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Abstract. We provide polynomial time algorithms for deciding
equation solvability and identity checking over groups that are
semidirect products of two �nite Abelian groups. Our main method
is to reduce these problems to the sigma equation solvability and
sigma equivalence problems over modules for commutative unital
rings.

1. Introduction

Investigations into the algorithmic aspects of the equivalence prob-
lem for various �nite algebraic structures commenced in the early 1990s.
The equivalence problem for a �nite ring R asks whether or not two
polynomials p and q are equivalent over R (denoted by R |= p ≈ q), i.e.
if p and q determine the same function over R. The equation solvability
problem is one of the oldest problems of algebra: it asks whether or not
two expressions p and q can attain the same value for some substitution
over a �nite ring R, i.e. if the equation p = q can be solved over R.
Note, that these problems usually have a `term' version, as well, where
the input polynomials cannot contain constants from the ring R. In
this paper we deal with these problems for which the inputs are poly-
nomials, but the term versions of our theorems follow from the proofs,
as well. From now on, we refer to these problems as the equivalence
problem and the equation solvability problem.
First Hunt and Stearnes [19] investigated the equivalence problem for

�nite commutative rings. Later Burris and Lawrence [3] generalized
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their result to non-commutative rings, and established a dichotomy
theorem for rings: for �nite nilpotent rings the equivalence problem can
be solved in polynomial time in the length of the two input polynomials,
and for non-nilpotent rings the equivalence problem is coNP-complete.
Similar result can be proved for the equation solvability problem: for
non-nilpotent rings the NP-completeness follows from the argument
of Burris and Lawrence, for nilpotent rings the equation solvability
problem is in P [12].
The proof of Burris and Lawrence reduces the satis�ability (SAT)

problem to the equivalence problem by using long products of sums of
variables. Nevertheless, a polynomial is usually given as a sum of mono-
mials. Of course, the length of a polynomial may change if expanded
into a sum of monomials. For example, the polynomial

∏n
i=1 (xi + yi)

has linear length in n written as a product of sums, but has exponen-
tial length if expanded into a sum of monomials. Such a change in the
length suggests that the complexity of the equivalence problem might
be di�erent if the input polynomials are restricted to be written as
sums of monomials. Thus, Lawrence and Willard [25] introduced the
sigma equivalence and sigma equation solvability problems, i.e. when
the input polynomials over the given ring are presented as sums of
monomials where each monomial has the form α1 . . . αm with each αi a
variable or an element of the ring. They formulated a conjecture about
the complexity of the sigma equivalence and sigma equation solvability
problems. Namely, if the factor by the Jacobson radical is commuta-
tive, then the sigma equivalence and sigma equation solvability prob-
lems are solvable in polynomial time, otherwise the sigma equivalence
problem is coNP-complete, and the sigma equation solvability problem
is NP-complete.
Szabó and Vértesi proved the coNP-complete part of the conjecture

in [33]. They prove a stronger result for matrix rings: the equiva-
lence problem is coNP-complete even if the input polynomials are re-
stricted to only one monomial, that is the equivalence problem is coNP-
complete for the multiplicative semigroup of matrix rings. To this
problem they reduce the equivalence problem over the multiplicative
subgroup of matrix rings, which is coNP-complete by [15]. Almeida,
Volkov and Goldberg proved an even more general result about semi-
groups (showing that the equivalence problem is coNP-complete for a
semigroup if the equivalence problem is coNP-complete for the direct
product of its maximal subgroups) yielding the same result for matrix
rings [2]. For most matrix rings, arguments of [25] establish coNP-
completeness, as well. Moreover, NP-completeness for the equation
solvability problem follows from any of these arguments.
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For commutative rings, the equivalence problem is indeed solvable
in polynomial time [13]. The polynomial part of this conjecture is
completely proved in the manuscript [16].
The interest in the computational complexity of the equivalence and

equation solvability problems of a �nite algebraic structure has been
steadily increasing in the past decade. Several results have been pub-
lished about the complexity of these problems for general algebras (e.g.
[8, 9, 10]) or for �nite semigroups and monoids (e.g. [2, 6, 20, 21, 22, 23,
24, 29, 31, 33]). Just to mention some of the most recent results: follow-
ing up on [2], Klíma �nished the characterization for the transformation
monoids [24], or Gorazd and Krzaczkowski characterized the complex-
ity of these problems for all two-element general algebras [9, 10]. Al-
though the literature is fairly extensive for monoids, the equivalence
and equation solvability problems even for the simplest case, the case
of �nite groups, proved to be a far more challenging topic than for �nite
rings.
A group expression for a group G is a product of variables, inverses

of variables and elements from G. The equivalence problem for a �nite
group G asks whether or not two group expressions are equivalent over
G, i.e. if the two products determine the same function over G. The
equation solvability problem for G asks whether or not two group ex-
pressions can attain the same value for some substitution over the �nite
group G. Burris and Lawrence [4] proved that if a group G is nilpo-
tent or G ' Dn, the dihedral group for odd n, then the equivalence
problem for G has polynomial time complexity. They conjecture that
a dichotomy theorem exists. Namely, that the equivalence problem for
G is solvable in polynomial time if G is solvable, and coNP-complete
otherwise. This conjecture has been veri�ed for G ' AoB, where A
and B are Abelian groups such that the exponent of A is squarefree
and (|A| , |B|) = 1 in [17], and for nonsolvable groups in [15].
Even less is known about the equation solvability problem over groups.

Goldmann and Russel [7] proved that if G is nilpotent then the equa-
tion solvability problem over G is in P, while if G is not solvable, then
the equation solvability problem is NP-complete. Little is known for
solvable, nonnilpotent groups. In [7] Goldmann and Russel explicitly
ask for the complexity of the equation solvability problem for S3. In
[17] it is proved that this problem is in P for groups of order pq for
primes p and q. Furthermore, the equation solvability problem is in P
for the group A4, as well [18].

1.1. The structure of the paper. In this paper we consider both
the equivalence and the equation solvability problems for groups of the
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form G = A o B, where A is Abelian. Here, B acts on A, and this
action generates a subring R of the endomorphism ring EndA. We
will consider A as a faithful R-module. That way, we will be able to
translate both the equivalence and the equation solvability problems
into the language of modules. Motivated by this perspective, we intro-
duce so-called `module polynomials' in Section 2, and de�ne the sigma
equivalence and sigma equation solvability problems for modules over
rings. Here, we need to de�ne a slightly more general version of these
problems: where one can substitute into the variables elements from a
subset S instead of necessarily from the whole ring R. Therefore, Sec-
tion 2 is a more technical section. Apart from the fact that these results
are interesting on their own, we mainly use them for proving theorems
on groups in Section 3. In particular, in Section 2 we prove that for
modules over commutative rings the sigma equivalence problem is in
P, and if S is `nice' then the sigma equation solvability problem is in
P, as well. The precise statements can be found in Corollaries 4 and 5.
In Section 3 we consider groups of the form G = A o B, where

A is Abelian. Denote the centralizer of A in B by CB (A). For the
equivalence problem we prove the following:

Theorem 1. Let G = AoB, and assume that both A and B/CB (A)
are commutative. If the equivalence problem over B is in P, then so is
the equivalence problem over G.

