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THE COMPLEXITY OF THE EQUIVALENCE AND
EQUATION SOLVABILITY PROBLEMS OVER
META-ABELIAN GROUPS

GABOR HORVATH

ABSTRACT. We provide polynomial time algorithms for deciding
equation solvability and identity checking over groups that are
semidirect products of two finite Abelian groups. Our main method
is to reduce these problems to the sigma equation solvability and
sigma equivalence problems over modules for commutative unital
rings.

1. INTRODUCTION

Investigations into the algorithmic aspects of the equivalence prob-
lem for various finite algebraic structures commenced in the early 1990s.
The equivalence problem for a finite ring R asks whether or not two
polynomials p and g are equivalent over R (denoted by R |= p = ¢q), i.e.
if p and ¢ determine the same function over R. The equation solvability
problem is one of the oldest problems of algebra: it asks whether or not
two expressions p and ¢ can attain the same value for some substitution
over a finite ring R, i.e. if the equation p = ¢ can be solved over R.
Note, that these problems usually have a ‘term’ version, as well, where
the input polynomials cannot contain constants from the ring R. In
this paper we deal with these problems for which the inputs are poly-
nomials, but the term versions of our theorems follow from the proofs,
as well. From now on, we refer to these problems as the equivalence
problem and the equation solvability problem.

First Hunt and Stearnes [19] investigated the equivalence problem for
finite commutative rings. Later Burris and Lawrence [3] generalized
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their result to non-commutative rings, and established a dichotomy
theorem for rings: for finite nilpotent rings the equivalence problem can
be solved in polynomial time in the length of the two input polynomials,
and for non-nilpotent rings the equivalence problem is coNP-complete.
Similar result can be proved for the equation solvability problem: for
non-nilpotent rings the NP-completeness follows from the argument
of Burris and Lawrence, for nilpotent rings the equation solvability
problem is in P [12].

The proof of Burris and Lawrence reduces the satisfiability (SAT)
problem to the equivalence problem by using long products of sums of
variables. Nevertheless, a polynomial is usually given as a sum of mono-
mials. Of course, the length of a polynomial may change if expanded
into a sum of monomials. For example, the polynomial [}, (z; + v;)
has linear length in n written as a product of sums, but has exponen-
tial length if expanded into a sum of monomials. Such a change in the
length suggests that the complexity of the equivalence problem might
be different if the input polynomials are restricted to be written as
sums of monomials. Thus, Lawrence and Willard [25] introduced the
sigma equivalence and sigma equation solvability problems, i.e. when
the input polynomials over the given ring are presented as sums of
monomials where each monomial has the form «; ... o, with each «; a
variable or an element of the ring. They formulated a conjecture about
the complexity of the sigma equivalence and sigma equation solvability
problems. Namely, if the factor by the Jacobson radical is commuta-
tive, then the sigma equivalence and sigma equation solvability prob-
lems are solvable in polynomial time, otherwise the sigma equivalence
problem is coNP-complete, and the sigma equation solvability problem
is NP-complete.

Szab6 and Vértesi proved the coNP-complete part of the conjecture
in [33]. They prove a stronger result for matrix rings: the equiva-
lence problem is coNP-complete even if the input polynomials are re-
stricted to only one monomial, that is the equivalence problem is coNP-
complete for the multiplicative semigroup of matrix rings. To this
problem they reduce the equivalence problem over the multiplicative
subgroup of matrix rings, which is coNP-complete by [15]. Almeida,
Volkov and Goldberg proved an even more general result about semi-
groups (showing that the equivalence problem is coNP-complete for a
semigroup if the equivalence problem is coNP-complete for the direct
product of its maximal subgroups) yielding the same result for matrix
rings [2]. For most matrix rings, arguments of [25] establish coNP-
completeness, as well. Moreover, NP-completeness for the equation
solvability problem follows from any of these arguments.
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For commutative rings, the equivalence problem is indeed solvable
in polynomial time [13]. The polynomial part of this conjecture is
completely proved in the manuscript [16].

The interest in the computational complexity of the equivalence and
equation solvability problems of a finite algebraic structure has been
steadily increasing in the past decade. Several results have been pub-
lished about the complexity of these problems for general algebras (e.g.
[8, 9, 10]) or for finite semigroups and monoids (e.g. [2 6] 20, 2], 22, 23],
241,29, 31, 33]). Just to mention some of the most recent results: follow-
ing up on [2], Klima finished the characterization for the transformation
monoids [24], or Gorazd and Krzaczkowski characterized the complex-
ity of these problems for all two-element general algebras [9, [10]. Al-
though the literature is fairly extensive for monoids, the equivalence
and equation solvability problems even for the simplest case, the case
of finite groups, proved to be a far more challenging topic than for finite
rings.

A group expression for a group G is a product of variables, inverses
of variables and elements from G. The equivalence problem for a finite
group G asks whether or not two group expressions are equivalent over
G, i.e. if the two products determine the same function over G. The
equation solvability problem for G asks whether or not two group ex-
pressions can attain the same value for some substitution over the finite
group G. Burris and Lawrence [4] proved that if a group G is nilpo-
tent or G ~ D,,, the dihedral group for odd n, then the equivalence
problem for G has polynomial time complexity. They conjecture that
a dichotomy theorem exists. Namely, that the equivalence problem for
G is solvable in polynomial time if G is solvable, and coNP-complete
otherwise. This conjecture has been verified for G ~ A x B, where A
and B are Abelian groups such that the exponent of A is squarefree
and (JA|,|B|) =1 in [I7], and for nonsolvable groups in [I5].

Even less is known about the equation solvability problem over groups.
Goldmann and Russel [7] proved that if G is nilpotent then the equa-
tion solvability problem over G is in P, while if G is not solvable, then
the equation solvability problem is NP-complete. Little is known for
solvable, nonnilpotent groups. In [7] Goldmann and Russel explicitly
ask for the complexity of the equation solvability problem for S;. In
[17] it is proved that this problem is in P for groups of order pq for
primes p and ¢. Furthermore, the equation solvability problem is in P
for the group Ay, as well [18].

