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Abstract

The book “Handbook of Finsler geometry” has been included with a CD containing an
elegant Maple package, FINSLER, for calculations in Finsler geometry. Using this pack-
age, an example concerning a Finsler generalization of Einstein’s vacuum field equations
was treated. In this example, the calculation of the components of the hv-curvature of
Cartan connection leads to wrong expressions. On the other hand, the FINSLER package
works only in dimension four. We introduce a new Finsler package in which we fix the
two problems and solve them. Moreover, we extend this package to compute not only
the geometric objects associated with Cartan connection but also those associated with
Berwald, Chern and Hashiguchi connections in any dimension. These improvements have
been illustrated by a concrete example. Furthermore, the problem of simplifying tensor
expressions is treated. This paper is intended to make calculations in Finsler geometry
more easier and simpler.
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1. Introduction

Antonelli et. al. have had a good contribution in Finsler geometry computations using
MAPLE (cf. [3], [4],[9]). Rutz and Portugal [11] have introduced the remarkable FINSLER
package [I0] (it is also included in a CD with the “Handbook of Finsler geometry” [2]).
They illustrated how to use this package by an example related to general relativity.

During the preparation of our paper [I3], searching for some Finsler counterexamples,
we have encountered some problems concerning FINSLER package. In fact, we studied an
example in which the coefficients of Berwald connection are functions of positional argument
2 only. Hence, the space under consideration is Berwaldian and is thus Landesbergian.
It is well known that for a Landesberg space the hv-curvature P, of Cartan connection
vanishes. But according to the package, the program calculated non-vanishing components
of Pf]‘k After a deep reading of the source code (Finsler.mpl), we discovered an error in
the definition of PZ’]‘k (similar error is found in “Handbook of Finsler geometry, II 7, page
1154). Another problem with this package is that of dimension. If one considers a Finsler
space of dimension three, the package can not compute the components of the h-curvature
R?j  and hv-curvature Pf;k of Cartan connection.

In our modified package we solve the above two mentioned problems. We illustrate
our modification and extension of the FINSLER package by treating a concrete example
of a three dimensional Finsler space. We calculate the curvature tensors of the four funda-
mental connections of Finsler geometry, namely, Cartan, Berwald, Chern and Hashiguchi
connections. The geometric objects, not defined in the FINSLER package, can be added
in a similar manner. We also propose a technique for simplifying tensor expressions.

2. Notations and preliminaries

In this section, we give a brief introduction to Finsler connections. For more details,

we refer, for example, to [2], [5], [6] and [12].

Let (M, F) be a Finsler manifold. Let (z') be the coordinates of any point of M and
(y%) a supporting element at this point. Partial differentiation with respect to z* (resp. y°)
will be denoted by d; (resp. 0;). We use the following notations:

I, == O;F = gijl! = gijyfj: the normalized supporting element; [* := %,
Ly = 0il;,
hij == Fl;j = g; — l;l;: the angular metric tensor,
Ciji i= %5kgij = %0}0}0}]’2: the Cartan tensor,
' = g"'Cyji: the (h)hv-torsion tensor,
Vi, y) = 39" (059kr + Orgjr — Orgji): the Christoffel symbols with respect to d;,
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G'(x,y) == 574y y": the components of the canonical spray associated with (M, F),

N} := 9;G": the Barthel (or Cartan nonlinear) connection associated with (M, F),
G = 5hN; = 3h3jGi: the coefficients of Berwald connection,

0; :=0; — NJ 8'7,: the basis vector fields of the horizontal bundle,



L (2, y) = 59" (0;9kr + Okgjr — 0rgjr): the Christoffel symbols with respect to d;.

A Finsler connection [I] on M is a triple FT' = (F;k(:c y), Ni(z,y), C;k(az y)) such
that, under a change of coordinates (z*) — (z*), the geometric obJects ij(a: Y), N;»(:L’,y)
and Clk transform respectively as follows:

p_ o e o
U9l 97 979 P 970 Oxp’
~i 01 Oxt oxP 0?7 ~k  OT* OxP Ozt
- L gp L 9T q B_or o or
NJ oxP 017 Nq 077 OzPOx? yo C” ozl oxt Oxi P

Moreover, FT' defines two types of covariant derivatives:

Xjjp = 06X+ XJF) — XFj,.