Thus, we sharpen the results of [17], where Theorem 1 is proved
under various additional conditions. For Abelian groups A, B, groups
of the form G = Zn1 o (Zn2 o · · ·o (Znk

o (AoB))) are examples
where Theorem 1 can be easily applied (see Corollary 8).
For the equation solvability problem, we can prove the following (for

the details see Theorem 9 in Section 3.4): Let G = AoB, and assume
that both A and B are commutative. Let S denote the action of B
over A in the ring EndA, and let R be the subring of EndA generated
by S. If the module sigma equation solvability problem over (R,A) for
substitutions from S is in P, then so is the equation solvability problem
over G. In particular, if the generated ring R is direct indecomposable,
or R× is cyclic, then the equation solvability problem over G is in P.
The most obvious examples for which Theorem 9 can be applied are

the following:

Corollary 2. Let B be a �nite commutative group. The equation solv-
ability problem is in P for the following groups.

(a) G = Zn oB, where n = pα or n = 2pα for some prime p;
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(b) G = Znp oB, such that |B/CB (A)| ∈ { 1, q } for some distinct
primes p, q, where p is a primitive root modulo q.

(c) G = Znp oB, such that |B/CB (A)| ∈ { 1, q } for some distinct
primes p, q, where the order of p modulo q is some d ≥ 2 and
n ≤ d+ 1.

Theorem 9 in Section 3.4 generalizes all existing results about the
complexity of the equation solvability problem for solvable, not nilpo-
tent groups [17, 18]. Examples for item (b) are Z2

2 oB, where 2 - |B|
(e.g. A4), or Z

n
p oZq for q 6= p where p is a primitive root modulo q. If,

for example, q = 2, then any odd prime p is a primitive root modulo q,
hence the equation solvability problem over Znp oZ2 is in P. Examples
for item (c) are Z3

2 o Z7 or Z
4
2 o Z7.

We wrote a computer program for Theorems 1 and 9 in GAP [5]
using the SONATA package [1], and ran it on the supercomputer of
University of Debrecen [28] to determine the smallest groups for which
the complexities of the equivalence and equation solvability problems
are yet unknown. Based on these computations, in Section 4 we close
the paper by reviewing what questions remain open about the complex-
ity of these problems over groups. Sections 6 and 7 contain the GAP
SmallGroup identi�cations and StructureDescriptions of the groups of
order at most 60 with currently unknown equivalence and equation
solvability complexities. The GAP source code and the full list can be
found on the website [14].

2. Module polynomials

In this section we extend the de�nitions of the equivalence and equa-
tion solvability problems from rings to modules. These problems could
be de�ned for modules over arbitrary rings. However, the de�nitions
and theorems would become quite tedious and technical. Since in Sec-
tion 3 we only need the results about modules over commutative unital
rings, we restrict ourselves for considering only such rings.

2.1. De�nitions. Let R be a commutative, unital ring,M be a mod-
ule over R. For nonnegative integers n, k, let X = {x1, . . . , xn },
Y = { y1, . . . , yk } be disjoint sets of variables. For polynomials fi, fa ∈
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R[x1, . . . , xn] (1 ≤ i ≤ k, a ∈ M) the module polynomials are expres-
sions of the form

(1) f (X;Y ) = f (x1, . . . , xn; y1, . . . , yk)

=
k∑
i=1

fi (x1, . . . , xn) · yi +
∑
a∈M

fa (x1, . . . , xn) · a.

For an evaluation of the module polynomial f (X;Y ) the variables from
X (i.e. before the semi-colon) are evaluated over R, and the variables
from Y (i.e. after the semi-colon) are evaluated over M. Expressions
of the form m · yi and m · a for some monomial m over R (1 ≤ i ≤ k,
a ∈ M) are called module monomials. If all fi and fa (1 ≤ i ≤ k,
a ∈M) are written as sums of monomials then we say that f is written
as sums of module monomials. Let S ⊆ R. We say that the module
polynomials f and g are equivalent over (R,M) for substitutions from
S (and write (R,M) |= f |S ≈ g|S) if for every s1, . . . , sn ∈ S and for
every a1, . . . , ak ∈M the two polynomials agree on this evaluation:

f (s1, . . . , sn; a1, . . . , ak) = g (s1, . . . , sn; a1, . . . , ak) .

Similarly, we say f = g is solvable over (R,M) for some substitution
from S (and write f |S = g|S is solvable over (R,M)) if there exist
s1, . . . , sn ∈ S and a1, . . . , ak ∈ M such that the two polynomials
attain the same value on this evaluation:

f (s1, . . . , sn; a1, . . . , ak) = g (s1, . . . , sn; a1, . . . , ak) .

When we want to emphasize which variable is substituted from where,
then we write (R,M) |= f (X|S , Y |M) ≈ g (X|S , Y |M) for the equiva-
lence and f (X|S , Y |M) = g (X|S , Y |M) for the equation solvability.
The module sigma equivalence problem over (R,M) for substitutions

from S asks whether or not two input module polynomials f and g
(written as sums of monomials) are equivalent for substitutions from
S, that is whether or not (R,M) |= f |S ≈ g|S holds. Themodule sigma
equation solvability problem over (R,M) for substitutions from S asks
whether or not for two input module polynomials f and g (written
as sums of monomials) the equation f |S = g|S can be solved. If the
input module polynomials are not restricted to be written as sums of
module monomials, then we talk about the module equivalence and the
module equation solvability problems. These latter two problems can
be handled easily by the ideas from [3, 19], Since we do not need them
later, we only consider the sigma problems in the following.
Note, that the module problems are generalizations of the original

(sigma) equivalence and (sigma) equation solvability problems for rings.
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Indeed, ifM = R and S = R, then we have the original problems for
rings. Furthermore, note that for module polynomials f, g we have
(R,M) |= f ≈ g if and only if (R,M) |= f − g ≈ 0, and f = g is
solvable if and only if f − g = 0 is solvable. Therefore, it is enough to
consider whether or not one input polynomial is equivalent to 0 or can
attain the value 0. The main result of the section is the following.

Theorem 3. Let R be a commutative, unital, local ring of prime power
characteristic. LetM be a module over R. Let S ≤ R× be a subgroup
of the multiplicative group R×. Let a module polynomial f be written
as a sum of module monomials over (R,M) (see (1)). Then it can be
decided in polynomial time in ||f || whether or not f |S = 0 is solvable
over (R,M).

Theorem 3 has the following consequences that will be used in Sec-
tion 3.

