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Equal values of standard counting polynomials
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Dedicated to Professor Lajos Tamássy on his 90th birthday

Abstract. The following discrete geometrical question provides a background for

some classical diophantine problems. For given positive integers m, n, can an m-

dimensional and an n-dimensional unit cube, simplex, pyramid or octahedron contain

equally many integral points? Apart from some trivial cases, the question leads to 9

families of diophantine equations, see Table 1. In this paper we give a brief survey of

known results on these equations, and prove some new theorems concerning the solu-

tions.

Introduction

The most fundamental polynomials counting integer points are Xn in an

n-dimensional unit cube,
(
X+n
n

)
in a standard n-simplex,

Sn−1(X) = 1n−1 + 2n−1 + . . .+Xn−1

in an n-dimensional pyramid, and

Pn(X) =

n∑

j=0

(
n

j

)(
X + n− j

n

)
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for octahedron in dimension n, see [4, Chapter 2]. The purpose of this paper is

to consider the possible equal values of these polynomials in case of integral vari-

ables. In other words, for given positive integers m, n, how often can two bodies

(unit cube, simplex, pyramid, octahedron) of dimensions m and n, respectively,

contain equally many integral points? It is a bit surprising that this discrete

geometrical question is the common background of some classical diophantine

problems. One can see that the above problems lead to 9 nontrivial families of

diophantine equations, see Table 1. We give a survey of known results concerning

these equations. Further, we prove some new theorems for the solutions. For each

family of solutions, the following three types of results can be established. An in-

effective finiteness theorem for the general case obtained by Bilu–Tichy Theorem,

an effective result based on Baker’s theory when one of the dimensions involved

is small, and the resolution by computer algebraic packages if both dimensions

are small.

No Equation Remark

1 Sm(x) = Sn(y) n > m ≥ 1

2 Sm(x) = yn m ≥ 1, n ≥ 2, (m,n) /∈ {(1, 2), (3, 2), (3, 4), (5, 2)}
3 Sm(x) =

(
y
n

)
m ≥ 1, n ≥ 2, (m,n) 6= (1, 2)

4 Sm(x) = Pn(y) m ≥ 1, n ≥ 2, (m,n) 6= (1, 2)

5
(
x
m

)
= yn m ≥ 2, n ≥ 2, (m,n) 6= (2, 2)

6
(
x
m

)
=

(
y
n

)
n > m ≥ 2

7
(
x
m

)
= Pn(y) m ≥ 2, n ≥ 2, (m,n) 6= (2, 2)

8 Pm(x) = yn m ≥ 2, n ≥ 2, (m,n) 6= (2, 2)

9 Pm(x) = Pn(y) n > m ≥ 2

Table 1: The investigated families of diophantine equations

Lemmas and auxiliary results

First we note that Sn−1(X) can be expressed in the form

Sn−1(X) =
1

n
(Bn(X + 1)−Bn(0)), (1)

where Bn(X) denotes the n-th Bernoulli polynomial which is of degree n and has

its coefficients in Q.
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We now collect some lemmas to prove our new results. The first one deals

with the simple zeros of a family of polynomials. Let n be a positive integer, f(X)

an integer-valued polynomial with deg f(X) ≤ n−1, and g(X) a polynomial with

rational integer coefficients.

Lemma 1. Suppose that n ≥ 6 and let p denote a prime for which

2

3
n < p ≤ n.

If an is an integer not divisible by p then the polynomial

F (X) = an

(
X

n

)
+ f(X) + g(X)

has at least
[
n
3

]
+ 1 simple zeros.

Proof. This is the Theorem in [41]. ¤

The following result provides an effective upper bound for the solutions to

the hyperelliptic equations.

Lemma 2. Let f be a polynomial with rational coefficients and suppose that

it possesses at least three simple zeros. Then the equation f(x) = y2 in unknown

integers x, y implies max(|x|, |y|) < c1, where c1 is an effectively computable

constant depending on the degree and the maximum height of the coefficients

of f .

Proof. See [3]. ¤

There is a similar result for superelliptic equations.

Lemma 3. Let f be a polynomial with rational coefficients and suppose

that it possesses at least two simple zeros. Then the equation f(x) = yk in

unknown integers x, y, k ≥ 2 impliesmax(|x|, |y|, k) < c2, where c2 is an effectively

computable constant depending on the degree and the maximum height of the

coefficients of the polynomial f .

