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This paper introduces a non-negative integer-valued autoregressive (INAR) process with seasonal struc-
ture of first order, which is an extension of the standard INAR(1) model proposed by Al-Osh and Alzaid
[First-order integer-valued autoregressive (INAR(1)) process. J Time Ser Anal. 1987;8:261–275]. The
main properties of the model are derived such as its stationarity and autocorrelation function (ACF),
among others. The conditional least squares and conditional maximum likelihood estimators of the model
parameters are studied and their asymptotic properties are established. Some detailed discussion is ded-
icated to the case where the marginal distribution of the process is Poisson. A Monte Carlo experiment
is conducted to evaluate and compare the performances of these estimators for finite sample sizes. The
standard Yule–Walker approach is also considered for comparison purposes. The empirical results indi-
cate that, in general, the conditional maximum likelihood estimator presents much better performance in
terms of bias and mean square error. The model is illustrated using a real data set.

Keywords: INAR(1) model; conditional least squares; conditional maximum likelihood; seasonal period;
Yule–Walker

1. Introduction

Seasonal time-series models have been extensively explored in the literature (see Box et al.,
1994). The smallest time period for this repetitive phenomenon to occur is called the seasonal Q1

period. Many business and economic time series display a seasonal phenomenon that repeats
itself after a regular period of time. Seasonal phenomena may stem from factors such as weather,
which affects many business and economic activities, prices of agricultural products, which have
their supply usually related to the biological cycle of agricultural crops or livestock, cultural
events closely related to sales and so on.

Over the last three decades, there has been a growing interest in modelling discrete-valued
time-series models, that is, series taking values on a finite or countably infinite set. Models for
count data have been widely used in several areas of study for various phenomena. A number of
models for stationary processes with discrete marginal distributions have been proposed.[1] One
of these models is the integer-valued autoregressive (INAR) process of Al-Osh and Alzaid,[2]
which has similar structure and properties to the standard real-valued autoregressive models.
The INAR model has been extensively studied in the literature. For example, see the survey
by Weiß,[3] Jung et al. [4] and Freeland and McCabe.[5] Monteiro et al. [6] had proposed the
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periodic INAR model of order one with period T driven by a periodic sequence of independent
Poisson-distributed random variables.

However, the study of seasonal time series of counts has not received much attention so far
in the literature. This paper aims to give a contribution in this direction. The motivation for
such a process arises from its potential in modelling and analysing a stationary non-negative
integer-valued time series with seasonal patterns. Therefore, the study of seasonal extensions of
the INAR processes motivates a novel research branch with many practical applications, such
as modelling the number of hospital emergency service arrivals caused by diseases that present
seasonal behaviour,[7] the monthly number of claims of short-term disability benefits made by
injured workers in industry,[8] the number of traffic accidents,[9] the demand for travelling,
highest during the warmer summer months and lowest during the winter months, the number of
crime occurrences [10] and so on.

The Poisson INAR(1) model proposed by Al-Osh and Alzaid [2] is not suitable for modelling
counting series that present seasonality. Zhu and Joe [11] generalized the INAR(1) model with
Poisson and negative binomial innovations, respectively, by using covariates in the parameters of
the innovations to explain seasonality. However, these models are not stationary. In this context,
the objective of this paper is to propose a second-order stationary integer-valued model with
seasonal patterns based on the model of Al-Osh and Alzaid.[2] Our main goal is to investigate
basic probabilistic and statistical properties of the model presented here, as well as inferential
methods for the parameters associated with it.

The paper is structured as follows. The model is formally defined in Section 2 and some of its
properties are outlined. In Section 3, estimation methods for the model parameters are proposed.
Section 4 discusses theoretical results in order to obtain point forecasts. Section 5 discusses some
simulation results for the estimation methods. In Section 6, the model is applied to a well-known
data set. Remarks and conclusions are stated in Section 7. Finally, the proofs of all propositions
and theorems are contained in the appendix.

2. The first-order seasonal non-negative INAR model

Let Z+, N and R+ denote the set of non-negative integers, positive integers and non-negative
real numbers, respectively. All random variables will be defined on a common probability space
(�,A, P).