Corollary 4. Let R = ⊕li=1Ri be a commutative unital ring, where
each Ri (1 ≤ i ≤ l) is a commutative, unital, local ring of prime power
characteristic. Let M be a module over R. Let S = ⊕li=1Si, where
each Si (1 ≤ i ≤ l) is a subgroup of the multiplicative group R×i . Let
a module polynomial f be written as a sum of module monomials over
(R,M) (see (1)). Then it can be decided in polynomial time in ||f ||
whether or not f |S = 0 is solvable over (R,M).

Corollary 5. Let R be a commutative unital ring,M be a module over
R. Let S be a subgroup of the multiplicative group R×. Let a module
polynomial f be written as a sum of module monomials over (R,M)
(see (1)). Then it can be decided in polynomial time in ||f || whether
or not (R,M) |= f |S ≈ 0.

The remaining part of this section is structured as follows. In Sec-
tion 2.2 we show that Corollaries 4 and 5 follow from Theorem 3. We
prove that it is enough to consider commutative local rings of prime
power characteristic. Galois rings play an important role in the theory
of �nite commutative local rings, therefore we summarize their basic
properties in Section 2.3. Then in Section 2.4 we introduce the nota-
tions used throughout the proof of Theorem 3. In Section 2.5 we give
the main steps for the (algorithmic) proof of Theorem 3. Finally, in
Section 2.6 we give the detailed proof of Theorem 3.

2.2. Reduction to local rings. Here, we show that Corollaries 4 and 5
follow from Theorem 3. Let R be a �nite, commutative, unital ring.
By the Pierce decomposition theorem (see e.g. [11, p. 48, 50]) R is
the direct sum of some commutative, unital, local rings of prime power
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characteristic. Thus, there exist commutative, unital, local rings Ri

(1 ≤ i ≤ l for some l) of prime power characteristic such that R =
⊕li=1Ri. In case of Corollary 4 the Pierce decomposition is given in the
statement.
LetM be a module over R. Now,M = RM = ⊕li=1RiM, and thus

M is the direct sum of submodules RiM, where RiM is a module over
Ri and RjRiM = { 0 }. Let S ≤ R× be a subgroup of the multiplica-
tive group, and let Si be the projection of S onto Ri, then Si ≤ R×i .
Let f be a module polynomial over (R,M), written as a sum of module
monomials. For 1 ≤ i ≤ l let fi be the module polynomial obtained
from f by replacing every constant from R with their projection onto
Ri and every constant fromM with their projection onto RiM. Then
it is easy to see that (R,M) |= f |S ≈ 0 if and only if for all 1 ≤ i ≤ l
we have (Ri,RiM) |= fi|Si ≈ 0. Moreover, if S = ⊕li=1Si, then f |S = 0
is solvable over (R,M) if and only if for all 1 ≤ i ≤ l the equations
fi|Si = 0 are solvable over (Ri,RiM). That is, both the equivalence
and the equation solvability problems can be decided componentwise,
and hence it is enough to prove Corollaries 4 and 5 for commutative,
unital, local rings of prime power characteristic.
Corollary 4 now follows directly from Theorem 3. Furthermore, if R

is a commutative, unital, local ring of prime power characteristic,M is
a module over R, S ⊆ R, and f is a module polynomial over (R,M),
then (R,M) |= f |S ≈ 0 if and only if f |S = a is not solvable for any
0 6= a ∈M. That is, if the module sigma equation solvability problem
can be decided in polynomial time, then so can be the module sigma
equivalence problem. Hence Corollary 5 follows from Theorem 3, as
well.

2.3. Galois rings. In this subsection we review the theory of Galois
rings necessary for our proofs. The reader may skip this part if they
are familiar with the literature.
Galois rings play an important role in the theory of commutative

rings. They were �rst examined in [30], and later in [34]. In the
following we list some of the most important properties of Galois rings
(see e.g. [27]). Let hd (x) ∈ Z[x] be a monic polynomial of degree d
which is irreducible modulo p. Then the Galois ring GR (pc, d) is by
de�nition the factor ring Z [x] / (pc, hd (x)).
The Galois ring GR (pc, d) is completely characterized by the num-

bers p, c, d, and does not depend on the choice of the polynomial
hd. The Galois ring GR (pc, d) is a �nite, commutative, unital, local
ring. The characteristic of GR (pc, d) is pc, the number of its elements
is pcd. In particular, GR (p, d) is isomorphic to the pd-element �eld
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Fpd , and GR (pc, 1) (where hd is of degree 1) is isomorphic to Zpc . For
every ideal I C GR (pc, d) there exists a number 0 ≤ i ≤ c such that
I = (pi). That is every ideal is a principal ideal, thus every �nitely gen-
erated GR (pc, d)-module is a direct sum of cyclic GR (pc, d)-modules
[34, p. 81, Corollary 2]. The Galois ring GR (pc, d) is local, the unique
maximal ideal is the Jacobson radical (p). For every 1 ≤ i ≤ c the fac-
tor ring GR (pc, d) / (pi) is isomorphic to the Galois ring GR (pi, d). In
particular, the factor by the Jacobson radical is isomorphic to Fpd . Fi-
nally, we will need the following (here bxc denotes the greatest integer
not greater than x):

Lemma 6. For a prime p and for arbitrary positive integers c, t let
m ≥ c +

⌊
logp (t− 1)

⌋
be an integer. Then pc |

(
pm

i

)
for all integers

1 ≤ i ≤ t− 1 and p |
(
pm

i

)
for all integers 1 ≤ i ≤ pm − 1.

Proof. Let 1 ≤ i ≤ pm − 1 be arbitrary. Now,(
pm

i

)
=
pm (pm − 1) . . . (pm − i+ 1)

1 . . . (i− 1) · i
=
pm

i
·
i−1∏
j=1

pm − j
j

.

Here, the p-part of pm− j and j are the same. As pm - i, the exponent
of the p-part of i is at most m−1, and thus the p-part of the �rst factor
is at least p. Furthermore, if i ≤ t− 1, then the exponent of the p-part
of i is at most blogp ic ≤ blogp(t− 1)c ≤ m− c, and thus the p-part of
the �rst factor is at least pc. �

2.4. Notations. In the following, letR be a commutative, unital, local
ring of characteristic pc for some prime p. LetM be a module over R,
and let S be a subgroup of the multiplicative group R×. Let

f (x1, . . . , xn; y1, . . . , yk) =
k∑
i=1

fi (x1, . . . , xn) ·yi+
∑
a∈M

fa (x1, . . . , xn) ·a

be a module polynomial over (R,M) written as a sum of monomials.
Let J denote the Jacobson radical of R and let t be the smallest

positive integer for which J t = { 0 }. Let F denote the factor �eld
R/J , and assume F ' Fpd . Then R contains a (unique) subring
R0 ≤ R isomorphic to GR (pc, d) [34, p. 80, Theorem B]. Let t be the
smallest positive integer for which J t = { 0 }. Letm ≥ c+

⌊
logp (t− 1)

