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Abstract: Manual Land Cover Mapping using aerial pho-
tographs provides sufficient level of resolution for detailed
vegetation or land cover maps. However, in some cases
it is not possible to achieve the desired information over
large areas, for example from historical data where the
quality and amount of available images is definitely lower
than from modern data. The use of automated and semi-
automated methods offers the means to identify the vege-
tation cover using remotely sensed data. In this paper au-
tomated methods were tested on aerial photographs and
satellite images to extract better and more reliable infor-
mation about vegetation cover. These testswere performed
by using automated analysis of LANDSAT7 images (with
andwithout the surfacemodel of the Shuttle Radar Topog-
raphy Mission (SRTM)) and two temporally similar aerial
photographs. The spectral bands were analyzed with su-
pervised (maximum likelihood) methods. In conclusion,
the SRTM and the combination of two temporally similar
aerial photographs from earlier years were useful in sep-
arating the vegetation cover on a floodplain area. In addi-
tion the different date of the vegetation season also gave
reliable information about the land cover. High quality in-
formation about old and present vegetation on a large area
is an essential prerequisites ensuring the conservation of
ecosystems.
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1 Introduction
Recently the use of remotely sensed data and land cover
change detection techniques has attracted greater atten-
tion than ever [1–4]. Landscape parameters can be es-
timated with a variety of modern techniques and land-
scape indices [5–9]. Nowadays the rapid development of
land surface detection and analysis techniques motivate
researchers to find a simple objective method to estimate
the changes of land cover and the effects of changes on the
pattern and structure of land cover [10–12]. Spatially ex-
plicit information about landscapes and vegetation cover,
both in small and large scales, are increasingly sought by
biodiversitymodelers andbymanagement and restoration
programs [13–16]. Furthermore, assessing and monitoring
the state of the Earth’s surface is a key requirement for
global change research [14, 17–19].

Altogether, satellite based landcovermapping is awell
known issue in remote sensing and the capture of high
spatial and thematic accuracy information about vegeta-
tion across a large areas is usually difficult from old data
due to their coarse resolution, limited number of spectral
bands, lack of near-infrared bands or weak quality (i.e.
blurred contours of map objects). They do not offer accu-
rate and detailed information compared to the results ob-
tained frommodern images, but data extraction from these
data sources is important for long-term land cover change
analysis and for historical ecology [16, 20–22]. Therefore,
it is an important task to test how to get more reliable and
accurate prediction from their analysis.

Aerial photographs are coupledwith a relatively small
area of the ground which typically gives a detailed picture
of the earth’s surface [23, 24]. Theoretically, aerial photos
are accessible any time, but there are limitations because
of financial support, weather or license of the national avi-
ation authorities; thus, their availability is also limited. On
the other hand, remote sensing technology extends possi-
ble data archives from the present time to decades in the
past. As a result, the data archives are continuously up-
dated.

Several studies have been focused on comparisons be-
tween classification accuracies based on satellite images

Brought to you by | Universita degli Studi di Padova
Authenticated

Download Date | 3/27/16 11:27 AM



16 | K. Varga et al.

andaerial photographs since the ability to accuratelymon-
itor land surface or vegetation cover is important [4, 25–
28]. Modern remote sensing imagery offers a practical and
economical meaning to study land and vegetation cover
changes andpresent valuable information for understand-
ing natural and man-made environments. Remote sens-
ing imagery is also very important in the diagnostic of
ecosystem response to global changes, especially from lo-
cal to global scales at a given time or over a continuous
period [29, 30].

For example, the Shuttle Radar Topography Mission
(SRTM) data provides a high quality surface model which
is widely utilized in many studies, in geography [31], in
geomorphology [32, 33] and to estimate vegetation height
across the landscape [34, 35]. The use of SRTM could im-
prove the vegetation and land cover detection, and in some
cases it can modify the absolute accuracy [31, 36]. It is
the first near-global spaceborne mission which provides
fine resolution estimates of three-dimensional forest struc-
ture across the Earth’s land surface [37–39]. The verti-
cal accuracy of SRTM is widely analyzed by testing the
differences between SRTM and Digital Elevation Models
(DEMs) [40, 41].