Let X be a non-negative integer-valued random variable and let φ ∈ [0, 1]. According to
Steutel and Van Harn,[12] the ‘°’ binomial thinning operator is defined as follows:

φ ◦ X =
X

∑

j=1

Zj,

where {Zj}j∈N are independent and identically distributed (i.i.d.) random variables, mutually inde-
pendent of X, with P(Zj = 1) = 1 − P(Zj = 0) = φ, that is, {Zj}j∈N is an i.i.d. Bernoulli random
sequence with mean φ. Note that for X = 0, the empty sum is defined as 0. With this operator,
the first-order seasonal non-negative INAR model is defined as follows.

Definition 1 A discrete-time non-negative integer-valued stochastic process {Yt}t∈Z is said

to be a first-order seasonal INAR process with seasonal period s (INAR(1)s) if it satisfies the

following equation:

Yt = φ ◦ Yt−s + ǫt, t ∈ Z, (1)

where φ ∈ [0, 1], {ǫt}t∈Z is an innovation sequence of i.i.d non-negative integer-valued random

variables not depending on past values of {Yt}t∈Z and s ∈ N denotes the seasonal period. It
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is also assumed that the Bernoulli variables that define φ ◦ Yt−s, that is, the Bernoulli variables

from which Yt are obtained, are independent of the Bernoulli variables from which other values of

the series are calculated. Moreover, we assume that all Bernoulli variables defining the thinning

operations are independent of the innovation sequence {ǫt}t∈Z.

The process {Yt}t∈Z in Equation (1) has two random components: the survivors of the elements
of the process at time t − s, given by φ ◦ Yt−s, each with probability φ of survival, and the ele-
ments which entered the system in the interval (t − s, t], defining the innovation term ǫt. Note
that the INAR(1) model [2] is a particular case of the INAR(1)s when s = 1. On the other hand,
the INAR(1)s process consists of s mutually independent INAR(1) processes equipped with the
same autoregressive coefficient φ and same innovation distribution. Namely define the processes
{Y (r)

t }t∈Z, r = 0, 1, . . . , s − 1, as Y
(r)
t := Yts+r, t ∈ Z. Then, it is easy to see by Equation (1) that,

for all r = 0, 1, . . . , s − 1, the process {Y (r)
t }t∈Z satisfies the INAR(1) model

Y
(r)
t = φ ◦ Y

(r)
t−1 + ǫ

(r)
t , t ∈ Z,

where the innovation sequence {ǫ(r)
t }t∈Z is defined by ǫ

(r)
t := ǫts+r, t ∈ Z. The independence of

the stochastic processes {Y (r)
t }t∈Z, r = 0, 1, . . . , s − 1, clearly follows from the independences of

the innovation sequences {ǫ(r)
t }t∈Z, r = 0, 1, . . . , s − 1, and of the counting processes involved in

the thinning operators. The stochastic processes {Y (r)
t }t∈Z, r = 0, 1, . . . , s − 1, are referred to as

the seasonal components of the INAR(1)s process {Yt}t∈Z. This decomposition implies that an
INAR(1)s process {Yt}t∈Z is a so-called s-step Markov chain, that is, for all t ≥ s,

P(Yt = yt|Yt−1 = yt−1, . . . , Y0 = y0) = P(Yt = yt|Yt−s = yt−s), (2)

for any y0, y1, . . . , yt ∈ Z+. In addition, if φ = 1, Equation (1) becomes Yt = Yt−s + ǫt, t ∈ Z,
defining, in this case, a seasonal unit root process. However, due to the non-stationary behaviour
of this process, it is not considered in this paper.

Proposition 1 If φ ∈ [0, 1), the unique stationary marginal distribution of model (1) can be

expressed in terms of the innovation process {ǫt}t∈Z as

Yt
d=

∞
∑

k=0

φk ◦ ǫt−ks = ǫt +
∞

∑

k=1

ǫt−sk
∑

j=1

Zt,k,j, t ∈ Z, (3)

where
d= stands for equality in distribution. For all t ∈ Z, the infinite series is understood

as the limit in probability of the finite sum, the Bernoulli variables {Zt,k,j}k,j∈N being mutually

independent and independent of the innovation process, with EZt,k,j = φk for all k, j ∈ N.

Proof See the appendix. �

Remark 1 Proposition 1 shows that the stationarity condition of the INAR(1)s process is equiv-
alent to that of the INAR(1) process, that is, if φ ∈ [0, 1), the first-order seasonal INAR process
has a unique stationary solution.