⌋
be a positive integer such that d | m.
Consider the map r 7→ rp

m
(r ∈ R). As d | m, we have F |= xp

m ≈ x,
hence rp

m − r ∈ J . For arbitrary r ∈ R and u ∈ J we have

(r + u)p
m

− rpm =
t−1∑
i=1

(
pm

i

)
rp

m−iui +

pm∑
i=t

(
pm

i

)
rp

m−iui = 0.
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Here, the �rst sum is 0 since pc is a divisor of every binomial coe�cient
by Lemma 6. The second sum is 0 as any product containing at least t
elements from J is 0. Thus r 7→ rp

m
is a projection onto a multiplica-

tively closed set S0 such that S0 is a representation system for F . In
particular, there exists an element s∗ ∈ R which has multiplicative or-
der

(
pd − 1

)
, and S0 = { 0 }∪

{
(s∗)j | 1 ≤ j ≤ pd − 1

}
. ThenR× is the

direct product of the subgroups S0 \{ 0 } and 1+J = { 1 + u | u ∈ J }
[30, p. 200, p. 215]. Note, that the sizes of the subgroups S0 \ { 0 }
and 1 +J are coprime, thus the subgroup S ≤ R× is a direct product
of a subgroup S ′ ≤ S0 \ { 0 } and 1 + J ′ for some J ′ ⊆ J . Since
S0 \ { 0 } is generated by s∗, there exists a positive integer e such that
S ′ is generated by (s∗)e, that is

(2) S = S ′ · (1 + J ′) = { se · (1 + u) | s ∈ S0 \ { 0 } , u ∈ J ′ } .

Note, that sp
d

= s for every s ∈ S0, and the range of the map S0 → S0,
s 7→ sp

d−1 is { 0, 1 }. Furthermore, S0 is a subset of the unique subring
R0 isomorphic to GR (pc, d) contained in R. Finally, for every element
r ∈ R0, there exist unique elements s0, . . . , sc−1 ∈ S0 such that r =∑c−1

i=0 sip
i. We continue by proving Theorem 3.

2.5. Sketch of the proof of Theorem 3. We considerM andR as a
direct sum of cyclic R0-modules. Then every element ofM and R can
be written as

∑
b∈B rbb and

∑
b′∈B′ rb′b

′, respectively, for some rb, rb′ ∈
R0, where B and B′ are (weak) bases ofM and R. Furthermore, every
element of R0 can be written as

∑c−1
i=0 sip

i for some si ∈ S0.
(a) Thus �rst, by introducing new sets of variables X, Y and Z, we

will be able to rewrite the module polynomial f over (R,M)
into a module polynomial g over (R0,M) such that f |S = 0 is
solvable if and only if g

(
X|S0\{ 0 }, Y |S0 , Z|S0

)
= 0 is solvable.

(b) Again, we use the fact that M is a direct sum of cyclic R0-
modules, that isM = ⊕b∈BR0b for some (weak) basis B. Then
we can �nd polynomials hb ∈ R0[X, Y, Z] for every b ∈ B such
that the module equation g

(
X|S0\{ 0 }, Y |S0 , Z|S0

)
= 0 can be

solved if and only if the system of equations

hb
(
X|S0\{ 0 }, Y |S0 , Z|S0

)
= 0 (b ∈ B)(3)

is solvable over the Galois ring R0. That is, we reduced the
original problem to solving a system of equations over the Galois
ring R0.

(c) Then we reduce this system over R0 to a system of c · |B|-
many equations over F = R/J . In particular, we �nd hi,b ∈
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F [X, Y, Z] (0 ≤ i ≤ c− 1, b ∈ B) such that the system (3) can
be solved simultaneously if and only if the system

hi,b
(
X|F\{ 0 }, Y |F , Z|F

)
= 0 (1 ≤ i ≤ c− 1, b ∈ B)(4)

can be solved over F .
(d) Let

(5) q =

(∏
x∈X

x

)
·
c−1∏
i=0

∏
b∈B

(
1− hp

d−1
i,b

)
∈ F [X, Y, Z] .

We prove that the system (4) is not solvable over F if and only
if F |= q|F ≈ 0.

That is, f |S = 0 is not solvable over (R,M) if and only if F |= q|F ≈
0. Throughout the proof we compute the time-complexity of calculat-
ing every set of new polynomials. In particular, the �nal polynomial
q can be calculated in polynomial time of O (||f ||). By [13] it can be
decided in polynomial time in ||q|| whether or not F |= q|F ≈ 0.

2.6. Detailed proof of Theorem 3. Consider M and R as R0-
modules. The ring R0 is isomorphic to a Galois ring, both M and
R are direct sums of cyclic R0-modules. Let B denote a (weak) basis
for M, that is M = ⊕b∈BR0b such that

∑
b∈B rbb = 0 if and only if

rb ∈ Ann { b }. Now, every element a ∈ M can be written in the form
of
∑

b∈B rbb for some rb ∈ R0, b ∈ B. Further, let B′ denote a (weak)
basis for R for which 1 ∈ B′, B′ \ { 1 } ⊆ J , and R = ⊕b′∈B′R0b

′.
Every element r ∈ R can be written in the form of

∑
b∈B rb′b

′ for some
rb′ ∈ R0, b

′ ∈ B′. Moreover, every element of R0 can be (uniquely)
written in the form of

∑c−1
i=0 sip

i, where si ∈ S0.
Hence, every element a ∈M can be written in the form of

∑c−1
i=0

∑
b∈B si,bp

ib
for some si,b ∈ S0, 0 ≤ i ≤ c − 1, b ∈ B, and every element r ∈ R
can be written in the form of

∑c−1
i=0

∑
b′∈B′ si,b′p

ib′ for some si,b′ ∈ S0,
0 ≤ i ≤ c − 1, b′ ∈ B′. We use these presentations in order to reduce
solving f = 0 to solving a module equation over R0. For this we intro-
duce the following disjoint sets of new variables (recall that n was the
number of x variables in f , and k was the number of y variables of f):

X = {xj | 1 ≤ j ≤ n } ,
Y = { yj,i,b | 1 ≤ j ≤ k, 0 ≤ i ≤ c− 1, b ∈ B } ,
Z = { zj,u | 1 ≤ j ≤ n, u ∈ J ′ } .

(a) Firstly, replace the variables and constants from M: Replace
every element a ∈M occurring in f with one of its equivalents
of the form

∑c−1
i=0

∑
b∈B si,bp

ib (si,b ∈ S0, 0 ≤ i ≤ c − 1, b ∈
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B). Further, replace every occurrence of the old variable yj
(1 ≤ j ≤ k) with the expression

∑c−1
i=0

∑
b∈B yj,i,bp

ib. Let the

resulting module polynomial be f (i). Note that f (i) does not
have variables substituted from M, but rather only constants
fromM and variables from R. Further,

(R,M) |= f |S ≈ f (i) (X|S , Y |S0) .