Land cover maps are based on remotely sensed data;
they are usually the outcomes of image classifications that
maybe achievedby eithermanual or automated computer-
aided analysis. It is well known that usually, the manually
vectorized aerial photographs and satellite images (com-
plementedwith auxiliarydata andfield experiences) allow
a verified, more controlled and detailed land cover classi-
fication than any automated computer classification [42,
43], even if some semi-automated method with automated
segmentation can be more accurate than manual vector-
ization [44–46]. Nevertheless, numerous automated and
semi-automated methods can help identifying and map-
ping land cover using remotely sensed data [47]; further-
more, gradually replacing classical techniques due to the
increasing classification accuracy [48]. The characteriza-
tion of areas traditionally involves either expensive man-
ual interpretation of aerial photographs or field investiga-
tion. In some cases field work is not possible, for example
in analysis of historical data.

The main focus of this study was to obtain better re-
sults from older satellite images and low quality aerial
photographs using auxiliary data sources from a flood-
plain area. It was studied how the accuracy of automated
vegetation mapping could be increased in both cases. The
first aimof our researchwas to test the automatedmethods
on Landsat images evaluated with and without SRTM sur-
face elevation data, to determine whether the SRTM could
help us to interpret vegetation better on a flat area. Addi-

tionally, we tested whether seasonality or a short time pe-
riod has an effect on the results of the automated analysis
of vegetation cover on satellite images (due to the differ-
ences between the beginning and the end of summer). Fur-
thermore, it was also tested whether better results could
be obtained for vegetation and land cover classification
by merging two aerial photographs. In this way it was an-
alyzed the reliability of satellite images and aerial pho-
tographs in the automated analysis in cases when dense
and impenetrable vegetation does not allow the extraction
of information from the vegetation and the fieldwork is not
possible.

2 Materials and Methods

2.1 Study area

The study area was a floodplain area (17 km2) on the
Upper-Tisza Region in North-Eastern Hungary near to the
borderwhere theTiszaRiver enters the country (Fig. 1). The
study area is located on the right and left bank of the river,
in the vicinity of four villages (Jánd, Gulács, Olcsvaapáti,
Panyola). One part of these floodplains has conservation
priority and another part is a Natura-2000 site within the
Hortobágy National Park (48°4’58”N, 22°24’6”E). It is lo-
cated at 104-111 m altitude above Baltic sea-level. The geo-
logical substrate is a Quaternary loess strata with alluvial
silt. The climate is continental (mean annual temperature
above 9-10 °C, annual precipitation of 600-700 mm), cool
and dry temperate. Due to frequent floods on this area, a
large river canalization and floodplain drainages were at-
tempted between 1846 and 1880. There are five backwa-
ters and some marsh patches in the studied area. Histor-
ically the marsh patches belonged to a backwater which
was considerably altered in flood protection work. Today,
the dominant land use types are arable lands, orchards,
riparian forests and economic plantations.

2.2 Satellite images and aerial photographs

The first type of data sets were LANDSAT7 Enhanced The-
matic Mapper (ETM+) images of two dates (03.06.2000 –
D1 and 22.08 2000 – D2; NASA Landsat Program), with
a spatial resolution of 30×30 meters. A color compos-
ite (RGB) was generated from bands 4 (near-infrared), 5
and 7 (mid-infrared ranges of the electromagnetic spec-
trum). This combination of color composite was ideal for
detecting healthy green vegetation and the water-land
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Figure 1: Location of the study site in Hungary.

border-line, which constituted necessary information for
our analysis. The SRTM surface model, which original res-
olution of 90×90 m was resampled to 30×30 m, was inte-
grated as a 4th band besides the 3 LANDSAT bands com-
bination (RGB=457) to estimate geomorphometric parame-
ters and to improve the land and vegetation cover analyses
of the study area (Fig. 3). Absolute height error of SRTM is
6.6±3.7 m for Eurasia [49].