Xi|p = Xl + X]C), — X|

Let FT' = (F;k, N;, C;k) be an arbitrary Finsler connection. The (h)h-, (h)hv-, (v)h-,
(v)hv- and (v)v-torsion tensors of FI' are given respectively by [7:

T =F)) — FZJ, C’; = the connection parameters C,

R}, = 6N, — 6N}, Pl =0N—Fi,

and the h-, hv- and v-curvature tensors of FI' are given respectively by [7]:
ij = Q[(j,k){ékFZj + F}; it + Chm e
Pij - akF;zj - ;Lk|] + Chm Gk S;zjk = m(j,k){akcﬁm' + Chmkcimj}>
where Ql(j,k){A]k} = A]k - Ak]

The Cartan connection is given by CT = (T, N}, C},), where T, N7 and C7, are

as defined above. The (h)hv-, (v)h- and (v)hv-torsion tensors of CT are:
i Lo i i i i Y AT i
The h-, hv- and v-curvature tensors of C'T" are:
;ij 2k {6krh] + FZ}Fink} + Ch R ks

P}ijk = O ;zj - Chk\j + Chm P k> Shjk =2, k){Chkanj}-

The Berwald connection is given by BI' = (G" ]k, N ¢ 0). The associated geometric
objects will be marked by a circle. The (v)h-torsion tensor of BI' is given by:

The h-, and hv-curvature tensors of BI' are:
ij = Q[(j,k){ékG;zj + G%Gink}v ;ij = O
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The Chern (Rund) connection is given by RT' = (I';, N},0). The associated geo-
metric objects will be marked by a star. The (v)h- and (v)hv-torsion tensors of RI" are:

* ‘ , ' % ‘
;‘k:R;'k:ékN;—@‘N/ﬁa ;‘k: ;k—ak]\fl Z
The h- and hv-curvature tensors of RI" are:
*i i *i R
nik = Ak {0k + T b hik = Okl

The Hashiguchi connection is given by HI' = ( ]k,N : j’k) The associated geo-
metric objects will be marked by an asterisk. The (h)hv- and (v)h-torsion tensors of HI are:

The h-, hv- and v-curvature tensors of HI" are:
i i
hik = A mi0kGh; + Gy Gt + ChmRyk7
¥ 3 i i &i m i
Phjk = akGhj - Chij’ hjk — m(j,k){chkcmj}'

Table 1: Fundamental linear connections [12]

3 Cartan Berwald Chern (Rund) Hashiguchi
E
o
E (F;, NI Cl) | (P NP C) | (Gl NP 0) | (D), NL0) | (Gl N CR)
(h)h-torsion T?k 0 0 0 0
(h)hv-torsion C?k ;k 0 0 ;k
2
2
n
5 . i i i i X i ¥ i
. ) ) L .
(v)hv-torsion P, | Py = C]’.k‘hyh 0 P =P} 0
(v)v-torsion S;k 0 0 0
R o * *
% h-curvature R?jk thjk R%k R%k R?jk
= o * *
g hv-curvature P}-’» Pf;k P?jk P?jk P?jk
o h Sh h
v-curvature ka Siik 0 0 Siik = Sizk
< 8 h-cov. der. K K, K, =K K', =K,
25 I ilk jie I ik Ik
5w
g .z , o - * 0 * ,
8%5 v-cov. der. K[k K|, = 0K K|, = Kj|,, K|, = Kk




3. Notes on the FINSLER package

In [I1], Rutz and Portugal discussed and applied the FINSLER package they introduced
in [10]. This package is an extension of the RIEMANN package [9]. The FINSLER package
is included in a CD with the book [2], where an interesting example related to general
relativity, namely, a family of metrics known as the Schwarzschild solution to Einstein’s
field equations, has been treated. Important geometric objects and, in particular, the three
curvature tensors of Cartan connection have been computed.