Secondly, replace every occurrence of xj (1 ≤ j ≤ n) in f (i)

with the expression xej ·
∏

u∈J ′

(
1 + u · zp

d−1
j,u

)
, where e was the

exponent for which S ′ is generated by (s∗)e. Let the resulting
module polynomial be f (ii). By (2) one can observe that

(R,M) |= f (i) (X|S , Y |S0) ≈ f (ii)
(
X|S0\{ 0 }, Y |S0 , Z|S0

)
.

because zp
d−1
j,u can attain values either 0 or 1.

Thirdly, replace every constant r ∈ R occurring in f (ii) with
one of its equivalents of the form

∑c−1
i=0

∑
b′∈B′ si,b′p

ib′ (si,b′ ∈ S0,
0 ≤ i ≤ c − 1, b′ ∈ B′). Let f (iii) be the resulting module
polynomial over (R0,M) in variables X ∪Y ∪Z. The resulting
module polynomial f (iii) has no variables substituted fromM,
and

(R,M) |= f (ii)
(
X|S0\{ 0 }, Y |S0 , Z|S0

)
≈ f (iii)

(
X|S0\{ 0 }, Y |S0 , Z|S0

)
.

Fourthly, let us expand f (iii) as a sum of module monomi-
als, and remove module monomials containing at least t ele-
ments from J . Let f (iv) denote the resulting module polyno-
mial. Module monomials containing at least t elements from J
attain value 0 for arbitrary substitution.

(R,M) |= f (iii)
(
X|S0\{ 0 }, Y |S0 , Z|S0

)
≈ f (iv)

(
X|S0\{ 0 }, Y |S0 , Z|S0

)
.

By not calculating module monomials containing at least t ele-
ments from J , one can execute the expansion in O

(
||f ||t

)
time,

and the resulting module polynomial f (iv) has length O
(
||f ||t

)
.

Finally, let us rearrange every monomial of f (iv) into the form∏
x∈X x

kx ·
∏

y∈Y y
ky ·

∏
z∈Z z

kz · s′ · pk′ · b′ · b, where b′ ∈ B′,
b ∈ B and s′ ∈ S0. Since R is commutative, the resulting
polynomial attains the same values as f (iv). Moreover, replace
every occurring s′ · pk′ · b′ · b with one of its equivalents of the
form

∑c−1
i=0

∑
b∈B si,bp

ib (si,b ∈ S0, 0 ≤ i ≤ c − 1, b ∈ B),
and expand the resulting module polynomial. Let the resulting
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module polynomial over (R0,M) be denoted by g. Now, g has
no variables substituted fromM, and

(R,M) |= f |S ≈ g
(
X|S0\{ 0 }, Y |S0 , Z|S0

)
.

Furthermore, the rearranging of the monomials and the expan-

sion can be done in O
(∣∣∣∣f (iv)

∣∣∣∣2) time. Thus, g can be com-

puted in O
(
||f ||2t

)
time and ||g|| = O

(
||f ||2t

)
.

(b) Now,

g (X, Y, Z) =
∑
b∈B

gb (X, Y, Z) · b

for some polynomials gb ∈ R0[X, Y, Z], written as sums of
monomials. As M = ⊕b∈BR0b, the module polynomial g at-
tains 0 for a substitution if and only if each polynomial gb at-
tains a value from Ann { b } for the same substitution. Since
Ann { b } is an ideal in the Galois ring R0 ' GR (pc, d), for ev-
ery b ∈ B there exists 0 ≤ cb ≤ c such that Ann { b } = (pcb).
Thus gb attains a value from Ann { b } if and only if pc−cb · gb
attains the value 0 in R0. Let hb = pc−cb · gb. Summarizing our
observations,
• f |S = 0 can be solved over (R,M) if and only if
• g

(
X|S0\{ 0 }, Y |S0 , Z|S0

)
can be solved over (R0,M) if and

only if
• the system of equations

hb
(
X|S0\{ 0 }, Y |S0 , Z|S0

)
= 0 (b ∈ B)(3)

can be solved over R0.
(c) For simplicity, let h = hb for some b ∈ B. Let V0 denote the set

of monomials in h whose coe�cients are not divisible by p, and
let h(i) denote

(
h−

∑
v∈V0 v

)
/p. That is h =

∑
v∈V0 v + p · h(i).

Recall that sp
d

= s for every s ∈ S0. Thus d | m implies sp
m

= s
for every s ∈ S0. For every v ∈ V0 its coe�cient is in S0. Thus
for every v ∈ V0 we have

R0 |= v|S0 ≈ vp
m∣∣
S0
.

Consider
(∑

v∈V0 v
)pm

. By Lemma 6, one can prove by induc-
tion on |V | that(∑

v∈V0

v

)pm

=

(∑
v∈V0

vp
m

)
+ p · h(ii)
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for some polynomial h(ii). Therefore,

R0 |=
∑
v∈V0

v|S0 ≈
∑
v∈V0

vp
m∣∣
S0
≈

(∑
v∈V0

v

)pm
∣∣∣∣∣∣
S0

− p · h(ii)|S0 .

Let h0 =
∑

v∈V0 . Then we have

R0 |= h|S0 ≈ h0|S0 + p · h(i)|S0 ≈ hp
m

0

∣∣∣
S0

+ p ·
(
h(i) − h(ii)

)∣∣
S0
.

Now, repeat the process with h(i) − h(ii), then in

O
(∣∣∣∣h(i) − h(ii)∣∣∣∣pm) = O

((
||h||p

m
)pm)

= O
(
||h||p

2m
)

time we obtain polynomials h1, (h
(iii) − h(iv)) such that the co-

e�cients in h1 are from S0 and

R0 |=
(
h(i) − h(ii)

)∣∣
S0
≈ hp

m

1

∣∣∣
S0

+ p ·
(
h(iii) − h(iv)

)∣∣
S0
.

Then repeat the process with h(iii) − h(iv), etc. Then after

O
(
||h||p

cm
)
-many steps we arrive at polynomials h0, h1, . . . , hc−1,

each is written as a sum of monomials, such that all coe�cients
are from S0, and

R0 |= h|S0 ≈ hp
m

0

∣∣∣
S0

+ p · hp
m

1

∣∣∣
S0

+ · · ·+ pc−1 · hp
m

c−1

∣∣∣
S0
.