In addition, two aerial photographs from April 2004
and 2005, provided by the National Hungarian Map-
ping Agency (http://www.fomi.hu/portal/index.php/
termekeink/legifelvetelek) were used to obtain detailed
land cover information of floodplain. A Leica RC20, RC30
aerial camera was employed when acquiring the aerial
photographs. The original resolution of the aerial photos
was 0.63×0.63 m but it resulted noisy and unusable out-
comes during our data processing. To overcome this issue,
resampling was implemented using the nearest neighbor
method improving (i.e. to remove/decrease noise from)
the outcomes of the aerial photographs (with 0.63×0.63 m
resolution). The resampling produced photos with a res-
olution of 2×2 meters that were separated in the visual
spectral range into RGB channels and used for automated
evaluation. We had six (2 ×RGB) channels after the RGB
channel separation with the use of the two aerial pho-
tographs which were used in the automated evaluation to-
gether. Then, supervised classification methods were ap-
plied on training sites and provided real information cate-
gories. Five different combinations of the six aerial photos

bands were tested: The first combination comprised only
the bands from 2004. The second one comprised only the
bands from 2005. The third one comprised the bands from
2004 and 2005 together without modification. The fourth
one comprised the bands from 2004 and 2005 together but
with bands multiplied (a pair wise multiplication of each
band) (Fig. 3). Finally, the fifth combination contained the
bands from 2004 and 2005 together with stretched values
(linear stretch with 1% saturation). It is not common to
use altered values in the analysis; however, these aerial
photos did not have radiometric correction. Thus, this pro-
cedure can increase contrast and potentially improve the
classification.

2.3 Manual interpretation

Ahabitatmap of the study areawas constructed to present
the vegetation cover and type of these regions of Hun-
gary. Vegetation was classified using the Hungarian Gen-
eral National Habitat Classification System (Á-NÉR) [50].
The habitat types were estimated in units of 20×20 m; 27
categories were found on the study area during our field
work and the adjacent patches with similar category were
merged (Table 1, Fig. 2). Aerial photos were used as ref-
erence information for these most accurate thematic map
variants.

Nevertheless, the categories of the Hungarian Gen-
eral National Habitat Classification System were useless
for automated mapping of satellite images and aerial pho-
tographs because of the similarities of the classes (e.g. for-
est and orchard). Therefore, their number was reduced
into five easier-to-handle classes which were recogniz-
able in this area with automated classification. On satel-
lite images the follow five categories were suitable for the
analysis: meadow, water, wooded area, croplands, and
marshes. On aerial photos also five classes were consid-
ered due to the spectral information (only three bands in
the visible range): Tisza, backwater, wooded area, arable
land, other. This allowed us to construct simplified man-
ual vectorized maps (MVM) of 2000, 2004 and 2005 with
these five categories for automated satellite image classi-
fication (Table 1).These land cover maps were converted
into a stratified random point map with the values of the
land use codes and served as the reference in the accuracy
assessment. All details of the vegetation and land cover
maps could be controlled because the area had a manage-
able size and field observations were performed to rectify
our MVMs (vegetation type, land cover classes). The maps
of current vegetation in the different years weremadewith
ArcGIS 9.3. (Fig. 2).
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Table 1: Vegetation cover and types of the study area in the analyzed years.

Land cover classes Á-NÉR (National Habitat Classification System of Hungary)
Cropland Arable land (T1, T2 (forage plantation))
Meadow Mesotrophic meadow (D4), Tall herb meadow (D6), Ruderal and semiruderal vegetation

on floodplain and marsh (O3), Semiruderal vegetation on floodplain (O4), Seminatural
grassland on fallow (O11), Seminatural vegetation on dike (O10), Dirt road vegetation
(O13).