1.1. The structure of the paper. In this paper we consider both
the equivalence and the equation solvability problems for groups of the
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form G = A x B, where A is Abelian. Here, B acts on A, and this
action generates a subring R of the endomorphism ring End A. We
will consider A as a faithful R-module. That way, we will be able to
translate both the equivalence and the equation solvability problems
into the language of modules. Motivated by this perspective, we intro-
duce so-called ‘module polynomials’ in Section [2] and define the sigma
equivalence and sigma equation solvability problems for modules over
rings. Here, we need to define a slightly more general version of these
problems: where one can substitute into the variables elements from a
subset S instead of necessarily from the whole ring R. Therefore, Sec-
tion [2]is a more technical section. Apart from the fact that these results
are interesting on their own, we mainly use them for proving theorems
on groups in Section In particular, in Section [2] we prove that for
modules over commutative rings the sigma equivalence problem is in
P, and if S is ‘nice’ then the sigma equation solvability problem is in
P, as well. The precise statements can be found in Corollaries [f] and [f]

In Section 3] we consider groups of the form G = A x B, where
A is Abelian. Denote the centralizer of A in B by Cg (A). For the
equivalence problem we prove the following:

Theorem 1. Let G = A x B, and assume that both A and B/Cg (A)
are commutative. If the equivalence problem over B is in P, then so is
the equivalence problem over G.

Thus, we sharpen the results of [17]|, where Theorem [l| is proved
under various additional conditions. For Abelian groups A, B, groups
of the foorm G = Z,, X (Z,,, X --- % (Z,, x (A x B))) are examples
where Theorem [1| can be easily applied (see Corollary .

For the equation solvability problem, we can prove the following (for
the details see Theorem [9]in Section [3.4): Let G = A x B, and assume
that both A and B are commutative. Let & denote the action of B
over A in the ring End A, and let R be the subring of End A generated
by S. If the module sigma equation solvability problem over (R, A) for
substitutions from & is in P, then so is the equation solvability problem
over G. In particular, if the generated ring R is direct indecomposable,
or R* is cyclic, then the equation solvability problem over G is in P.

The most obvious examples for which Theorem [9] can be applied are
the following:

Corollary 2. Let B be a finite commutative group. The equation solv-
ability problem is in P for the following groups.

(a) G =Z, x B, where n=p* or n = 2p® for some prime p;
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(b) G =Z3 x B, such that |B/Cs (A)| € {1,q} for some distinct
primes p, q, where p s a primitive root modulo q.

(¢) G =73 x B, such that |B/Cs (A)| € {1,q} for some distinct
primes p, q, where the order of p modulo q is some d > 2 and
n<d+1.

Theorem [9] in Section generalizes all existing results about the
complexity of the equation solvability problem for solvable, not nilpo-
tent groups |17, [18]. Examples for item (b)) are Z2 x B, where 2 { |B|
(e.g. Ay), or Zp x Z, for ¢ # p where p is a primitive root modulo ¢. If,
for example, ¢ = 2, then any odd prime p is a primitive root modulo ¢,
hence the equation solvability problem over Zj x Z, is in P. Examples
for item () are Z3 x Z; or Z3 x Z.

We wrote a computer program for Theorems [1] and [J] in GAP [5]
using the SONATA package [1], and ran it on the supercomputer of
University of Debrecen [28] to determine the smallest groups for which
the complexities of the equivalence and equation solvability problems
are yet unknown. Based on these computations, in Section 4] we close
the paper by reviewing what questions remain open about the complex-
ity of these problems over groups. Sections [6] and [7] contain the GAP
SmallGroup identifications and StructureDescriptions of the groups of
order at most 60 with currently unknown equivalence and equation
solvability complexities. The GAP source code and the full list can be
found on the website [14].

2. MODULE POLYNOMIALS

In this section we extend the definitions of the equivalence and equa-
tion solvability problems from rings to modules. These problems could
be defined for modules over arbitrary rings. However, the definitions
and theorems would become quite tedious and technical. Since in Sec-
tion |3 we only need the results about modules over commutative unital
rings, we restrict ourselves for considering only such rings.

2.1. Definitions. Let R be a commutative, unital ring, M be a mod-
ule over R. For nonnegative integers n, k, let X = {zy,..., 2, },
Y ={wy1,...,yx } be disjoint sets of variables. For polynomials f;, f, €
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Rlz1,...,x,] (1 <i <k, a € M) the module polynomials are expres-
sions of the form

(1) fXGY)=Ff(21,. Ty, k)

k
=2 filwn o wa) yit Y o) e

aeM

For an evaluation of the module polynomial f (X;Y") the variables from
X (i.e. before the semi-colon) are evaluated over R, and the variables
from Y (i.e. after the semi-colon) are evaluated over M. Expressions
of the form m - y; and m - a for some monomial m over R (1 <i <k,
a € M) are called module monomials. If all f; and f, (1 <7 < F,
a € M) are written as sums of monomials then we say that f is written
as sums of module monomials. Let S C R. We say that the module
polynomials f and g are equivalent over (R, M) for substitutions from
S (and write (R, M) k= f|s = gls) if for every si,...,s, € S and for
every ai,...,ar € M the two polynomials agree on this evaluation:

f(s1y. y8nsat,...,a) =g (S1,.. ., Sn;a1,...,aK) .

Similarly, we say f = g is solvable over (R, M) for some substitution
from S (and write f|s = g|s is solvable over (R, M)) if there exist
S1y..-,8, € S and aq,...,ap € M such that the two polynomials
attain the same value on this evaluation:

f(s1, s 8psar, ... ax) =g (S1,...,Sn;a1,...,a;) .

When we want to emphasize which variable is substituted from where,
then we write (R, M) = f(X|s,Y|m) = g (X|s,Y|m) for the equiva-
lence and f (X|s,Y|m) = g (X|s, Y|am) for the equation solvability.

The module sigma equivalence problem over (R, M) for substitutions
from S asks whether or not two input module polynomials f and g
(written as sums of monomials) are equivalent for substitutions from
S, that is whether or not (R, M) & f|s ~ g|s holds. The module sigma
equation solvability problem over (R, M) for substitutions from S asks
whether or not for two input module polynomials f and ¢ (written
as sums of monomials) the equation f|s = g|s can be solved. If the
input module polynomials are not restricted to be written as sums of
module monomials, then we talk about the module equivalence and the
module equation solvability problems. These latter two problems can
be handled easily by the ideas from [3] [19], Since we do not need them
later, we only consider the sigma problems in the following.