In this paper, it is assumed that {ǫt}t∈Z is an i.i.d. sequence of Poisson-distributed variables
with mean λ ∈ R+ and that, for all t, this sequence is mutually independent of all Bernoulli
random variables that define φ ◦ Yt. Also, we denote by Po(λ), with λ ∈ R+, and by B(n, p),
with n ∈ Z+ and p ∈ [0, 1], the Poisson and the binomial distributions, respectively.
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Figure 1. Sample path of INAR(1)s and its sample ACF.

The following proposition formalizes some properties of the INAR(1)s model.

Proposition 2 Let {ǫt}t∈Z be an i.i.d. sequence of Poisson-distributed variables with mean

λ ∈ R+ and let φ ∈ [0, 1). Let {Yt}t∈Z be a stationary solution of the INAR(1)s model defined by

Equation (1). Then,

(a) Ythas Poisson distribution with parameter λ/(1 − φ), that is, Yt ∼ Po(λ/(1 − φ)) for all

t ∈ Z and thus

E(Yt) = var(Yt) = λ

1 − φ
, t ∈ Z.

(b) the ACF is given by

ρ(k) =
{

φk/s if k is a multiple of s,

0 otherwise.
(4)

Proof See the appendix. �

Remark 2 Proposition 2 states that if the innovation sequence is Po(λ) distributed, then
Po(λ/(1 − φ)) provides the only stationary marginal distribution for Yt. In this case, the process
{Yt}t∈Z given in Definition 1 is called a Poisson INAR(1)s process.

Equation (4) shows that the ACF, ρ(k), decays exponentially with lag k. Furthermore, the
ACF of an INAR(1)s model is zero except at lags that are multiples of s. Figure 1 presents 100
simulated values of the INAR(1)s process and its sample ACF for φ = 0.5, λ = 1 and s = 12.

3. Estimation methods

In what follows, some analytical and asymptotic results for the conditional least squares (CLS)
and the conditional maximum likelihood (CML) estimators of the vector of parameters θ =
(φ, λ)T, for the model defined in Equation (1), are derived. Let Y0, Y1, . . . , Yn be a sample of
a Poisson INAR(1)s process. For all k ∈ Z+, Fk denotes the σ -algebra generated by the random
variables Y0, Y1, . . . , Yk . Pθ (·) and Eθ (·) denote the probability and the expectation with respect
to the true parameter θ , respectively.
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The CLS estimator θ̂CLS = (φ̂CLS, λ̂CLS)
T of θ = (φ, λ)T is given by

θ̂CLS := arg min
θ

(Qn(θ)),

where Qn(θ) =
∑n

t=s+1[Yt − Eθ (Yt|Ft−1)]2. Since the INAR(1)s process {Yt}t∈Z satisfies
Equation (1), we can easily obtain Eθ (Yt|Ft−1) = Eθ (Yt|Yt−s) = g(θ , Yt−s), where the function
g(·, ·) is defined as g(θ , y) := φy + λ, y ∈ Z+. Thus, the CLS estimates of φ and λ will be given,
respectively, as

φ̂CLS :=
(n − s)

∑n
t=s+1 YtYt−s −

∑n
t=s+1 Yt

∑n
t=s+1 Yt−s

(n − s)
∑n

t=s+1 Y 2
t−s −

(
∑n

t=s+1 Yt−s

)2 (5)

and

λ̂CLS := 1

n − s

(

n
∑

t=s+1

Yt − φ̂CLS

n
∑

t=s+1

Yt−s

)

. (6)

It can be verified that the function g(·, ·) together with its first and second partial derivatives
with respect to its first argument satisfy all of the regularity conditions of Theorem 3.2 in [13];
see, also, the proof in the appendix. Therefore, the CLS estimators in Equations (5) and (6) are
strongly consistent and asymptotically normally distributed. These are formalized in the next
theorem.

Theorem 3 The CLS estimator θ̂CLS = (φ̂CLS, λ̂CLS)
T of the parameter θ = (φ, λ)T of a

Poisson INAR(1)s process has the following asymptotic distribution

√
n

(

φ̂CLS − φ

λ̂CLS − λ

)

d→ N

((

0
0

)

,

(

λ−1φ(1 − φ)2 + (1 − φ2) −(1 + φ)λ

−(1 + φ)λ λ + (1 + φ)(1 − φ)−1λ2

))

.