Water (Tisza, backwaters) Standing water (U9), Running water (U8)
Marshes Standing water vegetation with Trapa, Lemna, Salvinia and Ceratophyllum (A1), Float-

ing vegetation of Utricularia spp. and Stratiotes sp.(A2), Submers or emerse rooted pi-
oneer plant communities with Potamogetonspp. and Nymphoidessp.(A3), Marshy veg-
etation with Thypaspp., Phragmites spp.(B1), Assemblages of Glyceria maxima, Spar-
ganium erectum and Schoenoplectuslacustris(B2), The water-fringing helophyte assem-
blageswith Butomus sp., Eleocharisspp. and Alisma spp. (B3)

Wooded area Riverine willow scrub (J3), Riverine willow-poplar woodland (J4), Riverine oak-elm-ash
woodland (J6), Spontaneously afforested (P2) Lands forest with non-native wood, shrub
andgrassland level (R2), Locust tree plantation (S1), Poplar plantation (S2), Large orchard
(T7), Little orchard (T8), Abandoned orchard (O12)

2.4 Automated image classification

IDRISI Taiga software was used for land cover classifica-
tion and for comparison of the accuracy of assessment. In
case of satellite images, spectral bandswere analyzedwith
several methods like isodata, minimum distance, maxi-
mum likelihood, linear discriminant analysis classifica-
tion, k-nearest neighbour classification, fuzzy image clas-
sifier. In the analysis, the maximum likelihood classifier
gave better estimate than other methods (the total accu-
racy was more than 50%) and it was used separately in
each date. This supervised classificationmethod based on
training sites andmean and variance/covariance statistics
and provided real information categories [51, 52]. Train-
ing areas for land cover classification were designated
on homogenous land cover units according to Cambell
(2002) [53]. Also, MVM maps from 2000 provided prelimi-
nary information for training areas as auxiliary data.

The accuracy assessment of satellite images was es-
timated using 250 points chosen with the stratified ran-
dom method to represent different land cover classes of
the area with the same probability of selection within the
classes [54–56]. The accuracy of classification estimated
from the satellite images being compared by using the
cross tabulation matrix in all compared pairs. The cross
tabulation matrix was applied to calculate the error of
omission [PA] and the error of commission [UA]. While PA
showed the ratio of pixelswhere the classificationwas suc-
cessful concerning the omissions (e.g. pixels claimed to
be water surface are classified as water). UA showed the

rate of accuracy concerning the commissions (e.g. which
are the pixels actually classified as water) [57]. Further-
more, the Kappa Index of Agreement (overall and per cat-
egories), and Cramer’s V were applied to estimate the
spatial distribution of different vegetation and land cover
classes. Cross-classification was also run showing multi-
ple overlaps of all combinations (Fig. 3). Through the over-
lay process, areas which were misclassified in the crop-
land, wooded area, marshes and water classes were rela-
beled into the correct classes using the manual interpreta-
tion layer.

For aerial photographs, two different images were
usedandneededa control layer that showed the same land
cover information in both years [58]. A stratified random
sampling was defined and was overlapped with the land
cover maps based on aerial photos and field observations.
A cross tabulation image showed the points where the
land cover type was the same in 2004 and 2005. This layer
was reclassified to a binary image showing only the pix-
els where the land cover is the same in both years (Fig. 3).
The study area had non-regular shape and the random
point generation produced sampling points in the whole
area. Hence, the original 1000 points were decreased to
609 due to differences. In accuracy assessments the val-
ues of the mask image with one of the hand-digitized land
covermapswere updated providing a point layerwith land
cover data. This layer was used as a ground truth image
in the verification procedure. The classification results of
aerial photos were also controlled by using the confusion
matrices (total accuracy [TA], error of omission [PA], error
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Figure 2: Vegetation types map in accordance with Á-NÉR on a part of the study area. Notations: A2 Floating vegetation of Utriculariaspp.
and Stratiotessp., A3 Submers or emerse rooted pioneer plant communities with Potamogetonspp. and Nymphoidessp., B1 Marshy veg-
etation withThypaspp., Phragmites spp.,B2 Assemblages of Glyceria maxima, Sparganiumerectum and Schoenoplectuslacustris, B3 The
water-fringing helophyte assemblages, D4 Mesotrophic meadows, J3 Riverine willow scrub, J4 Riverine willow-poplar woodland, J6 River-
ine oak-elm-ash woodland, O4 Semiruderal vegetation on floodplain, O10 Seminatural vegetation on dikes, R2 Forest with non-native
wood, shrubby grassland level, S1 Locust tree plantations, T1 Arable lands, T2 Arable land (forage plantation), U9 Standing water).

of commission [UA]) and Kappa Index of Agreement (over-
all and per categories) [49].