Note, that the module problems are generalizations of the original
(sigma) equivalence and (sigma) equation solvability problems for rings.
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Indeed, if M =R and § =R, then we have the original problems for
rings. Furthermore, note that for module polynomials f,g we have
(R,M) = f~gifand only if ( RM) | f—g~0,and f = g is
solvable if and only if f — g = 0 is solvable. Therefore, it is enough to
consider whether or not one input polynomial is equivalent to 0 or can
attain the value 0. The main result of the section is the following.

Theorem 3. Let R be a commutative, unital, local ring of prime power
characteristic. Let M be a module over R. Let S < R* be a subgroup
of the multiplicative group R*. Let a module polynomial f be written
as a sum of module monomials over (R, M) (see (1)). Then it can be
decided in polynomial time in ||f|| whether or not f|s = 0 is solvable

over (R, M).

Theorem |3 has the following consequences that will be used in Sec-
tion Bl

Corollary 4. Let R = ®l_R; be a commutative unital ring, where
each R; (1 < i <) is a commutative, unital, local ring of prime power
characteristic. Let M be a module over R. Let S = @2:151-, where
each S; (1 < i <) is a subgroup of the multiplicative group R; . Let
a module polynomial f be written as a sum of module monomials over
(R, M) (see (1)). Then it can be decided in polynomial time in || f]]
whether or not f|s = 0 is solvable over (R, M).

Corollary 5. Let R be a commutative unital ring, M be a module over
R. Let S be a subgroup of the multiplicative group R*. Let a module
polynomial [ be written as a sum of module monomials over (R, M)
(see (1)). Then it can be decided in polynomial time in || f|| whether
or not (R,M) = f|s = 0.

The remaining part of this section is structured as follows. In Sec-
tion we show that Corollaries [l and [{ follow from Theorem Bl We
prove that it is enough to consider commutative local rings of prime
power characteristic. Galois rings play an important role in the theory
of finite commutative local rings, therefore we summarize their basic
properties in Section Then in Section [2.4] we introduce the nota-
tions used throughout the proof of Theorem [3] In Section we give
the main steps for the (algorithmic) proof of Theorem [3] Finally, in
Section we give the detailed proof of Theorem

2.2. Reduction to local rings. Here, we show that Corollaries[dand 5]
follow from Theorem [3] Let R be a finite, commutative, unital ring.
By the Pierce decomposition theorem (see e.g. [11L p. 48, 50]) R is
the direct sum of some commutative, unital, local rings of prime power
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characteristic. Thus, there exist commutative, unital, local rings R;
(1 < i < for some [) of prime power characteristic such that R =
®!l_,R;i. In case of Corollary || the Pierce decomposition is given in the
statement.

Let M be a module over R. Now, M = RM = &!_ R; M, and thus
M is the direct sum of submodules R; M, where R; M is a module over
R; and R;/R;iM ={0}. Let S < R* be a subgroup of the multiplica-
tive group, and let S; be the projection of S onto R;, then S; < R*.
Let f be a module polynomial over (R, M), written as a sum of module
monomials. For 1 < ¢ <[ let f; be the module polynomial obtained
from f by replacing every constant from R with their projection onto
R; and every constant from M with their projection onto R;M. Then
it is easy to see that (R, M) = f|s =~ 0 if and only if for all 1 <i </
we have (R;, RiM) = fils. = 0. Moreover, if S = ®!_,S;, then f|s =0
is solvable over (R, M) if and only if for all 1 < i <[ the equations
fils; = 0 are solvable over (R;, R;M). That is, both the equivalence
and the equation solvability problems can be decided componentwise,
and hence it is enough to prove Corollaries [4] and [5] for commutative,
unital, local rings of prime power characteristic.

Corollary [l now follows directly from Theorem [3] Furthermore, if R
is a commutative, unital, local ring of prime power characteristic, M is
a module over R, § C R, and f is a module polynomial over (R, M),
then (R, M) = f|s =~ 0 if and only if f|s = a is not solvable for any
0 # a € M. That is, if the module sigma equation solvability problem
can be decided in polynomial time, then so can be the module sigma
equivalence problem. Hence Corollary [f follows from Theorem [3] as
well.

2.3. Galois rings. In this subsection we review the theory of Galois
rings necessary for our proofs. The reader may skip this part if they
are familiar with the literature.

Galois rings play an important role in the theory of commutative
rings. They were first examined in [30], and later in [34]. In the
following we list some of the most important properties of Galois rings
(see e.g. [27]). Let hq(z) € Z[x] be a monic polynomial of degree d
which is irreducible modulo p. Then the Galois ring GR (p°,d) is by
definition the factor ring Z [x] / (p°, ha (x)).

The Galois ring GR (p°, d) is completely characterized by the num-
bers p, ¢, d, and does not depend on the choice of the polynomial
hg. The Galois ring GR (p©,d) is a finite, commutative, unital, local
ring. The characteristic of GR (p°, d) is p°, the number of its elements
is p°d. In particular, GR (p,d) is isomorphic to the pi-element field
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Fpa, and GR (p°, 1) (where hg is of degree 1) is isomorphic to Zy.. For
every ideal Z < GR (p°, d) there exists a number 0 < ¢ < ¢ such that
T = (p'). That is every ideal is a principal ideal, thus every finitely gen-
erated GR (p°, d)-module is a direct sum of cyclic GR (p°, d)-modules
[34) p. 81, Corollary 2|. The Galois ring GR (p°, d) is local, the unique
maximal ideal is the Jacobson radical (p). For every 1 <i < ¢ the fac-
tor ring GR (p, d) / (p') is isomorphic to the Galois ring GR (p’, d). In
particular, the factor by the Jacobson radical is isomorphic to Fja. Fi-
nally, we will need the following (here | x| denotes the greatest integer
not greater than x):

Lemma 6. For a prime p and for arbitrary positive integers c,t let
m > c+ Uogp (t— 1)J be an integer. Then p° | (pi ) for all integers
1<i<t—1andp] (p;n) for all integers 1 < i < p™ — 1.