Proof See the appendix. �

Following the standard notation, the conditional distribution of Yt given Yt−s is here written as
Pθ (Yt|Yt−s), which is defined by the conditional probabilities Pθ (Yt = yt|Yt−s = yt−s), yt, yt−s ∈
Z+. The CML estimator is based upon the fact that the conditional distribution Pθ (Yt|Yt−s) is the
convolution of the binomial distribution B(Yt−s, φ) resulting from the random variable φ ◦ Yt−s

with the Poisson distribution Po(λ) of the innovation ǫt. Then,

Pθ (Yt|Yt−s) = [Bi(Yt−s, φ) ∗ Po(λ)](Yt) = e−λ

min(Yt ,Yt−s)
∑

i=0

λYt−i

(Yt − i)!

(

Yt−s

i

)

φi(1 − φ)Yt−s−i.

Using property (2), the conditional likelihood function of the INAR(1)s process with true
parameter θ is given by

L(θ) = Pθ (Yn, . . . , Ys|Ys−1, . . . , Y0) =
n

∏

t=s

Pθ (Yt|Yt−s).

The conditional log-likelihood function is then given by

ℓ(θ) =
n

∑

t=s

log[Pθ (Yt|Yt−s)]. (7)

The CML estimator of θ is the value θ̂CML that maximizes ℓ(θ). Since ℓ′(θ) is a nonlinear
function, the maximum likelihood estimate of θ must be computed using numerical methods.
Theorem 4 gives an asymptotic result for the CML estimator of a Poisson INAR(1)s process.
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Theorem 4 The CML estimator θ̂CML = (φ̂CML, λ̂CML)T of the parameter θ = (φ, λ)T of a

Poisson INAR(1)s process satisfies

√
n

(

φ̂CML − φ

λ̂CML − λ

)

d→ N (0, I−1(θ)),

where I(θ) is a 2 × 2 Fisher information matrix.

The proof of Theorem 2 is omitted here since it is a straightforward consequence for the
seasonal case of a result obtained by Franke and Seligmann.[14]

4. Forecasting

Consider the problem of forecasting a future value Yn+h, h ∈ N, based on the series up to time
n ∈ N. Our starting point is that, for INAR(1)s process, Equation (1) implies that the distribution
of Yn+h can be expressed as

Yn+h
d= φq ◦ Yn−r +

q−1
∑

j=0

φj ◦ ǫn+h−js, h ∈ N, (8)

where q := ⌈h/s⌉ and r := qs − h, with ⌈x⌉ denoting the upper integer part of x ∈ R, that is,
⌈x⌉ := min{n ∈ Z|x ≤ n}. Then, it is clear that r ∈ {0, . . . , s − 1}. Thus, from Equation (8), the
distribution of Yn+h can be written as the convolution of B(Yn−r, φq) and Po(λ(1 − φq)/(1 − φ))

distributions, which is an analogue of a theorem of Freeland [15] for non-seasonal case.
For all n, h ∈ N, consider to forecast Yn+h by an Fn-measurable random variable with finite

second moment Ŷn(h). Then, the forecast Ŷn(h) of Yn+h with minimum mean square error
Eθ (Yn+h − Ŷn(h))2 is achieved by the conditional expectation Eθ [Yn+h|Fn]. For the INAR(1)s

process, this h-step ahead conditional expectation is given by

Eθ [Yn+h|Fn] = φq

(

Yn−r − λ

1 − φ

)

+ λ

1 − φ
, h ∈ N.

The following proposition formalizes some properties of the h-step ahead conditional expec-
tation for INAR(1)s model.

Proposition 5 Let {Yt}t∈Z be a stationary Poisson INAR(1)s process and n, h ∈ N. Then, the

following properties hold

(1) Yn+h|Fn ∼ B(Yn−r, φq) ∗ Po(λ(1 − φq)/(1 − φ)),
(2) Eθ [Yn+h|Fn] = φq(Yn−r − λ/(1 − φ)) + λ/(1 − φ),
(3) varθ [Yn+h|Fn] = φq(1 − φq)Yn−r + λ(1 − φq)/(1 − φ),
(4) limh→∞ Eθ [Yn+h|Fn] = limh→∞ varθ [Yn+h|Fn] = λ/(1 − φ),

where q := ⌈h/s⌉ and r := qs − h.