Proof. For the bound on k, see [50], and on |x|, |y| see [3] . ¤

The next results are used in the proofs of our effective statements.

Lemma 4. Let m > 1, r, s 6= 0 be fixed integers. Then apart from the cases

when m = 3, r = 0 or s+ 64r = 0; m = 5, r = 0 or s− 324r = 0, the equation

s(1m + 2m + . . .+ xm) + r = yn

in integers x > 0, y with |y| ≥ 2, and n ≥ 2 has only finitely many solutions

which can be effectively determined.
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Proof. This is Theorem 2.2 in [47]. ¤

Lemma 5. Let a, b, c and m be given integers with ab 6= 0 and m ≥ 3.

Apart from the cases when m = 4, c/a = −1/24 or 3/128, n = 2 and b/a is not a

square, the diophantine equation

a

(
x

m

)
= byn + c

has only finitely many solutions in x, y > 1, n ≥ 2 and all these solutions can be

effectively bounded in terms of a, b, c and m.

Proof. This is the main result of [58]. ¤

Lemma 6. Let a, b, m, n be integers with a 6= 0, m ≥, n > 2. The equation

Sm(x) = a

(
y

n

)
+ b

in integers x and y has only finitely many solutions apart from the following

possible exceptions

(m,n) ∈ {(1, 4), (2, 3), (3, 4)}.
Proof. This is a special case of Theorem 2 in [46]. ¤

We will introduce some notation to recall the finiteness criterion by Bilu

and Tichy. In what follows α and β are nonzero rational numbers, µ, ν and q

are positive integers, p is a nonnegative integer and ν(X) ∈ Q[X] is a nonzero

polynomial (which may be constant).

A standard pair of the first kind is (Xq, αXpν(X)q) or switched,

(αXpν(X)q, Xq), where 0 ≤ p < q, (p, q) = 1 and p+ deg ν(X) > 0.

A standard pair of the second kind is (X2, (αX2 + β)ν(X)2) (or switched).

Denote by Dµ(X, δ) the µth Dickson polynomial, defined by the functional

equation Dµ(z + δ/z, δ) = zµ + (δ/z)µ. As it is well-known, we have the explicit

formula

Dµ(X, δ) =

[µ/2]∑

i=0

dµ,iX
µ−2i,

with

dµ,i =
µ

µ− i

(
µ− i

i

)
(−δ)i.

A standard pair of the third kind is (Dµ(X,αν), Dν(X,αµ)), where gcd(µ, ν) = 1.

A standard pair of the fourth kind is (α−µ/2Dµ(X,α),−β−ν/2Dν(X,β)),

where gcd(µ, ν) = 2.

A standard pair of the fifth kind is ((αX2 − 1)3, 3X4 − 4X3) (or switched).
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Lemma 7. Let R(X), S(X) be nonconstant polynomials such that the equa-

tion R(x) = S(y) has infinitely many solutions in rational integers x, y. Then

R(X) = φ(f(κ(X))) and S(X) = φ(g(λ(X))) where κ(X), λ(X) ∈ Q[X] are linear

polynomials, φ(X) ∈ Q[X], and

(f(X), g(X))

is a standard pair.

Proof. This is a consequence of the main result of [10]. ¤

The next result will be useful for the application of the previous lemma (cf.

[51] and [44]).

Lemma 8. The product of two or more consecutive positive integers is never

a perfect power.

Proof. For the proof we refer to [23]. ¤

We need the following technical lemma. Let a, b, ã, b̃, ā, b̄ be rational

numbers with aãā 6= 0.

Lemma 9. None of the polynomials
(
aX+b
m

)
and Pm(ãX + b̃) is of the form

e1X
m + e0 with e1 ∈ Q \ {0} and m ≥ 3 or e1Dm(X,α) + e0 with e1, α ∈ Q \ {0}

and m ≥ 5. The polynomial Sm(āX + b̄) is not of the form e1X
q + e0 with q ≥ 3

or e1Dν(X,α) + e0 with ν > 4, where α, e1, e0 are rational numbers with e1 6= 0.

Proof. For the fact that
(
aX+b

m

)
is not of the form e1X

m + e0 with m ≥ 3

we refer to [8, Lemma 5.2].

Now suppose that

(
aX + b

m

)
= e1Dm(X,α) + e0

for an integer m ≥ 5 and α ∈ Q \ {0} and set

(
aX + b

m

)
=

m∑

i=0

ciX
i.

