens, which
improve treatment outcomes and reduce late toxicities. � 2013 ISEH - Society for Hematol-
ogy and Stem Cells. Published by Elsevier Inc.
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In 1832, Sir Thomas Hodgkin first described cases of a pre-
viously unknown lymphoid lesion [1], which was named
Hodgkin disease. Later, Dorothy Reed [2] and Carl Stern-
berg [3] discovered the characteristic multinucleated cells
that are the hallmark of the disease. After the identification
of the malignant, clonal expansion of B cells in the patho-
genesis, the disease was named Hodgkin lymphoma (HL)
[4]. The initially lethal disease became treatable with
good survival rates after the introduction of irradiation
and chemotherapy (Adriamycin [doxorubicin], bleomycin,
vinblastine, and dacarbazine [ABVD]) in the 1970s [5],
which became the standard of care in 2003 based on the re-
sults by the Intergroup trial [6].

The World Health Organization classification distin-
guishes nodular lymphocyte predominant HL (NLPHL)
and classical HL, which is further subdivided to lympho-
cyte rich, mixed cellularity, nodular sclerosis and lympho-
cyte depletion subgroups (cLD). Seldom, the histologic
subgroup cannot be determined, and an intermediate form
exists between HL and diffuse large B cell lymphoma. Tu-
mor cells are lymphocytic and histiocytic in NLPHL,
whereas Hodgkin (mononuclear) and Reed-Sternberg cells
(multinuclear; HRS) can be identified in classical HL.
These cell types represent approximately 1% of the tissue
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cells, and they are surrounded by large amounts of nonma-
lignant, reactive cell mass.

Current treatment regimens have excellent outcome with
high survival rates, but there are still a number of relapsing
and primary refractory patients. Treatment-related late tox-
icities can occur, as well (e.g., secondary malignancies and
cardiovascular diseases). In HL, the demand for future ther-
apeutic regimes is to reduce treatment related toxicities,
while maintaining high cure rates. Ongoing molecular
research identifies possible novel therapeutic targets; how-
ever, the pathogenesis of HL is still largely unclear. This re-
view summarizes the most important current information
about the biology and pathogenesis of HL.
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Origin of HRS cells
The B cell nature of the pathognomonic HRS cells has been
identified only in the past decade. HRS cells carry rear-
ranged and somatically mutated immunoglobulin variable
heavy chains, showing the features of a B cell that has
been exposed to antigens [4]. In some cases, nonfunctional
crippled mutations have been described in cells that nor-
mally would undergo apoptosis [7]. Moreover, these cells
originate from a single clone, which is the hallmark of tu-
mor cells [8]. Thus, HRS cells most likely derive from pre-
apoptotic germinal center B cells, which are resistant to
apoptosis (Fig. 1A). Nevertheless, a minority of HL cases
shows T cell characteristics, and these cells are derived
from T cells. A global loss of B cell phenotype of the cells
is also known [9].
11-2013 21-21-47
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Figure 1. (A) Hodgkin lymphoma is of B cell origin. HRS cells carry rearranged, somatically mutated immunoglobulin heavy chains. HRS cells carry crip-

pled mutations, whereas lymphocytic and histiocytic cells carry ongoing mutations. Pathognomonic HRS cells and lymphocytic and histiocytic cells would

normally undergo apoptosis; however, several mechanisms help them to avoid it. (B) A summary of dysregulated signaling pathways, which inhibit or regu-

late apoptosis inside the Hodgkin and Reed-Sternberg cells. BCMA 5 B cell maturation antigen; cHL 5 classical Hodgkin lymphoma; ERK 5 extracellular

signal-regulated kinase; GC 5 germinal center; HRS 5 Hodgkin and Reed-Sternberg cell; IL-13 5 interleukin 13; IL-13R 5 interleukin 13 receptor; Jak/

STAT 5 Janus kinase-signal transducers and activators of transcription; mTOR 5 mammalian target of rapamycin; NF-kB 5 nuclear factor k-light-chain-

enhancer of activated B cells; NLPHL 5 nodular lymphocyte predominant Hodgkin lymphoma; PI3K 5 phosphatidylinositol 3-kinase; RANK 5 receptor

activator of NF-kB; TACI 5 transmembrane activator and calcium modulator and cyclophilin ligand interactor.
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Lymphocytic and histiocytic cells can also originate
from the germinal center, because they express several B
cell markers and grow in a follicular pattern [10]. In
contrast to HRS cells, lymphocytic and histiocytic cells
carry ongoing mutations and express markers of a B cell.