Proof See the appendix. �
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Therefore, based on the sample Y0, Y1, . . . , Yn, a forecast Ŷn(h), h ∈ N, is obtained by

Ŷn(h) = φ̂q

(

Yn−r − λ̂

1 − φ̂

)

+ λ̂

1 − φ̂
, h ∈ N, (9)

where λ̂ and φ̂ are estimators for λ and φ, respectively. The forecast error is defined by
ên(h) := Yn+h − Ŷn(h). Similar to the INAR(1) models, the forecast computed by Equation (9)
will seldom produce integer-valued Ŷn(h). To circumvent this problem, Freeland and McCabe
[16] suggested to use, instead of the conditional expectation, the conditional median, which min-
imizes the expected absolute error. However, the conditional median, for most situations, cannot
be easily computed.

5. Monte Carlo simulation study

The asymptotic properties of the estimators discussed in the previous sections are now investi-
gated for finite sample sizes n = 100, 200, 500 from Poisson INAR(1)s series with s = 12 and
φ = 0.3, 0.5, 0.8, {ǫt}t∈Z being an i.i.d. Poisson sequence with mean λ = 1, 5. The samples were
simulated using the R programming language.[17] For comparison purposes, the Yule–Walker
(YW) approach was also considered in the empirical investigation, since it is a widely used esti-
mation method in time-series models. The YW estimators of φ and λ are based upon the sample
ACF ρ̂, using that ρ(s) = φ, and the first moment of Yt, which is E(Yt) = λ/(1 − φ). They are
given by

φ̂YW = ρ̂(s) :=
∑n−s

t=1 (Yt − Ȳ)(Yt+s − Ȳ )
∑n

t=1(Yt − Ȳ )2
, λ̂YW := (1 − φ̂YW)Ȳ , (10)

where Ȳ := (1/n)
∑n

t=1 Yt denotes the sample mean. It is well-known that the estimators above
are strongly consistent.[18]

The empirical results displayed in the tables, that is, the empirical biases and mean square
errors (MSE), were computed over 1000 replications. The values of the MSE are given between
parenthesis. The CML estimates of φ and λ were obtained using the BFGS quasi-Newton Q2

nonlinear optimization algorithm with numerical derivatives.
From Tables 1 and 2, it can be seen that the CML estimator presents much smaller biases (in

absolute values) and MSEs than the other estimators, for all models. As expected, increasing
the sample size reduces substantially both bias and MSE. A comparison between Tables 1 and 2
indicates that both bias and MSE are larger in the latter case, which is not a surprising evidence
since in the second case, the model has larger mean and variance than in the first one. Another
result is related to the size of φ. In general, for YW and CLS methods, increasing φ, the bias and
MSE also increase. This indicates that these two estimation methods are sensitive to a process
that is closer to the non-stationary boundary, that is, the model is more near a unit root seasonal
INAR process.

For small sample sizes, in general, both bias and MSE for the YW estimators are smaller than
those for the CLS method. This may be explained by the fact that the YW estimator is calculated
using a sample size of n (Equation (10)), while the CLS estimator is based on a sample size of
n − s (Equation (6)).

The empirical investigation presented here suggests that the performance of the CML esti-
mator is much superior to those of the YW and CLS estimators. The superiority of CML was
expected, since this estimator uses the whole information of the distribution. However, what the
empirical results show is that there is a large degree of superiority of the CML with respect to
the other methods.
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Table 1. Biases of estimators for λ = 1 (MSE in parentheses).

Bias(φ̂)/MSE(φ̂) Bias(λ̂)/MSE(λ̂)

n φ YW CLS CML YW CLS CML

0.30 − 0.0178 − 0.0307 − 0.0067 0.0315 0.0508 0.0040
(0.0125) (0.0133) (0.0114) (0.0353) (0.0365) (0.0291)

100 0.50 − 0.0240 − 0.0334 − 0.0081 0.0500 0.0691 0.0064
(0.0100) (0.0116) (0.0063) (0.0549) (0.0560) (0.0304)

0.80 − 0.0267 − 0.0362 − 0.0031 0.1385 0.1854 0.0113
(0.0058) (0.0078) (0.0012) (0.1583) (0.1921) (0.0289)