On comparing the corresponding coefficients, an easy calculation shows that

cm =
am

m!
= e1,

cm−1 =
am−1

(
b− m−1

2

)

(m− 1)!
= 0,
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cm−2 =
am−2(12b2 + 12(1−m)b+ 3m2 − 7m+ 2)

24(m− 2)!
= −e1αm,

and

cm−4 =
am−4(240b4 + 480(1−m)b3 + f1(m)b2 + f2(m)b+ f3(m))

5760(m− 4)!

=
e1m(m− 3)α2

2
,

where f1(m) = 120(3m2 − 7m+2), f2(m) = 120(−m3 +4m2 − 3m) and f3(m) =

15m4 − 90m3 + 125m2 − 18m− 8. Using the second equation, we have b = m−1
2

and thus

cm−2 = −am−2(m+ 1)

24(m− 2)!
= −e1αm

and

cm−4 =
am−4(5m2 + 12m+ 7)

5760(m− 4)!
=

e1m(m− 3)α2

2
.

From these relations with cm = am

m! = e1 we get

(m− 1)(m+ 1)

24
= a2α

and
(m+ 1)(5m+ 7)(m− 1)(m− 2)

2880
= a4α2,

that is

(m+ 1)(m− 1) =
(5m+ 7)(m− 2)

5

and m = 3, a contradiction.

The proof of the corresponding statements for the polynomials Pm(ãX + b̃)

and Sm(āX + b̄) can be found in [9]. ¤

New and known results

Family 1. Equation

Sm(x) = Sn(y), (1.1)

where n > m ≥ 1 are fixed and x, y are unknown integers.
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For (m,n) with m = 1 and m = 3, Brindza and Pintér [13] proved some

effective finiteness results for the solutions x and y. Their proof is based on

the structure of zeros of the corresponding shifted Bernoulli polynomials. In the

same paper they obtained an ineffective finiteness result for an infinite class of

pairs (m,n) using Davenport–Lewis-Schinzel Theorem. Later, applying Bilu–

Tichy Theorem, the authors of [8] extended this statement to every pair (m,n).

For small values of m and n the problem leads to certain elliptic curves. For the

resolution of the special cases (m,n) = (1, 2), (1, 3), (1, 5), (1, 7) we refer to [2] and

[55], [16] and [38], [33], [37], respectively. We propose the following

Conjecture 1.1. All the solutions to the equation (1.1) in integers n>m≥ 1

and x, y are

(m,n, x, y) = (1, 2, 10, 5), (1, 2, 13, 6), (1, 3, 8, 3), (1, 5, 23, 3), (1, 5, 353, 9).

This conjecture is based upon an extensive numerical investigation. However,

its proof seems well beyond the reach of current techniques.

Family 2. Equation

Sm(x) = yn, (2.1)

where m ≥ 1, n ≥ 2, x ≥ 1, y ≥ 1 are unknown integers and Sm(X) = 1m+2m+

. . .+Xm.

Equation (2.1) has the solution (x, y) = (1, 1) which is called trivial. For

m = n = 2, (2.1) has only the nontrivial solution (x, y) = (24, 70). This was

proved by Watson [57]. In 1956, Schäffer [49] proved that for fixed m ≥ 1

and n ≥ 3, (2.1) has at most finitely many solutions in x, y, unless

(m,n) ∈ {(1, 2), (3, 2), (3, 4), (5, 2)}, (2.2)

where in each case, there are infinitely many such solutions.

Schäffer’s proof is ineffective. Using Baker’s method, Győry, Tijdeman

and Voorhoeve [30] proved a more general and effective result in which the

exponent n is also unknown. A special case of their result is the following

Theorem 2.1. For given m ≥ 2 with m /∈ {3, 5}, all solutions x, y ≥ 1, n ≥ 2

of (2.1) satisfy max(x, y, n) ≤ c1(m), where c1(m) is an effectively computable

number which depends only on m.

Later, Győry, Tijdeman and Voorhoeve [56] showed that for any fixed

polynomial R(X) with integral coefficients, the equation

Sm(x) +R(x) = yn
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has only finitely many solutions in integers x, y ≥ 1, n ≥ 2 provided that m ≥ 2

is fixed such that m 6= {3, 5}. The proof furnishes an effective upper bound for n,

but not for x and y. An effective version was obtained in a more general form by

Brindza [11].