Proof. Let 1 <1 < p™ — 1 be arbitrary. Now,

(pm) B el VRORS VAt e ) pminzﬁ_

0

1. (i—1)-i i

Here, the p-part of p™ — j and j are the same. As p™ {1 i, the exponent
of the p-part of 7 is at most m — 1, and thus the p-part of the first factor
is at least p. Furthermore, if ¢ <t — 1, then the exponent of the p-part
of 7 is at most [log,i] < |log,(t —1)] < m — ¢, and thus the p-part of
the first factor is at least p°. O

2.4. Notations. In the following, let R be a commutative, unital, local
ring of characteristic p© for some prime p. Let M be a module over R,
and let S be a subgroup of the multiplicative group R*. Let

k
f(xly'ﬂaxn;yla"')yk) = Zfz (xlaaxn)yz—i_z fa (3:1,...73371)-@
i=1 aEM
be a module polynomial over (R, M) written as a sum of monomials.
Let J denote the Jacobson radical of R and let ¢ be the smallest
positive integer for which J* = {0}. Let F denote the factor field
R/J, and assume F =~ F,. Then R contains a (unique) subring
Ro < R isomorphic to GR (p,d) |34, p. 80, Theorem BJ. Let ¢ be the
smallest positive integer for which J* = {0}. Let m > c+|log, (t — 1)]
be a positive integer such that d | m.
Consider the map r — r?" (r € R). Asd | m, we have F E 2F" ~ z,
hence r?" —r € J. For arbitrary r € R and v € J we have

i—1 m p" m
(r+ u)pm — " = Z (pi )Tpm_iui + Z (pi )Tpm_iui =0.
=1 =t
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Here, the first sum is 0 since p° is a divisor of every binomial coefficient
by Lemma [l The second sum is 0 as any product containing at least ¢
elements from J is 0. Thus r — r?" is a projection onto a multiplica-
tively closed set Sy such that Sy is a representation system for F. In
particular, there exists an element s* € R which has multiplicative or-
der (p? — 1), and Sy = {0}U{ (s*)? |1 <j <p?—1}. Then R* is the
direct product of the subgroups So\{0}and 1+ 7 ={1+u|ue T}
[30, p. 200, p. 215]. Note, that the sizes of the subgroups Sy \ {0}
and 14 J are coprime, thus the subgroup & < R* is a direct product
of a subgroup &' < S\ {0} and 1 + J’ for some J' C J. Since
So \ {0} is generated by s*, there exists a positive integer e such that
S’ is generated by (s*)¢, that is

2) S=8-(1+T)={s-(1+u)|seS\{0},uecT'}.

Note, that s = s for every s € Sy, and the range of the map Sp — S,
s 7" is {0,1}. Furthermore, S is a subset of the unique subring
R isomorphic to GR (p°, d) contained in R. Finally, for every element
r € Ry, there exist unique elements sg,...,S..1 € Sy such that r =
S0 sip'. We continue by proving Theorem

2.5. Sketch of the proof of Theorem |3l We consider M and R as a
direct sum of cyclic Ro-modules. Then every element of M and R can
be written as ), 5750 and Y, 5 1yt respectively, for some 1y, 1y €
Ro, where B and B’ are (weak) bases of M and R. Furthermore, every
element of Ry can be written as Zf;é s;p’ for some s; € Sp.

(a) Thus first, by introducing new sets of variables X, Y and Z, we
will be able to rewrite the module polynomial f over (R, M)
into a module polynomial g over (Rg, M) such that f|s =0 is
solvable if and only if g (X|sy(o0}, Y |sy: Z|s,) = 0 is solvable.

(b) Again, we use the fact that M is a direct sum of cyclic Ro-
modules, that is M = @,cRob for some (weak) basis B. Then
we can find polynomials hy, € Ro[X,Y, Z] for every b € B such
that the module equation g (X|sy\(o0},Y|sy, Z]s,) = 0 can be
solved if and only if the system of equations

(3) hy, (XISO\{O}vy‘Sov Z|So) =0 (b S B)

is solvable over the Galois ring Ry. That is, we reduced the
original problem to solving a system of equations over the Galois
ring Rp.

(¢) Then we reduce this system over Ry to a system of c - |Bl-
many equations over F = R/J. In particular, we find h;; €
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F[X,Y,Z] (0<i<c—1,b€ B) such that the system (3) can
be solved simultaneously if and only if the system

(1) hip (X|rgoy, Yr Z]F) =0 (1<i<c—1,beB)
can be solved over F.
(d) Let
c—1
(5) q:<H90>-HH(l—h’i’z—l)E]-"[X,Y,Z].
reX i=0 beB

We prove that the system is not solvable over F if and only

That is, f|s = 0 is not solvable over (R, M) if and only if F |= ¢q|r ~

0. Throughout the proof we compute the time-complexity of calculat-

ing every set of new polynomials. In particular, the final polynomial

q can be calculated in polynomial time of O (||f||). By [13] it can be
decided in polynomial time in ||¢|| whether or not F |= ¢|# = 0.

2.6. Detailed proof of Theorem Consider M and R as Ro-
modules. The ring R is isomorphic to a Galois ring, both M and
R are direct sums of cyclic Ro-modules. Let B denote a (weak) basis
for M, that is M = @ycpRob such that ), b = 0 if and only if
r, € Ann{b}. Now, every element a € M can be written in the form
of > cpmeb for some 1, € Ry, b € B. Further, let B’ denote a (weak)
basis for R for which 1 € B/, B'\ {1} C J, and R = ®yepRol.
Every element r € R can be written in the form of ), _,ryb" for some
ry € Ro, b € B'. Moreover, every element of Ry can be (uniquely)
written in the form of Zf;ol s;p’, where s; € S.

Hence, every element a € M can be written in the form of Zf;é > vep Sipp'D
for some s;;, € Sp, 0 < i < c—1, b € B, and every element r € R
can be written in the form of Zf;é Y vep siyp'b for some s;y € Sp,
0<i<c—1,0 € B. We use these presentations in order to reduce
solving f = 0 to solving a module equation over Ry. For this we intro-
duce the following disjoint sets of new variables (recall that n was the
number of x variables in f, and k was the number of y variables of f):

X={z;[1<j<n},
Y={yip |1 <j<k0<i<c—-1beB},
Z={zu]|1<j<nueJ}.