When performing some applications using the FINSLER package, we have encountered
some problems. To show one of these problems, let us consider the following example. Let
M=RY,U={(z,y) e R*x R*: ; # 0; ys # 0, y? + y2 + vy # 0}. Let F be the Finsler
structure defined on the open subset U of T'M by:

F= \/x1y4 yi + Y3+ 3

Based on this package, the non-vanishing coefficients of Berwald connection are as follows:

1 1
Gil = G%z = Gi’za =T Gé2 = Gzla?, =T

1 T
This shows that the coefficients of Berwald connection are functions of the positional argu-
ment z’ only. Hence, the space under consideration is Berwaldian and is thus Landesber-
gian. Consequently, the hv-curvature P{;k of Cartan connection should vanish identically.

However, the FINSLER package calculated non-vanishing components of Pf;k

After a deep study of the source code (Finsler.mpl), we have discovered some wrong
indices in the definition of P%,. (Similar error is found in [2], page 1154). Another problem
with this package is the problem of dimension. If one considers a three dimensional Finsler
space, the package can not compute the components of the hh-curvature R%k and hv-
curvature Pf;k of Cartan connection. The package response is that these objects are outside
dimension.

Summing up, we have two problems with the Rutz and Portugal’s package. The first
is the wrong calculations of the curvature PZ’]‘k The second is the disability of computing

Rl and P/ in dimensions different from 4.

4. Improvement of the package

In this section, we solve the two above mentioned problems. Moreover, we extend the
package in order to compute various geometric objects associated not only with Cartan
connection but also with the other fundamental connections in Finsler geometry. And this
is for any dimension. Other geometric objects can be similarly added to the package. We
illustrate these tasks using a concrete example.

Rutz and Portugal have illustrated how to use the package [I1]. However, let us recall
some instructions to make the use of this package easier. When we write, for example,
Nli,-j] we mean N;, i.e., a positive (resp. negative) index means that it is a contravariant
(resp. covariant) index. If one wants to lower or raise an index by the metric or the inverse

bt



metric, he just changes its sign from positive to negative or vice versa. The command
tdiff (N[i-j], X[k]) means 9y N!, the command tddiff (N[i,j], Y[k]) means 0, N! and the
command Hdiff (N[i-j], X[k]) means 0, V.

In addition to the definitions of geometric objects existing already in the FINSLER
package, we add other definitions by using the command definetensor. We rewrite the
correct expression of Pfj‘k and tackle the issue of dimension.

Now, let us illustrate what have been said before using a concrete example.
Let M =R3, U = {(21,22,23; y1,y2,y3) € R3xR3 : 23 # 0; y2 # 0, y1>+y32 £ 0} C TM.
Let F' be the Finsler structure defined on U by

It should first be noted that, according to Table 1, we have only three independent torsions,
namely, C'Z-hj, R;’j and PZJ‘ So, we will compute these torsions for Cartan connection and we
will not repeat their calculation for the other connections.

Following the instructions of the FINSLER package, the following calculations can be

performed.

> restart;
> libname := libname, ‘c:/Finsler‘:
> with(Finsler);
[Deoordinates, Hdiff , K, connection, init, metricfunction, tddiff|
> Dimension := 3:

> coordinates(x1,x2,x3):
> Dcoordinates(yl,y2,y3):

‘The coordinates are:‘

X! =1
X% =22
X3 =23
‘The d-coordinates are:‘
i yl
Y2=9y2
Y3 =98
Finsler structure F:
> F := sqrt(x3xy1~3/y2+y3°2);
L x8y13 2
F = -ty

Plotting the Finsler structure in a special domain:

> plot3d(subs(x1=5,y3=5,F), yl = -2..2, y2 =-2..2,
> axes=BOXED, style=patch) ;