3 Results

3.1 Automated interpretation of satellite
images

The evaluation of the classification (or accuracy assess-
ment) of satellite images showed small differences be-

tween the comparing pairs (Table 2). The total accuracy
(TA) for reclassified images and MVM (estimated from the
habitat map) was between 76 and 77% with SRTM and
without SRTM.

In contrast, details of single class accuracy for all com-
pared pairs showed that the SRTM presented higher accu-
racy by a comparison ofMVM in various land cover classes
(Table 3).

Five categories (meadow, water, wooded area, crop-
lands, and marshes) were identified with varying success
through the automated mapping technique. Cropland and
water had the highest accuracy within the single land
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Figure 3: Scheme of delineating the mask image for the accuracy assessment, a) analysis of satellite images, b) analysis of aerial pho-
tographs.

cover class accuracies byMVMvs. reclassified images. The
lowest accuracy belonged to marsh and meadow.

A post-classification detection technique was imple-
mented with the cross tabulation matrix. Interpretation
of the same land cover class by the comparison of differ-
ent reclassified images estimated in different percentages
of the surface area (Table 4). In the same classes, higher

percentages were obtained, except for marsh. The identi-
fication of land cover classes was better when using the
image classification pair of MVM vs. D1+SRTM and MVM
vs. D1 reclassified image (Table 4) except class of water
and forest. Themisclassifications were predominantly un-
der or around 10%. Higher misclassified values occurred
in marsh-wooded area pairs (30-45%) as well as in marsh-
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Table 2: Accuracy statistics of reclassified images for the classifica-
tions Notation: MVM - manual vectorized map; D1 – satellite image
from 03.06.2000, D2 - satellite image from 22.08 2000.

Total Accuracy Cramer’s V* Kappa*
MVM vs. D1+SRTM 77.18 0.57 0.63
MVM vs. D1 77.27 0.58 0.63
MVM vs. D2+SRTM 75.94 0.56 0.62
MVM vs. D2 77.5 0.57 0.64
*Cramer’s V show the association and Kappa Index show
the agreement between images, 0=poor, 1=perfect

water pairs identification (17-28%) at MVM and in compar-
ing pairs of reclassified images. A high value (18-40%) in
meadows – cropland pairs was also obtained in the case of
MVM and D2+SRTM and without a SRTM comparing pair.

3.2 Automated mapping of aerial
photographs

The difference between the maps obtained from the two
aerial photographs was minimal: Fuzzy Kappa [59] was
0.92 using a 10meter neighborhood radius (which is about
the same as the error of georeferenced images), thus the
similarity was enough for their parallel application. The
pixel valueswere similar in the case ofwater bodies, arable
land andwooded area; they all had green toned colors and
finedifferenceswere impossible to discriminate accurately
(e.g. between trees and bushes).

The error of omission was the highest in case of Tisza
River in all cases. Backwater showed the lowest PA. Be-
sides, arable lands and wooded area showed a constant
UA but they had the highest error of commission. If only
the River Tisza, the backwater, the arable lands and the
green wooded area were distinguished, in that case the
river (Tisza), arable lands and wooded area could be ob-
tained an acceptable classification.

4 Discussion
The main focus of the current paper was to obtain better
results from older satellite images and lower quality aerial
photographs using auxiliary data sources from a flood-
plain area. In land and vegetation cover analyses of satel-
lite images with andwithout SRTM surface elevation data,
it could be observed that wooded area had the most dis-
tinct vegetation type, but the difference between an or-

chard and a wooded area was limited because of their
color.

Given that forest and orchard textures were different,
but we could not use this attribute by pixel-based clas-
sification. SRTM was useful in separating the land cover
classes on the floodplain area in case of wooded area,
but for the other categories it did not contribute to the
identification accuracy. The lowest accuracy belonged to
marsh and meadow by satellite image analysis which was
explained by the fact that these areas were too small
and the vegetation appearance (color composition) led to
their misclassification as wooded area. Moreover, misclas-
sifications occurred due to the fact that in some cases
the croplands were spectrally interchangeable with the
meadow class, and water areas could be interchangeable
with wooded area as well as with some marsh patches. Ji
(2000) [60] and Kokalj (2007) [61] reported the same con-
clusion that forests could be identified better than arable
lands and orchards during the image processing. Open
spaces are most commonly misclassified land cover type
such different type of wooded area. The automated identi-
fication of vegetation patches can be difficult due to their
heterogeneity and the sporadic influence of water that can
cause spectral interchanges.