The constitutive upregulation of the nuclear factor k-
light-chain-enhancer of activated B cells (NF-kB) pathway
has been known since 1996, [11] which is crucial for cell
survival. This upregulation leads to the expression of
cellular FLICE-like inhibitory protein (cFLIP) [12] and
X-linked inhibitor of apoptosis (XIAP) [13] that inhibit
the apoptotic pathways.

HRS cells at least partly would normally undergo
apoptosis within the germinal center reaction by inducing
the CD95/FAS-R pathway. However, these cells look
EXPHEM3056_proof ■ 7
resistant to CD95-mediated cell death, [14] most likely
because of the constitutive expression of cFLIP, which
is a key regulator of death receptor resistance.
Genetic aberrations
Several studies showed recurrent genetic alterations, re-
flecting the unstable condition of the HRS cells. These al-
terations are considered rather secondary because of the
instability, because these changes are not sufficient to prop-
agate HL [15]. Most mutations are numeric aberrations,
which can be observed in almost all HRS cells. Cytogenetic
studies depicted nonrandom breakpoints in the HRS cells
(e.g., 3q27, 6q15, 7q22, 11q23, 14q32) [16]. Whole-
genome studies showed recurrent amplifications on 2p13
-11-2013 21-21-47
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[17], which leads to the constitutive activation of NF-kB
and signal transducer and activator of transcription
(STAT) and resistance to apoptosis. Comparative genome
hybridization showed amplifications of the 4p16, 4q23-
q24, and 9p23-p24 regions; the latter affects Janus kinase
2 (Jak2) [18]. Fluorescent in situ hybridization also re-
vealed amplifications of the murine double minute 2 gene
on 12q14, which inhibits apoptosis [19].

Epstein-Barr virus (EBV) is considered as having a
pivotal pathogenic role in HL. Patients who developed infec-
tious mononucleosis in adulthood had a threefold greater
risk of developing HL compared with those who did not
[20]. EBV is found in approximately 40% of cases, more
often in the mixed cellularity and lymphocyte depletion sub-
type [21]. EBVþ HRS cells express EBV nuclear antigen 1
(EBNA1) and latent membrane proteins 1 and 2A (LMP1,
LMP2A). EBNA1 is responsible for the replication of the
viral genome [22]; furthermore, it helps in attracting regula-
tory T cells (Tregs) through the chemokine ligand 20
(CCL20) production, thus inhibiting EBV specific immune
responses, resulting in tumor progression. In EBV-negative
cases, human leukocyte antigen (HLA) class I downregula-
tion helps to avoid effective immune responses, whereas in
EBV-positive cases, HLA I polymorphism functions through
avoiding CD8þ cytotoxicity [23]. HLA-G expression allows
HRS cells to escape from natural killer (NK) cells. Inhibition
of T cells is mediated through programmed cell death pro-
tein 1 (PD-1), which is expressed on the surface of T cells
that link to the PD-1 ligand on the surface of HRS cells
[24]. LMP1 contributes to the activation to NF-kB by
mimicking an activated CD40 receptor, whereas LMP2A
imitates a B cell receptor, thus inhibiting apoptosis [25].

EBV infection influences the composition of microenvi-
ronment through molecules, which affect infiltrating T
cells. Interleukin (IL) 10 is expressed in 66% of EBV-
positive cases, but in only 16% of EBV-negative cases
[26]. Regulated on Activation Normal T Cell–Expressed
and Secreted (RANTES) expression is significantly higher
in EBV-positive cases [27].

The link between HL and autoimmune disorders is well
known. There is evidence that, in certain autoimmune dis-
eases, there is an increased risk of developing lymphoid
malignancies. The background of this phenomenon in-
cludes common genetic predisposition, viral infection
(e.g., EBV virus), use of immunosuppressive agents, persis-
tent antigen stimuli, chronic inflammation, uncontrolled B
cell proliferation, and defected apoptosis [28].
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Dysregulated signaling pathways
Several signaling pathways have been reported to inhibit or
regulate apoptosis, hence lymphomagenesis. The NF-kB
transcription factor family consists of five members: Rel,
RelA (p65), RelB, p50, and p52. These members form ho-
modimers or heterodimers [29]. LMP1 in EBV-positive
EXPHEM3056_proof ■ 7-
cases, activation of cell-surface receptors CD30 and
CD40, receptor activator of NF-kB (RANK) and Notch
contribute to the constitutive upregulation of the pathway.
The dysregulated NF-kB pathway eventually leads to the
activation of cFLIP, XIAP, and B cell lymphoma–extra
large; it eventually contributes to apoptosis inhibition [15].