Figure 1

Metric tensor g;;:
> FO0:= y173%x3/y2+y372;

FO = 22 4 y32
> metricfunction(FO):

‘The components of the metric are:

3 a3yl 3 z3y1°
9ziz1 = y? Jziz2 = 9 y22
r3y13
Inverse metric tensor ¢¥:
> show(gli,jl);
gxlzl — 4y2 zlz2 __ 2y22
3z3y1 z3y1?
z2x2 4y23 z3r8
e =1
3yl
Supporting element /;:
> show(1[-1i]);
) 3 z3y1° ) 1 z3y13
1 = 5 @2 = —5
2 Z 3 2 2 2 3 2
y2 [ z3y1 y+2y2y3 y22 [ 23yl ;rQyQyB
3
lx3 - Y

z3y13+y2y3>2
y2



Angular metric tensor h;;:

> definetensor(h[-i,-j] = g[-i,-j1-1[-i1*1[-j],symm);

> show(h[-i, -j1);

33yl (z3y1® + 4y2y3°)

hx zl —
by y2 (x3y13 + y2y32)
3 23y1%ys
hayas = =5 3 2
2z3y1° 4+ y2y3
P 1 z3y13y3
2y (z3y1® + y2y3?)

Cartan tensor Cjj;:

> show(C[-i,-j,-k]);

3x3
Cw zlzr — F 5
LD YY)
3z3y1>
Cw 20 — 4
2z g8
Spray coefficients G':
> show(G[i]);
1yl y3
Gz] S
2 z8
g — L
4 y2

313yl (z3yl1® + 2y2y3?)

h':c 2 — —
b 4 y2 (x3y13 + y2y32)
— 1z8y1® (3z3y1® + 4y2y3?)
g 03 (z3y1® + y2y3?)

z3y13
Pesas = 3 2
x3yl° + y2y3

Nonlinear connection (Barthel connection) Ni:

> show(N[i,-j1);

1y3
le _ - J7
ol 2 x3
1
Ng =¥
23
12
N®3 = _3yl”
4 y2

Coefficients of Berwald connection G',;:

> show(G[i,-j,-k1);

3yl
Gxé’ — _ I
zlxl 2 yQ
1
le _
xlx3d 213
- 1
G:c%x?) -

213

3x3yl
Cx1x1m2 - —§W
c B 3z3yl13
Towax2 T T o 4
2 y2
1 y2y3
GI2 ——
2 8
. 1y1
Nis =543
" 1y2
N = 5
o _ 1yl
?2 Y y2
. 3yl1?
foi):(ﬂ - EW
- 1y13
Gw%m2 = _§W



Coefficients of Cartan connection I';:

> show(Gammastar[i,-j,-k]);

x 1 y3 . 3 y2y3
Gammastar®, | = §x5’y1 Gammastargfm1 = §W
3yl 1 y3
G ¢ z3 — _ "I G ¢ 1 _
ammasiar .1 9 y,@ amimastar .9 5 xgyg
3 y3 3y1?
x2 _ 3 .
Gammastar,i,, = _§x5’y1 Gammastar;,y, ., = ZW
1 1 y1y3
ammastary) s 523 ammastarys,.o YEIE
p 3 Y3 . 1y1®
Gammaszfarmggc2 =357 72 Gammastargﬁg’m2 = _§ﬁ
1
Gammastar® , = ——
a astar,oq.s 2:3
Torsion tensors of Cartan connection
e (h)hv-torsion C}::
> show(C[i,-j,-k]);
. 1 . 1
C:cllxl = _y_l x11x2 = y_Q
1 3y2
me21x2 = - J 2 Cw2x1m1 - _LQ
y2 yl
" 3 . 3
Cm12x2 = y_Z m22x2 = __2

e (v)h-torsion R}!:
> definetensor (RN[i,-j,-k]=Hdiff(N[i,-j],X[k])-Hdiff (N[i,-k],X[j1));
> show(RN[i,-j,-k]);