The further analysis of satellite image composition
from different dates during the vegetation season showed
that both dates gave reliable information regarding land
cover. Altogether, classification at the beginning of sum-
mer could be more accurate, but the differences between
the seasons were not considerable. During this part of
analysis the differences were more significant when con-
siderable taking into account the land cover types at sum-
mer in case of the satellite images with SRTM. Differences
of seasonal vegetation couldbedemonstrated verywell us-
ing of Landsat (ETM) Imagery [62], however in our study
we did not find considerable differences.

In the test of the third hypothesis, whether better re-
sults could be gained for vegetation and land cover clas-
sification by merging two aerial photographs, the auto-
mated image classifications of the aerial photos were not
acceptable in all categories (PA or UA were below 50%,
Table 5). For example, the backwaters land cover types
cannot be differentiated by automated methods because
of their green tones as a consequence the biological pro-
cesses of the water surface (PA was <40%). All methods in
which the two aerial photographs were used together pro-
vided better results than the stand-alone tests (TA values
were larger with 4-7%). The results could not be improved
when the raw data were manipulated (e.g. multiplication;
Table 5). Taken together, the results of the classification
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Table 3: Accuracy statistics of reclassified images estimated to various land cover classes. Notations: MVM - manual vectorized map; D1 –
satellite image from 03.06.2000, D2 - satellite image from 22.08 2000; UA - User’s Accuracy; PA - Producer’s Accuracy; KIA - Kappa Index of
Agreement.

MVM vs. D1+SRTM MVM vs. D1 MVM vs. D2+SRTM MVM vs. D2
PA UA KIA PA UA KIA PA UA KIA PA UA KIA

meadow 71.43 32.08 0.30 32.62 84.72 0.31 42.24 48.24 0.39 43.3 45.5 0.40
water 81.12 77.69 0.76 74.61 82.2 0.73 76.9 83.7 0.75 77.3 86.6 0.75

wooded area 75.81 73.06 0.60 73.84 74.72 0.61 74 77.9 0.62 73.5 80.78 0.62
cropland 81.9 90.05 0.79 90.05 81.22 0.78 86.2 80.45 0.71 89.45 79.4 0.77
marsh 12.15 12.38 0.09 14.28 16.13 0.12 4.8 5.5 0.02 6.66 16.28 0.05

Table 4: Results of image classification technique in percent of surface area. Matching of various land cover classes identification by com-
parison of different reclassified images. Notations: MVM - manual vectorized map; D1 – satellite image from 03.06.2000, D2 - satellite im-
age from 22.08 2000; C - cropland, F - wooded area, M - meadow, MA - marsh, W – water.

Misidentified
Lclass1 as Lclass2

MVM vs. D1+SRTM MVM vs.D1 MVM vs. D2+SRTM MVM vs. D2

M M 71.43 84.72 48.17 45.51
M W 2.38 1.39 0.61 0.56
M F 7.14 6.94 9.15 10.67
M C 17.86 5.56 38.41 39.89
M MA 1.19 1.39 3.66 3.37
W M 1.20 0.85 0.00 0.00
W W 81.12 82.20 83.68 86.64
W F 12.45 12.29 9.62 9.05
W C 1.20 0.42 1.67 0.43
W MA 4.02 4.24 5.02 3.88
F M 7.76 7.66 4.24 5.29
F W 1.43 1.89 1.24 1.73
F F 75.82 74.73 77.87 80.78
F C 10.92 11.94 12.41 8.53
F MA 4.08 3.78 4.24 3.67
C M 2.67 2.71 3.86 3.20
C W 1.46 1.32 1.56 1.78
C F 11.48 12.28 11.58 12.74
C C 81.91 81.22 80.45 79.38
C MA 2.49 2.47 2.55 2.90
MA M 3.74 2.15 5.49 6.98
MA W 16.82 25.81 24.18 27.91
MA F 44.86 30.11 43.96 32.56
MA C 22.43 25.81 20.88 16.28
MA MA 12.15 16.13 5.49 16.28

could be improved by using a combination of two tempo-
rally similar aerial photographs to map vegetation covers.