These activating factors by themselves are not sufficient
for activating NF-kB, and several recently additional ge-
netic lesions have been described. Gene amplification of
c-Rel has been observed in approximately 50% of all HL
cases [17,30]. Nuclear factor of k light polypeptide gene
enhancer in B cells inhibitor, a (i.e., NFKBIA) holds inac-
tivating mutations in IkBa [31], and mutations affecting
IkB 3have been described previously [32]. Tumor necrosis
factor (TNF) a induced protein 3 (TNFAIP3), which is a tu-
mor suppressor, is frequently inactivated. Its protein prod-
uct A20 negatively regulates NF-kB activity through
ubiquitination and deubiquitination [33,34]. Surprisingly,
an inverse correlation was found between the EBV status
of the HRS cells and TNFAIP3 mutation, indicating that
these are alternative mechanisms of NF-kB activations
and further supporting the pathogenic role of EBV.

Janus kinase-signal transducers and activators of tran-
scription (JAK-STAT) pathway is the main mediator of
the cytokine signaling. Members of the STAT family are
transcription factors. STAT3, STAT5A, STAT5B, and
STAT6 have been reported to be active in the HRS cells
[35–38]. STATs are activated by cytokine receptors via
JAK kinases and by receptor tyrosine kinases [39].
STAT3 and STAT6 are most often activated [37]. STAT3
downregulation leads to apoptosis induction, indicating its
potential role in HL pathogenesis [40]. NF-kB activates
both STAT5A and STAT5B [41]. STAT6 activation seems
to be the result of the autocrine activation of IL-13 receptor
(IL-13R) and IL-13 [42,43]. Amplification of Jak2 and mu-
tation in the suppressor of cytokine signaling 1 (SOCS1)
have been reported to activate STAT6 [44]. The autocrine
activation of IL-21 receptor and its ligand IL-21 leads to
the activation of both STAT3 and STAT5 [45].

Activator protein-1 (AP-1), which is another transcrip-
tion factor complex, is characterized by the marked overex-
pression of c-Jun and JunB [46]. An autoregulatory process
activates c-Jun, whereas JunB is NF-kB dependent. AP-1
cooperates with NF-kB via induction of cyclin D2, c-
MET, and the chemokine receptor 7, thus contributing to
lymphomagenesis. The transcription of CD30 is activated
by AP-1, thus establishing a positive feedback loop and
contributing to processes driven by NF-kB [47].

Notch1, a transmembrane receptor, was found only
on HRS cells, not on normal B cells or other B cell lym-
phomas. It is likely that it has an important role in the loss
of the B cell phenotype, because its activation inhibits B
cell development toward lymphoid lineages. Notch dimer-
ization leads to strong proliferation and apoptosis resistance
[48]. Recently, Notch signaling was also showed to be an
11-2013 21-21-47
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upstream regulator of NF-kB [49], providing a cross-link
between these two pathways.

The phosphatidylinositol 3-kinase (PI3K)-Akt pathway
is active in HRS cells; it inhibits apoptosis and promotes
cell cycle progression [50]. Inhibition of this pathway in
combination with chemotherapy could improve disease
outcome. The extracellular signal-regulated kinase pathway
is activated through CD30, CD40, RANK, and receptor
tyrosine kinases [51], and it regulates apoptosis, prolifera-
tion, and differentiation (Fig. 1B).

Microenvironment
The aberrant cytokine–chemokine network and the recep-
tors are crucial to attract cells that form and maintain a spe-
cific microenvironment to help proliferating HRS cells.
Effective immune responses cannot occur in this network
(Fig. 2).

Tumor tissue consists of 98%–99% of nonmalignant,
reactive cell mass, consisting of B cells, T cells, mast cells,
macrophages, eosinophils, neutrophils, plasma cells,
epithelioid cells, fibroblasts, and collagen [52].
EXPHEM3056_proof ■ 7

Figure 2. Interactions in the microenvironment of HRS cells. BCMA 5 B cel

receptor type 4; CD30L 5 CD30 ligand; CSR1 5 cellular stress response 1; C

IL 5 interleukin; LAG3 5 lymphocyte-activation gene 3; MDC 5 macropha

light-chain-enhancer of activated B cells; NK 5 natural killer; R 5 receptor;

NF-kB ligand; STAT 5 signal transducers and activators of transcription; TACI

interactor; TARC 5 thymus and activation-regulated chemokine; TGF 5 tumor g

regulatory T cell; VEGF 5 vascular endothelial growth factor.
RANTES (chemokine ligand 5 [CCL5]), IL-5, IL-9,
mucosa-associated epithelial chemokine (CCL28),
granulocyte-monocyte colony stimulating factor, and
CCL11 are responsible for attracting eosinophils (tissue
eosinophilia) [53]. Eosinophils and mast cells help HRS
cells to survive through CD30L/CD30 interaction.