(a) Firstly, replace the variables and constants from M: Replace

every element a € M occurring in f with one of its equivalents
of the form Zf;é > vep SiaD'b (sip € So, 0 < i <c—1,b¢€



12

G. HORVATH

B). Further, replace every occurrence of the old variable y;
(1 < j < k) with the expression > 0 >, s9;:50'0. Let the
resulting module polynomial be f. Note that f® does not
have variables substituted from M, but rather only constants
from M and variables from R. Further,

(R’M) ’: f|8 ~ f(i) (X|37Y|30) :
Secondly, replace every occurrence of z; (1 < j <n)in @
with the expression 25 - [ [,/ (1 +u- zﬁzfl), where e was the

exponent for which &’ is generated by (s*)¢. Let the resulting
module polynomial be f@. By (2] one can observe that

(R’M) ): f(i) (X|S’Y’30) ~ f(ii) (X|So\{0}7y|507 Z|50) .

because zgi_l can attain values either 0 or 1.

Thirdly, replace every constant r € R occurring in f9 with
one of its equivalents of the form Zf;é > ven SiwD'V (siy € So,
0<i<ec—1,V € B). Let f be the resulting module
polynomial over (R, M) in variables X UY U Z. The resulting
module polynomial (%) has no variables substituted from M,
and

(RvM) ): f(ll) (XISO\{O}aY‘Soy Z’So) ~ f(Z“) (X|$0\{0}7Y|Soa Z‘S@) .

Fourthly, let us expand f(#) as a sum of module monomi-
als, and remove module monomials containing at least ¢ ele-
ments from J. Let f denote the resulting module polyno-
mial. Module monomials containing at least ¢ elements from J
attain value 0 for arbitrary substitution.

(RvM) ): f(iii) (X|$0\{0}7Y|307 Z|$0) ~ f(W) (X|So\{0}7y|307 Z|50) .

By not calculating module monomials containing at least t ele-
ments from 7, one can execute the expansion in O (|| f|[') time,
and the resulting module polynomial (™) has length O (|| f| |t)

Finally, let us rearrange every monomial of ) into the form
[Toex ™ - Her yrv  Tley 2™ - 8 p" V- b, where VY € B,
b € Band s € 8. Since R is commutative, the resulting
polynomial attains the same values as f(*). Moreover, replace
every occurring s’ - p¥ - ¥ - b with one of its equivalents of the
form Zf;é Y ven Sipl'b (sip € Sp, 0 < i < c—1,b € B),
and expand the resulting module polynomial. Let the resulting
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module polynomial over (Rg, M) be denoted by g. Now, g has
no variables substituted from M, and

(R,M) = fls = g (X|soqo1: Ylse: Zls,) -

Furthermore, the rearranging of the monomials and the expan-
sion can be done in O (Hf(i”)‘f) time. Thus, g can be com-

puted in O (||f||*) time and |[g|| = O (|| £II*).
Now,

9(X,Y,Z2)=> (XY, Z)-b
beB

for some polynomials g, € Ro[X,Y, Z|, written as sums of
monomials. As M = @®csRob, the module polynomial g at-
tains 0 for a substitution if and only if each polynomial g, at-
tains a value from Ann{b} for the same substitution. Since
Ann{b} is an ideal in the Galois ring Rg ~ GR (p°, d), for ev-
ery b € B there exists 0 < ¢, < ¢ such that Ann{b} = (p®).
Thus g, attains a value from Ann{b} if and only if p~* - g,
attains the value 0 in Ry. Let hy = p°~ - g,. Summarizing our
observations,

e f|s =0 can be solved over (R, M) if and only if

e g(Xl|spno0y:Yss, Zls,) can be solved over (Ro, M) if and

only if
e the system of equations
hb (X’SO\{O}7Y|8072|SO> =0 (bE B)

can be solved over R.
For simplicity, let h = h;, for some b € B. Let V; denote the set
of monomials in h whose coefficients are not divisible by p, and
let ) denote (h — Y,y v) /p. That is h =3 . v+p-h.
Recall that s** = s for every s € Sy. Thus d | m implies s = s
for every s € Sy. For every v € Vj its coefficient is in Sy. Thus
for every v € V) we have

Ro ): U‘So ~ o

So

Consider (ZUEVO
tion on |V/| that

pm
) )
veVy veEVy

v)pm. By Lemma |§|7 one can prove by induc-
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for some polynomial A" . Therefore,

m

p
Rk Yol Xl (T0) | ol

veV veEV) veVy So

Let hg =) Then we have

veVy”

Ro ): h‘So ~ h‘0|30 +p- h(i)"so R hgm

N +p- (h(i) — h(ii)) ‘30 _

Now, repeat the process with ) — h(®_ then in

O (|[n = n|f") =0 ((Hhup’")pm) =0 (|l

time we obtain polynomials hy, (A — h(®)) such that the co-
efficients in h; are from Sy and

Ro e (10 K| = 07| e (169 -0

Then repeat the process with AU — B(¥) ete. Then after
O <] |h| \pcm)—many steps we arrive at polynomials hg, hi, ..., he_1,
each is written as a sum of monomials, such that all coefficients
are from Sy, and

Ro [ hls, ~ hf o R

So SO .

+p- by
So

Recall that » — 7" is a projection onto Sy and for every ele-
ment r € Ry, there exist unique elements sg, ..., s._1 € Sy such
that r = Ef;é s;p'. Thus h(sy,...,s,) = 0 if and only if for
every 0 < i < ¢ — 1 we have h; (sq,... ,sn)pm = 0. Consider
h; as a polynomial over F by the natural map ¢: Ry — F.
Now, h; (s1,. .., sn)pm = 01in Ry for some sq,...,s, € Sy if and
only if h; (¢ (s1),...,% (s,)) = 0 in F. That is, h = 0 can be
solved over R by a substitution si,...,s, € Sy if and only if
ho =0,...,he_1 = 0 can be solved over F by ¢ (s1),...,% (sn).