Since the spectral information could be obtained by
the separation of visible (RGB) bands and had no infra-red
(IR) bands, possibilities to extract features were limited.

While Palandro (2003) [27] applied this method success-
fully in the study of coral reef changes.

Many studies deal with accuracy and issues such as,
extracting better information from satellite images, aerial
photographs and other remote sensing data sources [63–
67]. Some studies also discuss how classifications of satel-
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Table 5: Accuracy assessment of the maps classified with aerial photographs. Notations: UA - User’s Accuracy; PA - Producer’s Accuracy.

Land cover unit 2004 2005 2004 and 2005 2004 vs. 2005 2004 and 2005
stretched

PA UA PA UA PA UA PA UA PA UA
Tisza 93 49 100 47 93 85 95 59 93 67

backwater 25 6 41 46 16 71 34 20 19 46
wooded area 68 61 57 66 94 62 82 64 89 63
arable land 52 81 69 66 65 82 64 79 66 79

other 7 29 15 33 20 23 11 35 15 24
Total accuracy 53 61 68 65 67

lite images with automated classification methods could
not perform satisfactorily accurate and reliable classifica-
tion categories in some cases. Nevertheless, this classifica-
tion could be improved as presented by Manandhar et al.
(2009) [68] who also discussed how to improve the accu-
racy of land cover classification of LANDSAT data and they
were able to improve accuracy by incorporating additional
data (DEM, spatial texture, NDVI etc.).

In the same way, several land cover maps and vege-
tation maps of large projects were constructed based on
satellite images due to the fact that they can cover large
areas [69–71]. An example is the International Geosphere-
Biosphere Program, which pioneered a global land cover
mapping in the development of the Global Land Cover
Characterization (GLCC). Their database was based on 1-
km Advanced Very High Resolution Radiometer (AVHRR)
in 1992 (http://edcsns17.cr.usgs.gov/glcc/). It must bemen-
tioned that the Global Land Cover 2000 (GLC2000) (http:
//www-gvm.jrc.it/glc2000/) and other smaller scale pro-
grams were also developed such as the Pan-European
Land Cover Monitoring project and Corine Land Cover
(CLC50) which is based on the photo interpretation of
SPOT4 images [72].

Our study established that more accurate information
of vegetation type or land cover could be obtained with an
automated analysis of satellite images than with an auto-
matedanalysis of aerial photographsusingolddata.While
Hyyppä et al. (2000) [73] found that aerial photographs
could give comparable results to satellite images; it seems
that in some cases this includes more information for for-
est inventory than satellite radar images.

Also, these techniques were applied in many studies
using the two data source parallel and they produced use-
ful information from structural plant diversity, land cover
and fromeffects of landuse on forest ecosystem [13, 43, 72].

5 Conclusions
In conclusion, the automated methods on remote sens-
ing data sources with SRTM can give an accurate and use-
ful opportunity to extract information from the vegetation
(mainly fromwooded area class) if the fieldwork is not pos-
sible. Analysis of satellite image with SRTM using auto-
mated methods also can help us to better interpret vegeta-
tion on a flat area. Nevertheless, the use of auxiliary data
might be helpful (e.g. maps, field observations) and more
than one aerial photograph could also improve the classi-
fication accuracy.

This selections are generally determined by different
factors: the mapping objective, the cost of images, cli-
mate conditions and technical issues regarding image in-
terpretation [47, 74, 75]. The selection of appropriate im-
ages [74, 76, 77] image pre-processing and the classifica-
tion procedures are very important for mapping vegeta-
tion cover and land cover. These are important elements
in long-term time series research where it is needed to an-
alyze old images and to extract information from vegeta-
tion, in cases where field work is not possible. High qual-
ity information about old andpresent vegetation on a large
area is an essential prerequisite for ensuring the conserva-
tion of ecosystems.
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