Pintér [43] proved that for fixed m > 2, all solutions of (2.1) with y > 1

satisfy n < c2m logm, where c2 is an effectively computable absolute constant.

For fixed m ≥ 2 with m /∈ {3, 5}, Theorem 2.1 makes it possible, at least

in principle, to determine all solutions of (2.1). However, the bound c1(m) in

Theorem 2.1 is not given explicitly. Moreover, even an explicit value obtained by

Baker’s method would be too large for practical use. Schäffer [49] was able to

prove that for some special pairs (m,n) with small m, n, (2.1) has only the trivial

solution. Further, he formulated the following

Conjecture 2.2. For m ≥ 1 and n ≥ 2 with (m,n) not in (2.2), equation

(2.1) has only one nontrivial solution, namely (m,n, x, y) = (2, 2, 24, 70).

Recently, a considerable progress has been made in this direction. Jacobson,

Pintér and Walsh [34] confirmed the conjecture for n = 2 and for even m with

m ≤ 58. Further, Bennett, Győry and Pintér [6] proved completely Schäffer’s

conjecture for m ≤ 11 and for arbitrary n.

For fixed m and (m,n) 6= (3, 4), Brindza and Pintér [14] gave the upper

bound max(c3, e
3m) for the number of solutions of (2.1) with x, y > 1, n > 2,

where c3 is an effectively computable absolute constant.

In the proofs of the above presented results the first step is to express Sm(X)

in the form (1). This implies that Sm(X) is divisible by X2(X + 1)2 in Q[X] if

m > 1 is odd, and by X(X + 1)(2X + 1) if m ≥ 2 is even. Then (2.1) can

be reduced both to superelliptic equations and to finitely many binomial Thue

equations of the form AXn −BY n = 1 in non-zero X,Y ∈ Z with fixed non-zero

integers A, B. Finally, various deep theorems and techniques can be applied to

these equations to establish the desired results for equation (2.1).

For more details and related results we refer to the survey paper [29] of

Győry and Pintér.

Family 3. Equation

Sm(x) =

(
y

n

)
, (3.1)

where m ≥ 1, n ≥ 2 are fixed integers with (m,n) 6= (1, 2) and x, y are unknown

integers.

As an easy consequence of Lemma 6 we have
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Theorem 3.1. If m ≥ 1, n ≥ 2 and (m,n) 6= (1, 2) then the equation (3.1)

has only finitely many solutions in integers x and y.

Proof. In view of Lemma 6 we have to check the possible exceptional cases

(m,n) ∈ {(1, 4), (2, 3), (3, 4)} only. For (m,n) = (1, 4), we get the classical equa-

tion (
x+ 1

2

)
=

(
y

4

)
,

and for the resolution of this equation see [19] and [42]. In the case (m,n) = (2, 3)

we obtain

x(x+ 1)(2x+ 1) = y(y − 1)(y − 2).

By using maple one can verify that the genus of the corresponding curve is 1, so

it has only finitely many solutions in integers x and y. Finally, if (m,n) = (3, 4),

our equation takes the form

(
x(x+ 1)

2

)2

=

(
y

4

)

and, by [22], there is no integer solution of this problem. ¤

If m or n is small then we have an effective result.

Theorem 3.2. Let n ∈ {2, 4} and m ≥ 1 with (m,n) 6= (1, 2) or m ∈ {1, 3}
and n ≥ 2. Then all the solutions of the equation (3.1) in integers x and y

are bounded by an effectively computable constant depending only on m or n,

respectively. Further, if m = 3 and n ≥ 2, then there is no solution.

Proof. In the first case n = 2 or 4. Now, our equation (3.1) leads to the

equations

8Sm(x) + 1 = (2y − 1)2,

or

24Sm(x) + 1 = (y(y − 3) + 1)2,

respectively, and Lemma 4 completes the proof. If m = 1 or m = 3 we have the

equations

(2x+ 1)2 = 8

(
y

n

)
+ 1,

or (
x(x+ 1)

2

)2

=

(
y

n

)
,

respectively. Our statements follow from Lemma 5 and Theorem 5.1 below,

respectively. ¤
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Family 4. Equation

Sm(x) = Pn(y), (4.1)

where m ≥ 1, n ≥ 2 are fixed integers and x, y are unknown integers.