0.30 − 0.0115 − 0.0156 − 0.0067 0.0221 0.0282 0.0115
(0.0045) (0.0044) (0.0035) (0.0130) (0.0133) (0.0104)

250 0.50 − 0.0106 − 0.0146 − 0.0029 0.0254 0.0337 0.0057
(0.0037) (0.0040) (0.0023) (0.0174) (0.0184) (0.0109)

0.80 − 0.0143 − 0.0166 − 0.0016 0.0700 0.0823 0.0028
(0.0019) (0.0022) (0.0004) (0.0511) (0.0572) (0.0113)

0.30 − 0.0058 − 0.0079 − 0.0023 0.0063 0.0093 − 0.0008
(0.0022) (0.0022) (0.0018) (0.0055) (0.0056) (0.0045)

500 0.50 − 0.0033 − 0.0056 − 0.0007 0.0102 0.0148 0.0029
(0.0018) (0.0018) (0.0010) (0.0087) (0.0089) (0.0052)

0.80 − 0.0086 − 0.0098 − 0.0003 0.0468 0.0500 0.0043
(0.0009) (0.0009) (0.0002) (0.0237) (0.0255) (0.0055)

Table 2. Biases of estimators in the case λ = 5 (MSE in parentheses).

Bias(φ̂)/MSE(φ̂) Bias(λ̂)/MSE(λ̂)

n φ YW CLS CML YW CLS CML

0.30 − 0.0180 − 0.0855 − 0.0083 0.2048 0.6947 0.0765
(0.0113) (0.0216) (0.0103) (0.6722) (1.3055) (0.5793)

100 0.50 − 0.0199 − 0.0933 − 0.0033 0.2620 1.0068 0.0335
(0.0097) (0.0236) (0.0060) (1.1078) (2.6607) (0.6218)

0.80 − 0.0304 − 0.1509 − 0.0003 0.7953 3.7812 0.0017
(0.0055) (0.0516) (0.0010) (3.5483) (32.314) (0.6105)

0.30 − 0.0082 − 0.0300 − 0.0034 0.0750 0.2348 0.0197
(0.0041) (0.0054) (0.0035) (0.02340) (0.03073) (0.1940)

250 0.50 − 0.0083 − 0.0307 − 0.0025 0.1063 0.3314 0.0262
(0.0035) (0.0049) (0.0021) (0.03669) (0.5212) (0.2121)

0.80 − 0.0135 − 0.0406 − 0.0011 0.3572 1.7114 0.0305
(0.0019) (0.0044) (0.0003) (1.2000) (2.7742) (0.2269)

0.30 − 0.0019 − 0.0125 − 0.0002 0.0304 0.1068 0.0077
(0.0019) (0.0022) (0.0017) (0.1083) (0.1236) (0.0905)

500 0.50 − 0.0029 − 0.0134 0.0009 0.0369 0.1426 − 0.0109
(0.0016) (0.0019) (0.0001) (0.1681) (0.1982) (0.1059)

0.80 − 0.0050 − 0.0162 0.0000 0.1353 0.4147 0.0001
(0.0009) (0.0013) (0.0002) (0.5409) (0.7884) (0.1104)

6. Real data example

The model, estimation and forecast methods proposed in this paper are now used to model and
forecast the monthly counts of claims of short-term disability benefits. In the data set, all the
claimants are male, between the ages of 35 and 54 years, work in the logging industry and
reported their claim to the Richmond, BC Workers Compensation Board. Only claimants whose
injuries were due to cuts and lacerations were included in the data set. The data consist of 120
observations starting from January 1985 and ending in December 1994. This series was previ-
ously studied by Freeland [15] and Zhu and Joe.[11] In the former study, covariates were used
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Figure 2. The time-series plot, ACF and PACF of the claims series from 1985 to 1994.

to account for the seasonality feature. In the same direction, the latter also considered covari-
ates functions to explain seasonality in counting models with Poisson and negative binomial
marginals to adjust the series. These models are not stationary. Zhu and Joe [11] also fitted the
series using INAR(1) processes with Poisson and negative binomial innovations without consid-
eration of seasonality. As was expected, the models with covariates, that is, the non-stationary
processes, produced smaller Akaike information criterion (AIC) values, however with larger
parametric dimensions.

Since the INAR(1)s process is a simple stationary model and accounts for seasonal patterns,
the above applications motivated its use as a candidate model to fit the monthly counts of injured
workers.