Recall that r 7→ rp
m
is a projection onto S0 and for every ele-

ment r ∈ R0, there exist unique elements s0, . . . , sc−1 ∈ S0 such
that r =

∑c−1
i=0 sip

i. Thus h (s1, . . . , sn) = 0 if and only if for

every 0 ≤ i ≤ c − 1 we have hi (s1, . . . , sn)p
m

= 0. Consider
hi as a polynomial over F by the natural map ψ : R0 → F .
Now, hi (s1, . . . , sn)p

m

= 0 in R0 for some s1, . . . , sn ∈ S0 if and
only if hi (ψ (s1) , . . . , ψ (sn)) = 0 in F . That is, h = 0 can be
solved over R by a substitution s1, . . . , sn ∈ S0 if and only if
h0 = 0, . . . , hc−1 = 0 can be solved over F by ψ (s1) , . . . , ψ (sn).
Executing this procedure for every hb (b ∈ B) we obtain poly-

nomials hi,b ∈ F [X, Y, Z] (0 ≤ i ≤ c − 1, b ∈ B) such that the
system (3) can be solved simultaneously if and only if the sys-
tem

hi,b
(
X|F\{ 0 }, Y |F , Z|F

)
= 0 (1 ≤ i ≤ c− 1, b ∈ B)(4)

can be solved over F . Furthermore, each hi,b can be computed

from g in O
(
||g||p

cm
)
time.
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(d) Let

(5) q =

(∏
x∈X

x

)
·
c−1∏
i=0

∏
b∈B

(
1− hp

d−1
i,b

)
∈ F [X, Y, Z] .

We prove that the system (4) is not solvable over F if and only
if F |= q|F ≈ 0. For some sx, sy, sz ∈ F (x ∈ X, y ∈ Y, z ∈ Z)
we introduce s̄ to denote the vector ((sx)x∈X , (sy)y∈Y , (sz)z∈Z)
For one direction, assume that there exist sx, sy, sz ∈ F (x ∈

X, y ∈ Y, z ∈ Z) such that q(s̄) 6= 0. Then from (5) we have
sx 6= 0 (that is sx ∈ F \ { 0 }) for every x ∈ X. Furthermore,

we have hp
d−1
i,b ∈ { 0, 1 }. Thus q(s̄) 6= 0 implies 1 − hp

d−1
i,b = 1,

that is hi,b = 0 for every 1 ≤ i ≤ c − 1, b ∈ B. Hence s̄ is a
solution of the system (4).
For the other direction, assume that there exist sx ∈ F \{ 0 },

sy, sz ∈ F such that s̄ is a solution of the system (4). Now, every

sx is invertible in F , and 1− hp
d−1
i,b = 1, yielding q (s̄) 6= 0.

Finally, q can be expressed into a sum of monomials in at
most

O

(
max

1≤i≤c−1,b∈B
||hi,b|||B|cp

d

)
= O

(
||g|||B|cp

d+cm
)

= O
(
||f ||2t|B|cp

d+cm
)

time. Note, that the exponent only depends on R andM, and
can be bounded by

log |M| · |R|O(log|R|) .

By [13] it can be decided in polynomial time in ||q||, whether
or not F |= q|F ≈ 0. As ||q|| is polynomial in ||f || (where
the exponent depends only on R andM), it can be decided in
polynomial time in ||f ||, whether or not F |= q|F ≈ 0, that is
whether or not f |S = 0 is solvable over (R,M).

3. Groups

In this section we consider the equivalence and equation solvabil-
ity problems for groups which are semidirect products of two Abelian
groups. In Section 3.2 we recall and apply the idea of the collection pro-
cedure from [17]. Then, for such groups we give polynomial time algo-
rithms for the equivalence problem in Section 3.3, and for the equation
solvability problem in Section 3.4. First, we introduce some notations
that we use throughout this section.
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3.1. Notations. LetG = AoB be a �nite group, whereA is Abelian.
The semidirect product is de�ned by a homomorphism ϕ : B→ AutA
determining how B acts on A by conjugation. We denote this action
by putting it in the exponent: aϕ(b) = ab = b−1ab for a ∈ A, b ∈ B.
Let EndA denote the endomorphism ring of A, then AutA is the
multiplicative group (EndA)×. Let S = ϕ (B) ⊆ EndA. Note, that if
the semidirect product is a direct product, then S = ϕ (B) = { 1 }. Let
R denote the subring of EndA generated by S: R = 〈S〉 = 〈ϕ (B)〉.
Let R× denote the multiplicative group of R, then S ≤ R×, and
1 ∈ R. If S or EndA are commutative, then so is R. Furthermore,
A is a faithful left module over EndA, and thus over R, as well. Let
r =

∑k
i=1 sk for some si = ϕ (bi) (bi ∈ B, 1 ≤ i ≤ k), then we denote

the action of r ∈ R on some a ∈ A by writing ar, that is

ar =
k∏
i=1

asi =
k∏
i=1

aϕ(bi) =
k∏
i=1

abi =
k∏
i=1

(
b−1i abi

)
.

The order of the multiplication can be arbitrary as A is commutative.

3.2. Collecting precedure. Let t(x1, . . . , xn) = t1t2 . . . tk be a poly-
nomial over G, where each ti is either a variable or a constant from
G (1 ≤ i ≤ k). Now, the length of t is de�ned to be ||t|| = k. Let
X = {x1, . . . , xn }. Since G = A o B, every element g ∈ G can be
uniquely written as a product ba such that a ∈ A and b ∈ B. Let
Y = { y1, . . . , yn } and Z = { z1, . . . , zn } be sets of new variables such
that the sets X, Y and Z are pairwise disjoint. For 1 ≤ i ≤ k let
ai = ai(y1, . . . , yn) and bi = bi(z1, . . . , zn) be the following expressions:

• if ti = xj then let ai = yj, bi = zj,
• if ti ∈ G, then let ai ∈ A and bi ∈ B be the unique constants
such that ti = biai.

We replace every xj with zjyj (where yj is going to be a variable
over A and zj is going to be a variable over B), and the constants
are replaced by their representatives from A o B. Thus ai is either a
variable over A or a constant from A, and bi is either a variable over
B or a constant from B. Now, t = b1a1b2a2 . . . bkak. Collecting every
bi to the left we obtain

t = (b1b2 . . . bk) ·
(
ab2b3...bk1 ab3...bk2 . . . abkk−1ak

)
.

Let

tb = tb (z1, . . . , zn) = b1b2 . . . bk,(6)

ta = ta (z1, . . . , zn; y1, . . . , yn) = ab2b3...bk1 ab3...bk2 . . . abkk−1ak.(7)
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Here, tb is a polynomial over B using variables from Z. In ta the

expressions a
bi+1...bk
i are module monomials over (R,A), that is ta is a

module polynomial over (R,A) written as a sum of module monomials.
Furthermore, ||tb|| = O (||t||), ||ta|| = O

(
||t||2

)
. The main observation

is that t attains the value 1 for a substitution from G if and only if ta
and tb attain 1 simultaneously for the corresponding substitution.

Proposition 7. Let G = A o B. Let t(x1, . . . , xn) = t1t2 . . . tk be
a polynomial over G. Let tb and ta be the expressions de�ned by (6)
and (7). Then tb (u1, . . . , un) ∈ B, ta (u1, . . . , un; v1, . . . , vn) ∈ A for
arbitrary u1, . . . , un ∈ B, v1, . . . , vn ∈ A, and for gi = uivi we have

t (g1, . . . , gn) = tb (u1, . . . , un) · ta (u1, . . . , un; v1, . . . , vn) .