For small values of m or n we prove the following

Theorem 4.1. If m ∈ {1, 3} and n ≥ 2 or n ∈ {2, 4} and m ≥ 1 then the

equation (4.1) implies that max(x, y) < c1, where c1 is an effectively computable

constant depending only on n or m, respectively.

Proof. If (m,n) = (1, 2) or (3, 2) we have the equations

(
x

2

)
= 2y2 + 2y + 1

and (
x

2

)2

= 2y2 + 2y + 1,

respectively. One can check that in the first case there is no integer solution in x

and y, further the second equation represents a genus one curve, so it possesses

only finitely many and effectively determinable solutions in x and y.

In the sequel we suppose that m ∈ {1, 3} and n ≥ 3. Then we have the

following families of equations

(2x− 1)2 = 8Pn(y) + 1

and (
x(x− 1)

2

)2

= Pn(y),

respectively. Since the leading coefficient of the polynomial Pn(X) is 2n

n! , Lem-

mata 1 and 2 give the proof of our theorem for n ≥ 6. In the remaining cases

a simple calculation shows that the corresponding polynomials have only simple

zeros.

Now assume that n ∈ {2, 4} and m ≥ 2. We have the diophantine equations

2Sm(x) = (2y + 1)2

and

3Sm(x) + 5 = 2(y2 + y + 2)2,

respectively, and Lemma 4 proves the statement of our theorem. ¤

Theorem 4.2. Assume that m ≥ 2, n > 2 and gcd(m + 1, n) = 1. Then

equation (4.1) has only finitely many solutions in integers x and y.
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We conjecture that Theorem 4.2 is true omitting the condition for the greatest

common divisor of m+ 1 and n, cf. [46].

Proof. On supposing the contrary and using Lemma 7 we have

Sm(aX + b) = φ(f(X)), Pn(ãX + b̃) = φ(g(X),

where a, ã, b, b̃ ∈ Q with aã 6= 0, φ(X) ∈ Q[X] and (f, g) is a standard pair. Since

the greatest common divisor of m+1 and n is 1, we have that deg φ = 1, φ(X) =

e0X + e1, say, where e0, e1 are rational numbers and e0 6= 0. Now applying the

conditions for m and n we get

deg f > 2, deg g > 2, gcd(deg f,deg g) = 1,

and this excludes the standard pairs of the second, fourth and fifth kind. From

Lemma 9 we obtain max{m,n} ≤ 5, and by the conditions for m, n and The-

orem 4.1, the remaining cases are (m,n) = (2, 5), (4, 3) and (5, 5). However,

using maple, one can check that the genus of the corresponding three curves is

4,4 and 10, respectively, so there are only finitely many integral points on these

curves. ¤

Family 5. Equation (
x

m

)
= yn, (5.1)

where m ≥ 2, n ≥ 2, x > m, y ≥ 2 are unknown integers.

For m = n = 2, equation (5.1) can be written in the form

(2x− 1)2 − 8y2 = 1

which has infinitely many solutions, and all these can be given in a recursive way.

For m = 3, n = 2, Meyl [39, x odd] and Watson [57, x even] proved that

(
50

3

)
= 1402 (5.2)

is the only solution of (5.1).

It was conjectured by Erdős [21] that for n > 2, equation (5.1) has no solution.

Erdős [21] proved this for n = 3 and for n ≥ 2m, and Obláth [40] for n = 4

and 5.

By means of an ingenious elementary method Erdős [22] confirmed his con-

jecture for m ≥ 4. For m < 4, the method of Erdős does not work.
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Using Baker’s method, Tijdeman [54] proved that for m = 2 and 3 equation

(5.1) has only finitely many solutions, and all of them can be, at least in principle,

determined. Later, Terai [53] showed that form=2 and 3, (5.1) implies n< 4250.

Finally, Győry [25] proved Erdős’ conjecture for m = 2, 3 and n > 2, and

hence completed the proof of the following

Theorem 5.1. Apart from the case (m,n) = (2, 2), (5.2) gives the only

solution of equation (5.1).

Győry’s proof combines some results ofGyőry [24] andDarmon andMerel

[18] on generalized Fermat equations, and a theorem of Bennett and de Weger

[5] on binomial Thue equations.