RANTES and IL-9 are responsible for attracting mast
cells, whereas IL-8 attracts neutrophils. CCL28 and IL-6
attracts plasma cells, whereas thymus and activation-
regulated chemokine (TARC; CCL17), macrophage-
derived chemokine (MDC; CCL22), RANTES (CCL5),
and CCL20 are the leading compounds, which accumulate
T helper 2 (Th2) cells and Tregs [54].

HRS cells secrete a variety of chemokines and cytokines
(e.g., IL-4 through stimulating MDC synthesis), which shifts
from antitumor T helper 1 (Th1) cells to pro-tumor T helper 2
(Th2) cells, thus changing the immunosurveillance and al-
lowing HRS cells to survive [55]. IL-4 is produced by HRS
and Th2 cells, resulting in an amplification circuit [56].

Fibroblasts are responsible for forming a significant
amount of scar tissue. They are attracted by IL-13, TNF-a,
-11-2013 21-21-47
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transforming growth factor (TGF) b, CD40, and fibroblast
growth factor. Activated fibroblasts produce eotaxin
and RANTES, thus contributing to the attraction of eosino-
phils and Tregs. Furthermore, it has been reported that fibro-
blasts influence doxorubicin resistance by producing IL-7
in vitro [57].

Tumor-infiltrating CD68þ macrophages are activated by
TNF-a, which is produced by HRS cells. Macrophages
affect HRS cells through Notch1/Jagged1 mediators. Angio-
genesis is controlled through vascular endothelial growth
factor along with endothelial and smooth muscle cells.
The unfavorable prognostic role of CD68þ macrophages
has been reported previously [58–60]. Tumor-infiltrating
CD68þ macrophages can help to distinguish patients with
a high risk for early relapse and those who are overtreated
despite of their good prognosis.

HRS cells and their microenvironment generate elevated
levels of IL-6, IL-7, IL-8, IL-10, soluble CD30, B cell–acti-
vating factor of the TNF family (BAFF), and thymus- and
activation-regulated chemokine, which are decreased by
continuous treatment and diminishing tumor burden. These
mediators can be used as potential prognostic factors during
treatment [61–63]. Because the HL microenvironment con-
sists of 20%–50% of reactive, polyclonal B cells, elevated
serum-free light chain levels can be detected in approxi-
mately 30% of the patients and can be predictive of treat-
ment outcome [64].
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Autocrin and paracrin factors contributing to HRS cell
proliferation and survival
A number of receptors belonging to the TNF receptor su-
perfamily help to promote survival signals. CD40LþT cells
rosetting CD40þ HRS cells seem to be crucial for
neoplastic tumor cell growth [65]. Eosinophils and mast
cells stimulate HRS cells through CD30-CD30L interac-
tion, which leads to a constitutive NF-kB pathway activa-
tion [66].

IL-13 is an autocrine growth factor, and its receptor is
expressed on the surface of HRS cells. The IL-13R activa-
tion eventually leads to STAT6 upregulation [42,43].

As a result of NF-kB activation, HRS cells secrete BAFF
and a proliferation-inducing ligand (APRIL). Myeloid cells
in the environment secrete BAFF and APRIL as well, thus
providing paracrine signals to the tumor. HRS cells express
transmembrane activator and calcium modulator and cyclo-
philin ligand interactor (TACI) and B cell maturation anti-
gen (BCMA), which is eventually engaged with BAFF and
APRIL, thus helping the attenuation of HL expansion [67].
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Tumor infiltrating T cells
HRS cells are surrounded mostly by T cells. These CD4þ T
cells are either Tregs or T helper (Th) cells [68]. TARC
(CCL17), IL-13,CD80,CD86, andCD40-CD40L interactions
EXPHEM3056_proof ■ 7-
all contribute to the formation of tumor infiltrating T cells.
HRS cells also produce some immunosuppressive factors
(IL-10, TGF-b, galectin-1, and prostaglandin E2) [69–71],
whereas CD95/FAS ligand expressed by HRS cells stimulate
the apoptosis of activated Th1 and CD8þ T cells. Tregs also
produce IL-10, which indirectly contributes to the protection
against cytotoxic T and NK cells [63]. A reasonable fraction
of Tregs can be characterized by the CD4þCD25þFoxP3þ