Executing this procedure for every hy, (b € B) we obtain poly-
nomials h;, € F[X,Y,Z] (0 <i<c—1,b€ B) such that the
system can be solved simultaneously if and only if the sys-
tem

his (X|7 (0}, Yr Z]F) =0 (1<i<c—1,beB)
can be solved over F. Furthermore, each h;; can be computed
from g in O (||g||pcm> time.
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(d) Let
() Q—<Hx>-1:[H(1—hfj)I)EF[X,Y,Z].

We prove that the system is not solvable over F if and only
if 7 = q|7 = 0. For some s,,s,,s, € F (xr € X,yeY,z € Z)
we introduce 5 to denote the vector ((s;)zex, (Sy)yev, (S2)zc2)

For one direction, assume that there exist s,,s,,s, € F (z €
X,y € Y,z € Z) such that ¢(5) # 0. Then from (5)) we have
sy # 0 (that is s, € F\ {0}) for every 2 € X. Furthermore,
we have hfj)_l € {0,1}. Thus ¢(5) # 0 implies 1 — hﬁz_l =1,
that is h;p, = 0 for every 1 < ¢ < c—1,b € B. Hence 5 is a
solution of the system (4.

For the other direction, assume that there exist s, € F\{0 },
sy, 5, € F such that 5 is a solution of the system . Now, every
s is invertible in F, and 1 — A?,™" = 1, yielding ¢ (5) # 0.

Finally, ¢ can be expressed into a sum of monomials in at
most

cp? cpdtem epdtem
0 (_max,_Wall ") =0 (1l %) = 0 (15"

1<i<c—1,beB

time. Note, that the exponent only depends on R and M, and
can be bounded by

log |./\/l| . |R|O(log|73|) ‘

By [13] it can be decided in polynomial time in ||q||, whether
or not F = ¢l = 0. As ||g|| is polynomial in ||f|| (where
the exponent depends only on R and M), it can be decided in
polynomial time in || f||, whether or not F | ¢| ~ 0, that is
whether or not f|s = 0 is solvable over (R, M).

3. GROUPS

In this section we consider the equivalence and equation solvabil-
ity problems for groups which are semidirect products of two Abelian
groups. In Section [3.2) we recall and apply the idea of the collection pro-
cedure from [I7]. Then, for such groups we give polynomial time algo-
rithms for the equivalence problem in Section [3.3] and for the equation
solvability problem in Section [3.4] First, we introduce some notations
that we use throughout this section.
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3.1. Notations. Let G = A xB be a finite group, where A is Abelian.
The semidirect product is defined by a homomorphism ¢: B — Aut A
determining how B acts on A by conjugation. We denote this action
by putting it in the exponent: a¥® = a® = b~'ab for a € A, b € B.
Let End A denote the endomorphism ring of A, then Aut A is the
multiplicative group (End A)*. Let S = ¢ (B) C End A. Note, that if
the semidirect product is a direct product, then S = ¢ (B) = {1}. Let
R denote the subring of End A generated by S: R = (S) = (¢ (B)).
Let R* denote the multiplicative group of R, then & < R*, and
1 eR. If S or End A are commutative, then so is R. Furthermore,
A is a faithful left module over End A, and thus over R, as well. Let
r= Y% s for some s; = ¢ (b;) (b; € B, 1 < i < k), then we denote
the action of r € R on some a € A by writing a”, that is
k k

k k
a” = Hasi = Ha“”(bi) = Habi = H (b;labi) )
i=1 i=1 i=1 i=1

The order of the multiplication can be arbitrary as A is commutative.

3.2. Collecting precedure. Let t(zy,...,2,) = tits...t; be a poly-
nomial over G, where each t; is either a variable or a constant from
G (1 < i < k). Now, the length of ¢ is defined to be |[t|| = k. Let
X ={x,...,z,}. Since G = A x B, every element g € G can be
uniquely written as a product ba such that a« € A and b € B. Let
Y =A{wy,...,un} and Z = {z,..., 2, } be sets of new variables such
that the sets X, Y and Z are pairwise disjoint. For 1 < ¢ < k let
a; = a;(Y1,---,Yn) and b; = b;(21, ..., z,) be the following expressions:

o if {; = x; then let a; = y;, b; = 2,

e if t; € G, then let a; € A and b; € B be the unique constants

such that ¢; = b;a;.

We replace every z; with z;y; (where y; is going to be a variable
over A and z; is going to be a variable over B), and the constants
are replaced by their representatives from A x B. Thus q; is either a
variable over A or a constant from A, and b; is either a variable over
B or a constant from B. Now, ¢t = bjaibsas . .. bra,. Collecting every
b; to the left we obtain

_ bobs...b b3...b b
t= (b1b2 ce bk) . (Cll ’“az ko Cka_lak> .

(6) tb:tb(zl,...,zn):blbg...bk,

_ . _ bobs...bg b3...b b
a — la 1y« *cny Yly-- -y Yn) — U1 k2 b kk—l k-
(7) t t (Z Zny Y Yy ) a a a a
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Here, t, is a polynomial over B using variables from Z. In ¢, the
expressions afi“'“b’“ are module monomials over (R, A), that is t, is a
module polynomial over (R, A) written as a sum of module monomials.
Furthermore, ||t,|| = O (||t]]), ||tal] = O (||t||2) The main observation
is that t attains the value 1 for a substitution from G if and only if ¢,

and t, attain 1 simultaneously for the corresponding substitution.

Proposition 7. Let G = A x B. Let t(z1,...,2,) = tity... .ty be
a polynomial over G. Let t, and t, be the expressions defined by @
and . Then ty (uy,...,u,) € B, to(u1,... ,up;v1,...,0,) € A for
arbitrary uq, ..., u, € B, vy,...,v, € A, and for g; = u;v; we have

g1y Gn) =t (Ur, .oy ty) e (U, oo Uy U1, U)
3.3. Equivalence. We prove Theorem

Proof of Theorem[]. Let S denote the action of B over A in the ring
End A, and let R be the subring of End A generated by S. Now,
S ~ B/Cg(A) is commutative, and so is R. Let 1 denote the unit
element of B and G, and 0 denote the unit element of A. Let ¢, and
t, be the expressions defined by @ and . By Proposition [7| we have
that G =t~ lifand only if B |=t, ~ 1 and (R, A) = t, = 0 for every
substitution from S. The first condition can be checked in polynomial
time in ||ty]| = O (||t]|) by the assumption. The second condition can
be checked in polynomial time in ||t,|| = O (||t||2) by Corollary O

Corollary 8. The equivalence problem is in P for the following finite
groups:
(a) G = A x B, where both A and B are Abelian,
(b) G = Z,, x B, where the (polynomial) equivalence problem over
B isin P,
() G = Zp, X (Zpy, X+ X (Zp, X (A xB))), where both A and
B are Abelian.