There are several related results in the literature, see e.g. the survey papers

[27] and [28] and the references given there. For example, Theorem 5.1 has been

extended to the equation

x(x− 1) · · · (x−m+ 1) = byn (5.3)

by Saradha [48, m ≥ 4] and Győry [26, m < 4], where b ≥ 1 is also unknown,

but has only prime factors not exceeding m. For b = m!, the results of [48] and

[26] imply Theorem 5.1, while for b = 1, they give the celebrated theorem of

Erdős and Selfridge [23] which states that the product of consecutive positive

integers is never a power.

Family 6. Equation (
x

m

)
=

(
y

n

)
, (6.1)

where n > m ≥ 2 are fixed integers and x ≥ m, y ≥ n are unknown integers.

This equation possesses a very extensive literature. There are several scat-

tered computational results for special pairs (m,n). For the resolution of the

corresponding equation in the cases (m,n) = (2, 3), (2, 4), (2, 5), (2, 6), (3, 4) we

refer to [1], [19] and [42], [15], [33], [20], respectively. For a nice survey on certain

numerical problems and for the cases (m,n) = (2, 8), (3, 6), (4, 6), (4, 8) see [52].

Generalizing an earlier result by Kiss [36], Brindza [12] proved an effective fini-

teness statement for the solutions to the equation (6.1) with m = 2. Using some

elementary considerations, de Weger [20] dealt with equal values of binomial

coefficients and proposed the following general conjecture.

Conjecture 6.2. All the solutions of equation (6.1) in positive integers m,

n, x, y with n > m ≥ 2, x > m, y > n are(
16

2

)
=

(
10

3

)
,

(
56

2

)
=

(
22

3

)
,

(
153

2

)
=

(
19

5

)
,

(
221

2

)
=

(
17

8

)
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(
78

2

)
=

(
15

5

)
=

(
14

6

)
,

(
21

2

)
=

(
10

4

)
,

(
120

2

)
=

(
36

3

)
,

and an infinite family

(
F2i+2F2i+3

F2iF2i+3

)
=

(
F2i+2F2i+3 − 1

F2iF2i+3 + 1

)

for i = 1, 2, . . ., where Fn denotes the nth Fibonacci number defined by F0 = 0,

F1 = 1 and Fn+1 = Fn + Fn−1 for n = 1, 2, . . ..

For general, however, ineffective finiteness results see [7] and [45].

Family 7. Equation (
x

m

)
= Pn(y), (7.1)

where m ≥ 2, n ≥ 2 are fixed integers and x ≥ m, y are unknown integers.

In the special case (m,n) = (2, 2) we have the equation

(
x

2

)
= 2y2 + 2y + 1

and a straightforward calculation gives that the transformed equation

(2x− 1)2 − (4y + 2)2 = 5

has no solution in integers x ≥ 2 and y.

For small values of m or n we prove the following

Theorem 7.1. If m ∈ {2, 4} and n ≥ 3 or n ∈ {2, 4} and m ≥ 3 then

equation (7.1) implies that max(x, y) < c4, where c4 is an effectively computable

constant depending only on n or m, respectively.

Proof. First suppose that m ∈ {2, 4} and n ≥ 3. We have the equations

8Pn(y) + 1 = (2x− 1)2

and

24Pn(y) + 1 = (x2 − 3x− 1)2,

respectively. Using the fact that

Pn(X) = 2n
(
X

n

)
+ f(X),
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where f(X) is an integer-valued polynomial of degree < n, and Lemmata 1 and

2 give our statement for n ≥ 6. If n = 3, 4, 5 then an easy calculation shows that

the corresponding polynomials have at least three simple zeros, and the proof is

completed in these cases as well

Now assume that n ∈ {2, 4} and m ≥ 3. We get the equations

2

(
x

m

)
− 1 = (2y + 1)2

and

3

(
x

m

)
+ 5 = 2(y2 + y + 2)2,

respectively. Our Lemmata 5 and 2 completes the proof for m ≥ 3. ¤

Theorem 7.2. Suppose that min{m,n} ≥ 3. Then (7.1) has only finitely

many solutions in integers x and y.

Proof. On supposing the contrary and using Lemma 7 we have

(
aX + b

m

)
= φ(f(X))

and

Pn(ãX + b̃) = φ(g(X)),

where (f, g) is a standard pair, φ(X) ∈ Q[X] and a, b, ã, b̃ ∈ Q with aã 6= 0. We

will prove that k := deg φ = 1. Indeed, it is clear that the ratio of the leading

coefficients of the polynomials
(
aX+b
m

)
and Pn(ãX + b̃) is a kth power in Q. On

the other hand, this ratio is
am · n!