phenotype; they contribute to ineffective immune responses
against HRS cells [72]. Another cell subset is characterized
by the CD4þCD26� phenotype, which identifies Tregs in an
anergic condition.These cells donot expressCCR3 thatwould
link to RANTES and eotaxin from the microenvironment.
CD4þCD26�Tcells are related to a specific set ofT cells, pro-
ducing IL-17 (Th17) [73]. PD-1 signaling has been reported to
be upregulated in HL; HRS cells overexpress PD-1 ligand,
which systemically arrests the exhausted T cell function by
stimulating apoptosis of cytotoxic T cells and increases the
number of immunosuppressive Tregs, resulting in tumor pro-
gression. Moreover, it has been shown that a high number of
infiltrating PD-1–positive cells predicted a negative prognosis
[24]. Immune escape of the tumor cells includes inhibiting of
Th1, CD8þ, and NK cells and promoting Tregs and Th2 cells.

Considering these findings, we conclude that chemo-
kines and cytokines secreted by HRS cells promote cell
proliferation and contribute to the establishment of the
appropriate microenvironment for HL (Fig. 3).
Prospective therapeutic solutions and possibilities of
targeted therapy
The identification and targeting of particular pathways and
receptors can lead to better treatment outcomes and to
lower treatment-related toxicities. Figure 4 summarizes
immune-treatment modalities of HL.

18-Fluoro-deoxyglucose positron emission tomography
PET is currently one of the most reliable diagnostic proce-
dures to identify early response to treatment and survival
[74]. A low number of pathognomic HRS cells expresses
low and alternating number of glucose-transporters and
hexokinases involved in glucose metabolism [75]. A rela-
tion between FDG uptake and transporter expression of
the tumor cells could not be found. FDG uptake is influ-
enced much more by the microenvironment; therefore, cur-
rent therapeutic decisions are based more on the metabolic
activity of the background in PET positive cases than on
the tumor cells [76]. This evidence provides a rationale
for developing novel therapies that target the tumor-
infiltrating background.

HRS cells do not express CD52, but the anti-CD52 anti-
body alemtuzumab can eliminate CD52þ infiltrating T cells
[77]. No specific trials have been conducted, although indi-
rect evidence using reduced intensity conditioning allo-
genic stem cell transplantation shows promising results.
The elimination of tumor-infiltrating T cells might improve
11-2013 21-21-48
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Figure 3. Interactions between HRS cells and surrounding cells; they contribute to immune escape through the inhibition of Th1, CD8þ, and NK cells and

the promotion of Tregs and Th2 cells. HRS 5 Hodgkin and Reed-Sternberg cell; IL 5 interleukin; MDC 5 macrophage-derived chemokine; NK 5 natural

killer cell; PD1 5 programmed cell death protein 1; PD1L 5 programmed cell death protein 1 ligand; PGE2 5 prostaglandin E2; RANTES 5 Regulated on

Activation Normal T cell Expressed and Secreted; TARC5 thymus and activation-regulated chemokine; TGF 5 tumor growth factor; Th15 T helper 1 cell;

Treg 5 regulatory T cell.
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survival, and donor lymphocytes are beneficial to eradicate
residual malignancy [78,79].

Rituximab, an anti-CD20 antibody, is already used in the
treatment on non-Hodgkin lymphoma. Although HRS cells
rarely express CD20 on their surface (20%–30%), there are
several rationales for using rituximab to treat HL. The elim-
ination of reactive B cells from the microenvironment
would deprive malignant cells, and it would increase host
immune response against HRS cells. Furthermore, HRS
stem cells express CD20 [80]. Rituximab can sensitize pa-
tients to conventional chemotherapy. Based on these facts, a
phase 2 study has been recently reported treating patients
EXPHEM3056_proof ■ 7
with advanced-stage HL with R-ABVD (rituximab, Adria-
mycin [doxorubicin], bleomycin, vinblastine, dacarbazine).
This study has had promising results [81]. Furthermore, a
large comparative study (R-ABVD vs. ABVD) is currently
enrolling patients.