Proof. Ttem @) follows directly from Theorem For item @ note
that End Z,, = Z,, is Abelian, hence so is B/Cg (A). Finally, one can
prove item () by induction on k using items (a) and (D). O

3.4. Equation solvability.

Theorem 9. Let G = A x B, and assume that both A and B are
commutative. Let S denote the action of B over A in the ring End A,
and let R be the subring of End A generated by S. If the module sigma
equation solvability problem over (R, A) for substitutions from S is in
P, then so is the equation solvability problem over G. In particular, if R
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15 direct indecomposable, or R* is cyclic, then the equation solvability
problem over G is in P.

Proof. Let 1 denote the unit element of B and G, and 0 denote the unit
element of A. Let t, and t, be the expressions defined by (@ and .
By Proposition [7] the equation ¢ = 1 can be solved over G if and only
if there exist ay,...,a, € A, by,...,b, € B such that ¢, (by,...,b,) =
1 and t,(by,...,bp;0aq1,...,a,) = 0. Using the algorithm providing
the Smith normal form for modules over principal ideal domains [32],
one can solve the equation #, = 1 in O (||t||°) time by expressing
one variable using the other variables. Let the solutions of ¢, = 1

be z; = [[i_,u’* (1 < j < n), where vy = b[[}_, ui’“ for some
nonnegative integers c;i, d, and b € B. Substitute these solutions into
t, to obtain a module polynomial t; = t, (ug,...,us;41,...,Yys) Over

(R, A) written as a sum of module monomials, where variables u; (2 <
i < n) are substituted from S. Whether ¢, (ua, ..., un;y1,...,Yn) =0
has a solution can be decided in polynomial time in ||, || = O (||t.]]) =
O (||t||2) by the assumption.

In particular, if R is direct indecomposable, or R* is cyclic, then the
conditions of Corollary {4 clearly hold, and the module sigma equation
solvability problem over (R, A) for substitutions from Sisin P. [

Finally, we prove Corollary

Proof of Corollary[3 (a) G =Z, xB, where n = p® or n = 2p“ for
some prime p. Now, EndZ, = Z,, and 1 € S yields R = Z,,
as well. If n is a 2-power, then R is direct indecomposable, and
Theorem [J finishes the proof. If n = p* or n = 2p* for some
odd prime p, then R* is cyclic, and again, the statement follows
from Theorem [

(b) G =Z3 x B, such that [B/Cg (A)| € {1,q} for some distinct
primes p, ¢, where p is a primitive root modulo ¢. Now, the
action of B on Zj is cyclic, let the matrix B € Z;*" denote
a generator of this action. Consider the minimal polyomial
mp(z) of B over the p-element field Z,. Since B? = I, we
have mp(z) | 2?7 — 1. Here, 29 — 1 = (v — 1) - ®,(z), where the
cyclotomic polynomial ®,(x) is irreducible over Z,, because p is
a primitive root modulo ¢ (see e.g. [26, Theorem 2.47]). Thus,
mp(z) € {x —1,0,(z),2? — 1}. We distinguish two cases.

If either mp(x) = x — 1 or mp(z) = P,(x), then mp(z) is
irreducible, and B generates a subring R in Z;*" isomorphic
to a field. Thus, R is a field, hence R is indecomposable, and
Theorem [9] finishes the proof.
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If mp(z) = x7—1, then 1 is an eigenvalue of m4(z). Changing
the basis we can assume that B = é g), where [ denotes
the identity matrix, and me(x) = ®4(z). Now, B generates a
subring R in Z;*" isomorphic to the direct sum of two fields
F1 ® Fy. Furthermore, S = §; & S,, where §; = {1} C F; and
Sy C F5°. Hence the conditions of Corollary 4| are fulfilled, and
our statement follows.

(¢) G =Z} x B, such that [B/Cp (A)| € {1,q} for some distinct
primes p, g, where the order of p modulo ¢ is some d > 2 and
n < d+ 1. The proof is essentially the same as for item (@
Again, the action of B is cyclic, let B denote a generator of
this action. Again, mpg(x) | 27— 1 = (x — 1) - ®,(x), but now
®,(z) is not necessarily irreducible over Z,, ®,(x) splits into
(¢—1)/d-many distinct irreducible polynomials of degree d (see
e.g. |26, Theorem 2.47]). Since the degree of mp(z) is at most
n < d+ 1, there exists an irreducible factor r(x) of ®,(x) such
that mp(z) | (x — 1) -r(z). From here, the proof is literally the
same as for item (b))

O

4. REMARKS, OPEN PROBLEMS

We wrote a computer program for Theorems[I]and [9]in GAP [5] using
the SONATA package [1]], and ran it on the supercomputer of Univer-
sity of Debrecen [28] to determine the smallest groups for which the
complexities of the equivalence and equation solvability problems are
yet unknown. In fact, we determined all such groups up to order 767 for
the equivalence problem and up to order 383 for the equation solvability
problem. Up to order 23, every group has polynomial time equivalence
and polynomial time equation solvability. In Sections [6] and [7] we list
the GAP SmallGroup identifications and StructureDescriptions of the
groups of order at most 60 with currently unknown equivalence and
equation solvability complexities. The GAP source code and the full
list can be found on the website [14].

First, we list open questions about the equivalence problem in Sec-
tion then about the equation solvability problem in Section

4.1. Equivalence. There are two groups of order 24 for which the
complexity of the equivalence problem is not known: Sy and SLy(Z3).
The complexity of the equation solvability problem is unknown for
these groups, either.
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Problem 1. Determine the complexity of the equivalence and equation
solvability problems over the group Sy.