2n · ãn ·m!
.

Since m = k · deg f and n = k · deg g are divisible by k, then the number n!/m!

is a kth power in Q. Lemma 8 gives that k = 1 or k ≥ 2, |n−m| = 1. However,

in the second case, 2 ≤ k ≤ gcd(m,n) = 1 and we have a contradiction Thus we

obtain (
aX + b

m

)
= e1f(X) + e0

and

Pn(ãX + b̃) = f1g(X) + f0,

where e0, e1, f0, f1 are rational numbers with e1f1 6= 0. By the condition

min{m,n} ≥ 3, (f, g) is not a standard pair of the second kind, further by The-

orem 7.1, we get that (f, g) is not a standard pair of the fifth kind. Using Lemma 9
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and Theorem 7.1 our theorem is proved apart from the case (m,n) = (3, 3). In

this case the corresponding curve is

x(x− 1)(x− 2)

6
− 4

3
y3 − 2y2 − 8

3
y − 1 = 0,

its genus determined by maple is one, so we have only finitely many integer

solutions. ¤

Family 8. Equation

Pm(x) = yn, (8.1)

where m ≥ 2 is fixed and x, y, n ≥ 2 are unknown positive integers with (m,n) 6=
(2, 2).

In the trivial case (m,n) = (2, 2) we have P2(x) = 2x2 + 2x + 1 so the

corresponding diophantine equation is

2x2 + 2x+ 1 = y2,

or equivalently,

(2x+ 1)2 − 2y2 = −1

which is a Pellian equation with infinitely many solutions. We can rewrite the

polynomial Pn(X) as

Pn(X) =

n∑

j=0

(
n

j

)(
X + n− j

n

)
= 2n

(
X

n

)
+ f(X),

where f(X) is an integer-valued polynomial of degree < n. So from Lemma 1 we

get that Pn(X) has at least three simple zeros for n ≥ 6. In the remaining cases

we obtain

P2(X) = 2X2 + 2X + 1, P3(X) =
4

3
X3 + 2X2 +

8

3
X + 1,

P4(X) =
2

3
X4 +

4

3
X3 +

10

3
X2 +

8

3
X + 1,

and

P5(X) =
4

15
X5 +

2

3
X4 +

8

3
X3 +

13

3
X2 +

46

15
X + 1,

and one can calculate their non-zero discriminants showing that these polynomials

possess only simple zeros. Thus the following statement follows from Lemmata 2

and 3.
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Theorem 8.1. Let m, n be integers with m ≥ 2, n ≥ 2 and suppose that

(m,n) 6=(2, 2). The equation (8.1) in integers x, y and n impliesmax{|x|, |y|, n}<C

where C is an effectively computable constant depending only on m.

We note that Theorems 8.1 and 8.2 below are new.

Cohn [17] resolved the equation x2+1 = yn and proved that all the solutions

of this equation in integers x, y, n with n > 1 are x = y = 1 and x = 239, y = 13,

n = 4. Using this result we have

Theorem 8.2. All the solutions of the equation P2(x) = yn in integers x, y

and n > 2 are x = 0, y = 1 and x = 119, y = 13, n = 4.

Family 9. Equation
Pm(x) = Pn(y), (9.1)

where n > m ≥ 2 are fixed integers and x, y are unknown integers.

Hajdu studied the equation (9.1) for small values of m and n and resolved

the corresponding elliptic type diophantine equations, see [31] and [32]. Further,

he conjectured that the equation has only finitely many solutions for n > m = 2.

This conjecture was confirmed by Kirschenhofer, Pethő and Tichy [35].

Later, using the Bilu–Tichy Theorem, Bilu, Stoll and Tichy [9] extended

their result to the general case by proving an ineffective finiteness statement for

the number of solutions x and y for every pair (m,n).

Acknowledgements. The authors are grateful to the referee for the careful

reading of the manuscript and for her/his helpful remarks.
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[56] M. Voorhoeve, K. Győry and R. Tijdeman, On the Diophantine equation 1k +2k + · · ·
+xk +R(x) = yz , Acta Math. 143 (1979), 1–8.

[57] G. N. Watson, The problem of the square pyramid, Messenger of Math 48 (1918), 1–22.

[58] P. Z. Yuan, On a special Diophantine equation a
(x
n

)
= byr + c, Publ. Math. Debrecen 44

(1994), 137–143.
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