1 y13 3 y1?
z1 _ 2
RN:(:le - _§$3y22 RlexZ - _gxgyg
193 3 y1?
rl _ x3 _
RN s = ) RN s = 8 2952
1 y3 1 y13
RN® , = — -2 RN®™ . — =
x2x3 4$32 x2x3 8 x3y22

e (v)hv-torsion P:
> definetensor(PT[i,-j,-k] = G[i,-j,-k]- Gammastar[i,-j,-k]):
> show(PT[i,-j,-k]);

1 y3 3 y2y3
PTI:‘EIZzZ = 3 J PTI:‘EIQz] =73 =Y 2
2x3y1 223yl
1
2 x8y2 289yl
z L yly3 " 3 Y3



Curvature tensors of Cartan connection

e h-curvature tensor thjk:

> definetensor(RC[i,-h,-j,-k] = Hdiff(Gammastar[i,-h,-j],X[k])
> -Hdiff(Gammastar[i,-h,-k], X[j])+Gammastar[m,-h,-j]
> *Gammastar[i,-m, -k]-Gammastar[m,-h,-k]*Gammastar[i,-m,-j]
> +C[i,-h,-m]*RG[m,-j,-k], antisymm[3,4]):
> show(RC[i,-h,-j,-k]);
3 yl? 1 yi?
chl - _ = RC“T] - __<
zlzlz2 8 l’3y22 z2x1x2 4 $3y23
3 yl 3 y1?
RCIQ — _ = RC@Q -7
rlxlx2 4 $3y2 x2xlx2 8 $3y22
1 3 yl
RCH 13 = ——3 RO, s = 5
z3rlxs 4$32 xrlrlxzs 4 $3y2
3 y1? 1
3 _ 2 _
RCzQszB - _§$3y22 RCxé’x?zé’ - _43332
3 yl? 1 yi?
RC% , = 22 RC% , , = -2
zlx2x3 8 $3y22 z2x2x3 4 $3y23

e hv-curvature tensor P/,:

> definetensor(FT[i,-j,-k,-h] = Hdiff(C[i,-j,-k], X[h])
> +Gammastar[i,-h,-u]*C[u,-k,-j]-Gammastar [u,-k,-h]*C[i,-u,-j]
> -Gammastar[u,-h,-j]*C[i,-u,-k]):
> definetensor(PC[i,-h,-j,-k] = tddiff(Gammastar[i,-h,-j],Y[k])
> _FT[i:_h:_k:_j]+C[i:_h:_m]*PT[m>_j:_k]);
1 1
PCII - _ P z1 _
z3rlxl 2$3y1 z3rlx2 2$3y2
1 1yt
pCcH ., = pCel. o
3 2 3
PCHny = —s——5  PCHL0 =5
z3xlxl 2 xgyIQ z3rlr2 2x3y1
3 3
PC*%, = PC™.
3 3 yl
z3 z3
PC{L‘]IIZ‘] = _4y2 PCxZIIzQ = Z y22
3yl 3 y1?
z3 _ z3 _
PCxZIQzZ - Zy22 PCxZIQzQ - _Zyg?,
3yl 3 g1’
z3 z3
PCxQxle = Zy22 PCxQxIxQ = _Zy23
3yl? 3yl
z3 _ z3 _
PCzQIQzZ - _Z y23 PCxQzQIQ - Z y24

e v-curvature tensor S{‘jk:

> definetensor(S[i,-h,-j,-k] = C[m,-h,-k]*C[i,-m,-j]
> -C[m,-h,-jl*C[i,-m,-k]):

10



> show(S[i,-h,-j,-k]);
Curvature tensors of Berwald connection

e h-curvature tensor R;’jk:

> definetensor(RB[i,-h,-j,-k]= Hdiff(G[i,-h,-jl, X[k])
> -Hdiff(G[i,-h,-k], X[j1)+G[m,-h,-jl*G[i,-m,-k]
> -G[m,-h,-k]*G[i,-m,-j], antisymm[3, 4]):
> show(RB[-i,h,-j,-k]);
3 y1? 1 y13
RB™ = -2 RB®  =-
xlzlz2 8 $3y22 x2xlx2 4 $3y23
3 yl 3 yl1?
RBIE _ _ = RBmQ - __<
xlxlz2 4 $3y2 z2x1x2 8 x3’y22
1 3 yl
RB% = ——— RB® =2
z3xrlx3 4$32 zlzlz3 4 $3y2
3 yl? 1
z3 z2
RBxQszB = _§x3’y22 RBszQIB = _4$32
3 y1? 1 y13
RB, = - RBZ,  =-——
zlz2x3 8 $3y22 x2x2x3 4 $3y23

o
e hv-curvature tensorP?j %

> definetensor(PB[i,-h,-j,-k]= tddiff(G[i,-h,-j],Y[k])):
> show(PB[h,-i,-j,-k]);

" 3 . 3yl
PBxfoxl = _@ PBxfxle = iﬁ
. 3yl? . 3yl?

Curvature tensors of Chern connection
xh
e h-curvature tensor R;:

definetensor (Rchern[i,-h,-j,-k] = Hdiff (Gammastar[i,-h,-j], X[k])
-Hdiff (Gammastar[i,-h,-k],X[j])+Gammastar[m,-h,-j]*Gammastar[i,-m,-k]
-Gammastar [m,-h,-k] *Gammastar[i,-m,-j], antisymm[3,4]):

show(Rchern[i,-h,-j,-k]);

vV VvV V V
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Rchern®} ., = —%ngy; Rehernis, ., = _g%y;
Relernilyy = ~q e Rebernid, = -4
Rchern’s , o = _iﬁ Rchern}y, s = _z%
Rchern | .o = Z% Reherngy, s = 2%
Rchern™ , o = _gzé’Ly; Rehernf g, = i%
Rchern®} ,.5 = —i% Reherngg,g = 2%
Rchern ;.5 = —2% Rehern;, g, = _ﬁ
Rchern™ 5.5 = _gzﬁﬂy; Reherngy,g,g = ixé’Ly;’

*
e hv-curvature tensor P?jk:

> definetensor(Pchern[i,-h,-j,-k]=tddiff (Gammastar([i,-h,-j],Y[k])):
> show(Pchern[h,-i,-j,-k]);

1 y3 1
PChernxmllzlxl = __yi2 PChernﬂfl]ﬂIB -
223yl 223y1
3y2y3 3 Y3
Pcherns, ., = — Z) 133 Pcherng, o = 5%
T3y Loy
3 y2 3
Pchern. ., = 557y12 Pchern® . = 55
3yl 1 93
Pchem;”fmm = 5% PCh@mizlwxz = 5%
Y rIyY
. 1 . 3 y3
PCheTnzijz? = _21,3y2 PCheTnzIQxQzl - §W
3 3yl
Pehern®,, , = T Pchern® ., = 5%
3 y1? 1 y3
Pchern™ , , = —5% Pchern®} ,., = §:L'3yiy22
. yly3 . Lyl
Pchemzéx%g = —xgygg PCh@mxéz,@xs’ = 5x3’y22
3 Y3 3
Pchern® 5., = ——yiz Pcherngy g, = s——
2x3y2 2z3y2
. 3y1? z 3y1?
Pchern?y , , = _iﬁ Pchern’s , , = QF
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Curvature tensors of Hashiguchi connection

*
e h-curvature tensor R;’jk:

> definetensor(RH[i,-h,-j,-k] = Hdiff(G[i,-h,-j], X[k])

> -Hdiff(G[i,-h,-k],X[j1)+G[m,-h,-jI*G[i,-m,-k]-G[m,-h,-kI*G[1i,-m,-j]

> +C[i,-h,-m]*RG[m,-j,-k], antisymm[3, 4]):