3.3. Equivalence. We prove Theorem 1.

Proof of Theorem 1. Let S denote the action of B over A in the ring
EndA, and let R be the subring of EndA generated by S. Now,
S ' B/CB (A) is commutative, and so is R. Let 1 denote the unit
element of B and G, and 0 denote the unit element of A. Let tb and
ta be the expressions de�ned by (6) and (7). By Proposition 7 we have
thatG |= t ≈ 1 if and only if B |= tb ≈ 1 and (R,A) |= ta ≈ 0 for every
substitution from S. The �rst condition can be checked in polynomial
time in ||tb|| = O (||t||) by the assumption. The second condition can
be checked in polynomial time in ||ta|| = O

(
||t||2

)
by Corollary 5. �

Corollary 8. The equivalence problem is in P for the following �nite
groups:

(a) G = AoB, where both A and B are Abelian,
(b) G = Zn oB, where the (polynomial) equivalence problem over

B is in P,
(c) G = Zn1 o (Zn2 o · · ·o (Znk

o (AoB))), where both A and
B are Abelian.

Proof. Item (a) follows directly from Theorem 1. For item (b) note
that EndZn = Zn is Abelian, hence so is B/CB (A). Finally, one can
prove item (c) by induction on k using items (a) and (b). �

3.4. Equation solvability.

Theorem 9. Let G = A o B, and assume that both A and B are
commutative. Let S denote the action of B over A in the ring EndA,
and let R be the subring of EndA generated by S. If the module sigma
equation solvability problem over (R,A) for substitutions from S is in
P, then so is the equation solvability problem over G. In particular, ifR
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is direct indecomposable, or R× is cyclic, then the equation solvability
problem over G is in P.

Proof. Let 1 denote the unit element of B andG, and 0 denote the unit
element of A. Let tb and ta be the expressions de�ned by (6) and (7).
By Proposition 7 the equation t = 1 can be solved over G if and only
if there exist a1, . . . , an ∈ A, b1, . . . , bn ∈ B such that tb (b1, . . . , bn) =
1 and ta (b1, . . . , bn; a1, . . . , an) = 0. Using the algorithm providing
the Smith normal form for modules over principal ideal domains [32],
one can solve the equation tb = 1 in O

(
||tb||2

)
time by expressing

one variable using the other variables. Let the solutions of tb = 1
be zj =

∏n
k=1 u

cjk
k (1 ≤ j ≤ n), where u1 = b

∏n
k=2 u

dk
k for some

nonnegative integers cjk, dk and b ∈ B. Substitute these solutions into
ta to obtain a module polynomial t′a = t′a (u2, . . . , un; y1, . . . , yn) over
(R,A) written as a sum of module monomials, where variables ui (2 ≤
i ≤ n) are substituted from S. Whether t′a (u2, . . . , un; y1, . . . , yn) = 0
has a solution can be decided in polynomial time in ||t′a|| = O (||ta||) =
O
(
||t||2

)
by the assumption.

In particular, if R is direct indecomposable, or R× is cyclic, then the
conditions of Corollary 4 clearly hold, and the module sigma equation
solvability problem over (R,A) for substitutions from S is in P. �

Finally, we prove Corollary 2.

Proof of Corollary 2. (a) G = ZnoB, where n = pα or n = 2pα for
some prime p. Now, EndZn = Zn, and 1 ∈ S yields R = Zn,
as well. If n is a 2-power, then R is direct indecomposable, and
Theorem 9 �nishes the proof. If n = pα or n = 2pα for some
odd prime p, thenR× is cyclic, and again, the statement follows
from Theorem 9.

(b) G = Znp oB, such that |B/CB (A)| ∈ { 1, q } for some distinct
primes p, q, where p is a primitive root modulo q. Now, the
action of B on Znp is cyclic, let the matrix B ∈ Zn×np denote
a generator of this action. Consider the minimal polyomial
mB(x) of B over the p-element �eld Zp. Since Bq = I, we
have mB(x) | xq − 1. Here, xq − 1 = (x− 1) · Φq(x), where the
cyclotomic polynomial Φq(x) is irreducible over Zp, because p is
a primitive root modulo q (see e.g. [26, Theorem 2.47]). Thus,
mB(x) ∈ {x− 1,Φq(x), xq − 1 }. We distinguish two cases.
If either mB(x) = x − 1 or mB(x) = Φq(x), then mB(x) is

irreducible, and B generates a subring R in Zn×np isomorphic
to a �eld. Thus, R is a �eld, hence R is indecomposable, and
Theorem 9 �nishes the proof.
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IfmB(x) = xq−1, then 1 is an eigenvalue ofmA(x). Changing

the basis we can assume that B =

(
I 0
0 C

)
, where I denotes

the identity matrix, and mC(x) = Φq(x). Now, B generates a
subring R in Zn×np isomorphic to the direct sum of two �elds
F1⊕F2. Furthermore, S = S1⊕S2, where S1 = { 1 } ⊆ F1 and
S2 ⊆ F×2 . Hence the conditions of Corollary 4 are ful�lled, and
our statement follows.

(c) G = Znp oB, such that |B/CB (A)| ∈ { 1, q } for some distinct
primes p, q, where the order of p modulo q is some d ≥ 2 and
n ≤ d + 1. The proof is essentially the same as for item (b).
Again, the action of B is cyclic, let B denote a generator of
this action. Again, mB(x) | xq − 1 = (x − 1) · Φq(x), but now
Φq(x) is not necessarily irreducible over Zp, Φq(x) splits into
(q−1)/d-many distinct irreducible polynomials of degree d (see
e.g. [26, Theorem 2.47]). Since the degree of mB(x) is at most
n ≤ d+ 1, there exists an irreducible factor r(x) of Φq(x) such
that mB(x) | (x− 1) · r(x). From here, the proof is literally the
same as for item (b).

�

4. Remarks, open problems

We wrote a computer program for Theorems 1 and 9 in GAP [5] using
the SONATA package [1], and ran it on the supercomputer of Univer-
sity of Debrecen [28] to determine the smallest groups for which the
complexities of the equivalence and equation solvability problems are
yet unknown. In fact, we determined all such groups up to order 767 for
the equivalence problem and up to order 383 for the equation solvability
problem. Up to order 23, every group has polynomial time equivalence
and polynomial time equation solvability. In Sections 6 and 7 we list
the GAP SmallGroup identi�cations and StructureDescriptions of the
groups of order at most 60 with currently unknown equivalence and
equation solvability complexities. The GAP source code and the full
list can be found on the website [14].
First, we list open questions about the equivalence problem in Sec-

tion 4.1, then about the equation solvability problem in Section 4.2.