Targeting CD30 has been recently reached its goal in
HL. Brentuximab vedotin, an anti-CD30 antibody com-
bined with an antitubulin agent (monomethyl auristatin E)
was approved by the U.S. Food and Drug Administration
(FDA) in 2011 and the European Medicines Agency in
2012 to treat CD30þ lymphomas, HL, and anaplastic
large-cell lymphoma [82]. Brentuximab links to the CD30
-11-2013 21-21-48
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Figure 4. Possible novel therapeutic solutions in Hodgkin’s lymphoma. APRIL 5 a proliferation-inducing ligand; BAFF 5 B cell–activating factor of the
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antigen, which is expressed on the surface of the HRS cell,
and it subsequently internalizes in a lysosome. Next, mono-
methyl auristatin E is released from the antibody conjugate
and links to tubulin in the proliferating cell, thus inducing
cell cycle arrest in the G2/M phase and eventually apoptosis
[83]. Brentuximab can be beneficial in patients with
relapsed or refractory HL after autologous stem cell trans-
plantation [84], in patients with prolonged cycles of treat-
ment, or as maintenance therapy in the same patient
group [85]. In addition, the therapy can be used before allo-
genic stem cell transplantation (SCT) [86], before reduced
intensity allogeneic SCT [87], in combination with ABVD
or AVD in a frontline setting [88], and in transplant-naive
patients who refused or were ineligible for transplant [89].

Epigenetic modulation (e.g., acetylation and deacetyla-
tion of histones) plays an important role in gene regulation,
particularly in those involved in cell proliferation, survival,
angiogenesis, and immunity [90–93]. Therefore, histone
deacetylase inhibitors became attractive targets to treat
HL. It has been demonstrated that in vitro vorinostat,
in addition to its direct antitumor activity, alters cytokine
EXPHEM3056_proof ■ 7-
balance and shifts toward a favorable Th1 composition
through inhibiting STAT6 and decreasing TARC expression
[94]. Vorinostat and romidepsin have been approved by the
FDA in the treatment of relapsed cutaneous T cell lym-
phoma. Panobinostat seems to be the most promising com-
pound among patients with relapsed or refractory HL after
autologous stem cell transplantation [95].

The mechanism of action of the immune modulator lena-
lidomide is not fully understood; it could include direct
cytotoxic effects, inhibition of angiogenesis, and alteration
of the microenvironment of the HRS cells [96]. Inhibitors
of the JAK/STAT pathway have been investigated mostly
in vitrodspecifically, AZD1480 [97] and lestaurtinib
[98]. Targeted therapy against surface receptors of the
HRS cells includes anti-RANK ligand antibody and anti-
CD80 antibody (galiximab) [99]. Noncellular targets of
the microenvironment include extra domain B of fibro-
nectin (ED-B-FN), because it is expressed stronger on
newly formed vessels in lymphoma-involved lymph nodes
(I131-ED-B-FN) [100]. L16-A1-tenascin C, which is spe-
cific for the extracellular A1 domain of tenascin C, could
11-2013 21-21-49
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be useful for targeting fibroblasts and other extracellular tis-
sue components [101]. The adenosine deaminase pentosta-
tin, commonly used in leukemia treatment, can be useful in
HL because of its selective antiinflammatory features. It in-
duces proinflammatory cytokine production, but it does not
affect Tregs; therefore, its cytotoxic effect is not significant.
Pentostatin also specifically targets CD4þCD26– T cells in
the microenvironment, leading to a decrease in numbers
[102,103]. Gemcitabine is commonly used to treat relapsed
HL; it inhibits immunosuppressing cells, thus modifying
the immunologic properties of the microenvironment [104].

Novel findings on HRS cells and their microenvironment
may provide further information about the pathogenesis of
HL. The investigation of these factors and their interactions
could provide new, targeted therapeutic solutions, both as
single agents and in combination with conventional chemo-
therapy. We believe that it is possible to improve the survival
of patients and provide better therapeutic outcome; therefore,
refractory patients can achieve durable response and cure.
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Take-home messages

� Survival of HRS cells includes several mechanisms
that eventually lead to the development of HL.

� The most important aberrant signaling pathways are
the constitutively upregulated NF-kB pathway, the
JAK/STAT pathway, and the PI3K-Akt pathway.

� Awide range of cytokines and chemokines form a spe-
cific microenvironment in which effective immune
response against HRS cells cannot occur.

� The most promising agent, the antibody-drug conju-
gate brentuximab vedotin, is approved for treating
relapsed and refractory HL, and it is currently under
investigation in combination with other treatment
modalities
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