> show(RH[i,-h,-j,-k]);
RHY , , = _ngyZZ RH, 00 = %J;S’Ly;’
RHZ,,, = —gx;{; 5 RHG. = gﬁ
RHffﬂIg = i:&?yij]z RH;,elzzw = _%%
RH;;x1z3 = _ng RH%MB = Z%
RZu = -5 Rig, =31
RH, 15 = _gxé’Ly; RH 005 = _i%
RHf,elzzxs = i% RHgfzgzm = _Zwyi?;
RHZ 5.5 = %% RHT 5,5 = _ﬁ
RHY , o = —%%;2 RH 0,5 = ix(?Ly;’

*
e hv-curvature tensor P?jk:

definetensor (PH1[i,-h,-k,-j]=Hdiff(C[i,-h,-k],X[j1)+G[i,-m,-j]
*C[m,-h,-k]-G[m,-h,-jl1*C[i,-m,-k]-G[m,-k,-jI*C[i,-h,-m]):
definetensor(PH[i,-h,-j,-k] =

tddiff(G[i,-h,-j], Y[k])-PH1[i,-h,-k,-j], symm[2,4]);

show(PH[h,-i,-j,-k]);

vV V.V V V
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zlzizl §x5)y12 rlxlxl — $3y13
3 43 3
PHIE - _Z PHIB _
xlz2x1 2 $3y12 xlzlxl 4y2
3yl 1 ys
83 i
PHxlz,?xl = Zy22 PHzZIQzQ = _§$3y22
3 43 3 yi
z2 z3
PHzlezQ = _§$3 12 PHxlexQ = 1 22
) Y
3y1? 1
83 xl
PHIIzQxQ = _Z ygg PHszZIB = _2x3y1
PHIL,, — — PH,, = 5 Y%
zlz2x3 2x3y2 clxlx3 2 l’3y12
3 1 y3
PH® , , = pgel o~
zlz2x3 2$3y1 x2xlx2 2 $3y22
. ylys . 3 y3
. 3yl? . 3yl?
1 1yl
PH® . = pgel o~
PHzéQzB: ’ PHz2223:_ ’
s 223yl i 223 y2

The v-curvature of Hashiguchi connection is the same as the v-curvature of Cartan con-
nection.

Remark 4.1. According to the above consideration, if we calculate the hv-curvature P of
Cartan connection, in the example mentioned in Section 3, we find that the components
Pf;k vanish identically as expected.

5. Tensor simplification

It is well known that the simplification of tensor expressions is not an easy task [§].
However, we have noted that if we have a complicated formula of a geometric object, such
as P!, we can significantly simplify its expression as follows. We let the package compute

ijk>
the tensor P;ji := grn Pl (instead of Pf;k) and ask it to show the tensor Pf;k

ijk
To illustrate this technique let us consider the following example.
Let M =R3, U = {(x1,22,23;y1,y2,y3) € R3 x R3 : y1 # 0,42 # 0,y3 # 0}. Let I/
be the Finsler structure defined on U by

F = (21y2® + y1%y3)Y/3.
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For example, let us compute the component S}, of the v-curvature tensor S{ij of
Cartan connection.
> definetensor(SC[i,-h,-j,-k] = C[m,-h,-k]*C[i,-m,-j]
> -C[m,-h,-jl*C[i,-m,-k]):
SC;zjk = C%C;zj - CZZ’ 7lnk
> show(SC[i,-h,-j,-k]);

1 Y3yl (—x1y23+y3y1 2):(:11/22 (y3y12—3:c1y23)

Scﬁxlgﬂ = 718 (m1y23+y3y12)4
o y32y13x1y2?(ysy12+43 z1y23)
27 (:cly23+y3y12)4
1 ylzly2?(—z1y23+y3y1?) y3(—3 x1y23+5y3y12)
36 (:cly23+y3y12)4
1 ylwly2?(4y32y1t+21y8y1221y23+9212y20 )ys
54 (w1y23+y3y12)4

The above expression is complicated. But, in fact, if we lower the index ¢ in the
above definition and use the command show(SC[i,-h,-j,-k]), then we have the following
simplification.