4.1. Equivalence. There are two groups of order 24 for which the
complexity of the equivalence problem is not known: S4 and SL2(Z3).
The complexity of the equation solvability problem is unknown for
these groups, either.
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Problem 1. Determine the complexity of the equivalence and equation
solvability problems over the group S4.

Now, S4 is a semidirect product of A = Z2
2 and B = S3. Here,

EndA = Z2×2
2 , the action of B over A is S = AutA = (EndA)×.

Thus, R = Z2×2
2 and S = GL2(Z2). That is, in order to determine

the complexities of the equivalence and equation solvability problems
for S4, one needs to consider (module) sigma problems over noncom-
mutative rings R with substitutions from a proper subset of R. The
currently existing results consider either commutative rings or noncom-
mutative rings without the restriction on substitutions.

Problem 2. Let R be a noncommutative, unital ring, S ≤ R×. Deter-
mine the complexity of the (module) sigma equivalence and (module)
sigma equation solvability problems over R for substitutions from S.
In particular, determine these complexities in the case R = Z2×2

2 and
S = GL2(Z2).

For SL2(Z3) the problem is di�erent: SL2(Z3) is the semidirect
product of the non-Abelian Quaternion group Q and Z3. Current tech-
niques can only handle semidirect products if the normal subgroup is
Abelian.

Problem 3. Determine the complexity of the equivalence and equation
solvability problems over the group SL2(Z3).

A similar obstacle arises with a 54-element groupG, namely, that the
normal subgroup is not commutative. This group G is the semidirect
product of the non-Abelian group of strictly upper triangular 3 × 3
matrices over Z3 (denoted by U(3,Z3) and the group Z2.

Problem 4. Determine the complexity of the equivalence and equation
solvability problems over the group U(3,Z3) o Z2.

Note, that the complexity of the equivalence problem is unknown for
some 48-element groups, but those are all extensions of S4 or SL2(Z3),
therefore their examination should come after these two groups are
handled.

4.2. Equation solvability. As for the equation solvability problem,
there are much more groups for which our method does not work. For
example, one might wonder if item (a) in Corollary 2 can be further
generalized. The smallest group which is not handled by that statement
is Z12 o Z2 = D12.

Problem 5. Determine the complexity of the equation solvability prob-
lem over the group D12.
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Indeed, in this situation R = Z12 ' Z3 × Z4, but S = { 1,−1 } does
not split into a direct product of subgroups of Z×3 and of Z×4 , hence
Corollary 4 cannot be applied directly. There is a similar problem with
a lot of other dihedral groups.

Problem 6. Determine the complexity of the (module) sigma equation
solvability problem over R = Z12 for substitutions from S = { 1,−1 }.

One might wonder, whether the splitting of S into direct factors
is really necessary. For example, consider the group (Z5 × Z5) o Z4

with generators a, b, c, respectively, where ac = a2 and bc = b3. Now,
R = Z5 ⊕ Z5, but S is not a direct product, and Corollary 4 cannot
be applied directly. Nevertheless, the elements of S can be written
nicely as { (s,−s) : s ∈ Z5 }. With this representation, an equation
f(x1, . . . , xn) = 0 can be solved over Z5 ⊕ Z5 by substitutions from S
if and only if the system of equations

f(x1, . . . , xn) = 0,

f(−x1, . . . ,−xn) = 0

can be solved over Z5 by substituting from Z×5 . Therefore the condition
of S being a direct product in Corollary 4 is not essential: in some
situations one can have further results with some clever observations.

Problem 7. Determine the complexity of the (module) sigma equation
solvability problem over an arbitrary commutative ring R for substitu-
tions from an arbitrary S ≤ R×.

There are two more groups of order 24 for which the complexity of
the equation solvability problem is unknown. One of them is Z3 oQ,
where Q is the Quaternion group. The other one is (Z2×Z2×Z3)oZ2,
where the action switches the two generators of Z2 × Z2 and the two
generators of Z3.

Problem 8. Determine the complexity of the equation solvability prob-
lem over the groups Z3 oQ and (Z2 × Z2 × Z3) o Z2.
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6. Appendix A: Groups of size at most 60 with unknown

complexity for equivalence

[ 24 , 3 ] SL (2 , 3 )
[ 24 , 12 ] S4
[ 48 , 28 ] C2 . S4 = SL(2 , 3 ) . C2
[ 48 , 29 ] GL(2 , 3 )
[ 48 , 30 ] A4 : C4
[ 48 , 32 ] C2 x SL(2 , 3 )
[ 48 , 33 ] SL (2 , 3 ) : C2
[ 48 , 48 ] C2 x S4
[ 54 , 8 ] ( (C3 x C3) : C3) : C2

7. Appendix B: Groups of size at most 60 with unknown

complexity for equation solvability

http://hpc-nvl.unideb.hu
http://hpc-nvl.unideb.hu
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[ 24 , 3 ] SL (2 , 3 )
[ 24 , 4 ] C3 : Q8
[ 24 , 6 ] D24
[ 24 , 8 ] (C6 x C2) : C2
[ 24 , 12 ] S4
[ 30 , 3 ] D30
[ 40 , 4 ] C5 : Q8
[ 40 , 6 ] D40
[ 40 , 8 ] (C10 x C2) : C2
[ 42 , 5 ] D42
[ 48 , 5 ] C24 : C2
[ 48 , 6 ] C24 : C2
[ 48 , 7 ] D48
[ 48 , 8 ] C3 : Q16
[ 48 , 10 ] (C3 : C8) : C2
[ 48 , 12 ] (C3 : C4) : C4
[ 48 , 13 ] C12 : C4
[ 48 , 14 ] (C12 x C2) : C2
[ 48 , 15 ] (C3 x D8) : C2
[ 48 , 16 ] (C3 : C8) : C2
[ 48 , 17 ] (C3 x Q8) : C2
[ 48 , 18 ] C3 : Q16
[ 48 , 19 ] (C2 x (C3 : C4) ) : C2
[ 48 , 28 ] C2 . S4 = SL(2 , 3 ) . C2
[ 48 , 29 ] GL(2 , 3 )
[ 48 , 30 ] A4 : C4
[ 48 , 32 ] C2 x SL(2 , 3 )
[ 48 , 33 ] SL (2 , 3 ) : C2
[ 48 , 34 ] C2 x (C3 : Q8)
[ 48 , 36 ] C2 x D24
[ 48 , 37 ] (C12 x C2) : C2
[ 48 , 39 ] (C2 x (C3 : C4) ) : C2
[ 48 , 41 ] (C4 x S3 ) : C2
[ 48 , 43 ] C2 x ( (C6 x C2) : C2)
[ 48 , 48 ] C2 x S4
[ 54 , 8 ] ( (C3 x C3) : C3) : C2
[ 56 , 3 ] C7 : Q8
[ 56 , 5 ] D56
[ 56 , 7 ] (C14 x C2) : C2
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[ 60 , 3 ] C15 : C4
[ 60 , 7 ] C15 : C4
[ 60 , 12 ] D60
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