Now, S, is a semidirect product of A = Z32 and B = S3. Here,
End A = Z3*?, the action of B over A is S = AutA = (End A)*.
Thus, R = Z5** and S = GLy(Z3). That is, in order to determine
the complexities of the equivalence and equation solvability problems
for Sy, one needs to consider (module) sigma problems over noncom-
mutative rings R with substitutions from a proper subset of R. The
currently existing results consider either commutative rings or noncom-
mutative rings without the restriction on substitutions.

Problem 2. Let R be a noncommutative, unital ring, S < R*. Deter-
mine the complexity of the (module) sigma equivalence and (module)
sigma equation solvability problems over R for substitutions from S.
In particular, determine these complexities in the case R = Z3*? and
S = GL2(ZQ)

For SLa(Zs3) the problem is different: SLo(Zs) is the semidirect
product of the non-Abelian Quaternion group Q and Zjz. Current tech-
niques can only handle semidirect products if the normal subgroup is
Abelian.

Problem 3. Determine the complexity of the equivalence and equation
solvability problems over the group SLy(Z3).

A similar obstacle arises with a 54-element group G, namely, that the
normal subgroup is not commutative. This group G is the semidirect
product of the non-Abelian group of strictly upper triangular 3 x 3
matrices over Zs (denoted by U(3,Z3) and the group Zs.

Problem 4. Determine the complexity of the equivalence and equation
solvability problems over the group U(3,Z3) x Zo.

Note, that the complexity of the equivalence problem is unknown for
some 48-element groups, but those are all extensions of S, or SLa(Z3),
therefore their examination should come after these two groups are
handled.

4.2. Equation solvability. As for the equation solvability problem,
there are much more groups for which our method does not work. For
example, one might wonder if item @ in Corollary [2| can be further
generalized. The smallest group which is not handled by that statement
is 212 X 22 = D12.

Problem 5. Determine the complexity of the equation solvability prob-
lem over the group Dqs.
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Indeed, in this situation R = Zjy ~ Z3 X Zy, but S = {1, —1} does
not split into a direct product of subgroups of Z; and of Zj, hence
Corollary [4] cannot be applied directly. There is a similar problem with
a lot of other dihedral groups.

Problem 6. Determine the complexity of the (module) sigma equation
solvability problem over R = Z5 for substitutions from & = {1, —1}.

One might wonder, whether the splitting of S into direct factors
is really necessary. For example, consider the group (Zs X Zs) x Z4
with generators a, b, ¢, respectively, where a® = a? and ¢ = b3. Now,
R = Zs @ Zs, but S is not a direct product, and Corollary {4 cannot
be applied directly. Nevertheless, the elements of S can be written
nicely as {(s,—s):s € Zs}. With this representation, an equation
f(zq,...,2,) = 0 can be solved over Zs & Zjs by substitutions from S
if and only if the system of equations

f($1,...,xn) = O,
fl=z1,...,—x,) =0

can be solved over Zj by substituting from Z: . Therefore the condition
of § being a direct product in Corollary {4 is not essential: in some
situations one can have further results with some clever observations.

Problem 7. Determine the complexity of the (module) sigma equation
solvability problem over an arbitrary commutative ring R for substitu-
tions from an arbitrary S < R*.

There are two more groups of order 24 for which the complexity of
the equation solvability problem is unknown. One of them is Z3 x Q,
where Q is the Quaternion group. The other one is (Zy X Zy X Z3) X Zs,
where the action switches the two generators of Zs X Zy and the two
generators of Zs.

Problem 8. Determine the complexity of the equation solvability prob-
lem over the groups Zs x Q and (Zs X Zsy X Z3) X Zs.
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6. APPENDIX A: GROUPS OF SIZE AT MOST 60 WITH UNKNOWN

—_—— —_— —_———_———_———

COMPLEXITY FOR EQUIVALENCE

24, 3 | SL(2,3)

24, 12 | S4

48, 28 | C2 . S4 = SL(2,3) . C2
48, 29 | GL(2,3)

48, 30 | A4 : C4

48, 32 | C2 x SL(2,3)

48, 33 | SL(2,3) : C2

48, 48 | €2 x S4

54, 8 | ((C3 x C3) : C3) : C2

7. APPENDIX B: GROUPS OF SIZE AT MOST 60 WITH UNKNOWN

COMPLEXITY FOR EQUATION SOLVABILITY
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24
24
24,
24,
24
30,
40,
40,
40,
492
48,
48,
48,
48,
48,
48,
48,
48,
48,
48,
48,
48,
48,
48,
48,
48,
48,
48,
48,
48,
48,
48,
48,
48,
48,
54,
56,
56,
56,

G. HORVATH

3 ] SL(2,3)

4 1 C3 : Q8

6 | D24

8 | (C6 x C2) : C2

12 | S4

3 ] D30

4] C5 Q8

6 | D40

8 ] (C10 x C2) : (2

5 ] D42

5 ] C24 : C2

6 | C24 : C2

7 ] D48

8 ] C3 : Q16

10 | (C3 : C8) : C2

12 | (C3 : C4) : C4

13 ] C12 : C4

14 ] (C12 x C2) : C2

15 ] (C3 x D8) : C2

16 | (C3 : C8) : C2

17 ] (C3 x Q8) : C2

18 ] C3 : Q16

19 ] (C2 x (C3 : C4)) : C2
28 | C2 . S4 = SL(2,3) . C2
29 | GL(2,3)

30 | A4 : C4

32 ] C2 x SL(2.3)

33 | SL(2,3) : C2

34 ] C2 x (C3 : Q8)

36 | C2 x D24

37 | (C12 x C2) : C2

39 | (C2 x (C3 : C4)) : C2
41 ] (C4 x S3) : C2

43 ] C2 x ((C6 x C2) : C2)
48 | C2 x S4

8 ] ((C3 x C3) : C3) : C2
3] C7 Q8

5 | D56

7] (Cl4 x C2) : (2



EQUIVALENCE AND EQUATION SOLVABILITY

| 60, 3 | C15 : C4
[ 60, 7 ] C15 : C4
[ 60, 12 | D60

25
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