> definetensor(SC[-i,-h,-j,-k] = C[m,-h,-k]*C[-i,-m,-j]

> -C[m,-h,-jl1*C[-i,-m,-k]):

SCinjk = ChCimj — Cp;Cimk
> show(SC[i,-h,-j,-k]);
xl _ 1 y3ylxly2?
Scxlx1x2 12 (:cly23+y3y12)2 ?

which is very simple compared with its expression before simplification.

Remark 5.1. Be careful when you lower or raise an index, this index should be lowerable
or raisable. For example, in the definition of Pf;k we encounter the term I iy (cf. 81).
The index 7 in this term can not be lowered since glm(ﬁkfh’”ﬂ) =+ 8k(meFZ";) So we can
not use the command tddiff(Gammastar[-i,-h,-j], Y[k]). Such a problem can be treated as

illustrated below:

definetensor (FT[i,-j,-k,-h]=Hdiff(C[i,-j,-k], X[h])
+Gammastar[i,-h,-ul*C[u,-k,-j]-Gammastar [u,-k,-h]*C[i,-u,-j]
-Gammastar [u,-h,-j1*C[i,-u,-k]);
definetensor(PC[i,-h,-j,-k] = tddiff (Gammastar[i,-h,-j]1,Y[k])
-FT[i,-h,-k,-j]+C[i,-h,-m]*PT[m,-j,-k]);

PC ), = tddiff , (Gammastar,) — FT},. + Cj,, PT™
> show(PC[i,-h,-j,-k]);

vV V. V V V

chl _ 1 1 <3x1y26(—y12y3+3x1y23)y12y3
zlzlel 72 (_ﬂ y23+y12y3)2y1 (I1y23+y12y3)2
10y12(y12y3+321y2®)y2Sysa1 5 a12y2®(—y12ys+3x1y2?)
(x1y23+y12y3)2 2 (x1y23+y12y3)2
5(y12y3+31:1 y23)y29x12 3 y23y14(—y12y3+3x1 y23)y32
(z1y23+y12y3)2 2 (x1y23+y12y3)2
5y23y1t(y12y3+321y23)ys> 51025 4 41203 23>
(x1y23+y12y3)2 Yy yL 9y
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This component can be simplified using the above mentioned technique.

definetensor (FT[i,-j,-k,-h] = Hdiff(C[i,-j,-k], X[h])
+Gammastar [i,-h, u]*C[u,-k,-j]-Gammastar [u,-k,-h]*C[i,-u,-j]
-Gammastar [u,-h,-jI1*C[i,-u,-k]);
definetensor(ST[i,-h,-j,-k] = tddiff (Gammastar[i,-h,-j], Y[k]));
definetensor(PC[-i,-h,-j,-k] = g[-m,-i]*ST[m,-h,-j,-k]
-FT[-i,-h,-k,-j]+C[-i,-h,-m]*PT[m,-j,-k]);

PCinjk = gmi ST — FTink + Cinm P17,
> show(PC[i,-h,-j,-k]);

1 1 y23
port =1 wt
zlzlxl 16 yl(x1y23+y3y12) )

vV V. V. V V \V

which is simpler compared with its expression before simplification.

6. Conclusion

In this paper, we have achieved four objectives concerning the FINSLER package [10],

[11]:
e The wrong calculation of the components of the hv-curvature tensor P{;k of Cartan
connection has been corrected
e Modifications have been made so that the h- and hv-curvatures of Cartan connection
(and other geometric objects) could be computed in all dimensions (not only dimension 4).
e The package has been extended to compute not only the geometric objects associated
with Cartan connection but also those associated with other fundamental connections of
Finsler geometry. Other definitions can be added similarly to the package.

e A technique for simplifying tensor expressions has been introduced.

Thanks to the FINSLER package, one is able to study various examples and coun-
terexamples in Finsler and Riemannian geometries. For example, in [I3] and [I4], we have
studied interesting counterexamples in Finsler geometry.
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