The series together with its sample ACF and partial autocorrelation function (PACF) are dis-
played in Figure 2. The plot of the series indicates that it is a mean stationary time series with an
apparent seasonal and the serial correlations behaviours. These phenomena can also be observed
in the plot of the sample ACF and the PACF. The plot shows the geometric decrease in the ACF
with a seasonal period of 12 and, also, the geometric decrease in the serial correlations. The
seasonal feature may be due to the fact that the logging industry is more active in the warmer
months. The behaviour of PACF may justify also the use of counting time-series models without
consideration of seasonality. Therefore, for comparison purposes, these data were also fitted by
an INAR(1) model. The first 110 observations were used to model the series, while the remaining
10 observations were considered for forecasting purposes.
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Table 3. Estimated parameters (standard errors in parentheses), AIC and BIC.

Model CML estimates CLS estimates AIC BIC

INAR(1)12 φ̂ 0.1746(0.0036) 0.2410(0.0899) 530.613 536.013
λ̂ 5.1391(0.1951) 4.7554(0.5897)

INAR(1) φ̂ 0.4418(0.0029) 0.5510(0.0783) 538.469 543.869
λ̂ 3.5224(0.1364) 2.8526(0.5079)
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Figure 3. Sample autocorrelations of the residuals obtained from INAR(1)12 model and fitted values.

Table 3 provides the CML and CLS estimates (with standard errors in parentheses) of the
model parameters and two goodness of-fit statistics: the AIC and the Bayesian information
criterion (BIC).

The results displayed in Table 3 suggest that the INAR(1)12 model produces better fits to the
data than the INAR(1) model. The model fitted by CML estimation is

Yt = 0.1746 ◦ Yt−12 + ǫt

with ǫt ∼ Po(5.1391).
The sample autocorrelations of the residuals from the INAR(1)12 model and the fitted values

are shown in Figure 3. Although the estimated results in Table 3 indicated that the INAR(1)12

model was more adequate to fit the data, there is still serial correlation in the residuals. Therefore,
the proposed model was not able to capture the total correlation in the data. This empirical
evidence suggests a more complete model which can capture both the seasonal and non-seasonal
correlations. One suggestion may be to use an INAR model that incorporates both seasonal and
serial correlations. This issue is beyond this paper.

The forecast investigation is given in Table 4. The point predictions of seasonal and non-
seasonal models are close to each other and they both seem to be reasonable estimates of the
future h-step ahead observations. The interval prediction (IP) is obtained using the result of
Silva et al.,[19, Section 3] for the seasonal and non-seasonal cases. For more details, see Silva
et al.[19] It can be seen that, in most cases, intervals obtained by the INAR(1)12 model have
smaller widths. The root mean square forecast errors (RMSE), at the bottom of the Table 4, shows
average fitting in both cases are very similar, being the non-seasonal the one with smaller value.
It should be remarked that the fitting is a little bit better in the non-seasonal case, contrary to the
goodness-of-fit based on different information criteria in Table 3. This forecasting investigation
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Table 4. 100(1 − γ )% Prediction intervals with actual values and forecasting values for the burns data.

Point prediction IP (γ = 0.05) IP (γ = 0.10)

h Y110+h INAR(1)12 INAR(1) INAR(1)12 INAR(1) INAR(1)12 INAR(1)

1 4 5.663 4.406 (0,10) (0,8) (0,9) (0,7)
2 1 5.314 5.469 (0,9) (0,10) (0,8) (0,9)
3 6 5.663 5.939 (0,10) (0,11) (0,9) (0,9)
4 5 6.187 6.146 (0,10) (0,10) (0,9) (0,9)
5 3 6.012 6.238 (0,10) (0,11) (0,9) (0,10)
6 2 6.711 6.278 (0,11) (0,11) (0,10) (0,10)
7 2 6.711 6.296 (0,11) (0,11) (0,10) (0,10)
8 2 6.012 6.304 (0,10) (0,11) (0,9) (0,10)
9 9 6.187 6.308 (0,10) (0,11) (0,9) (0,10)
10 5 5.838 6.309 (0,10) (0,11) (0,9) (0,10)
RMSE 3.179 3.101

may also corroborate to the use of a more complete model, that is, a model with seasonal and
serial correlations, to fit the data.

7. Conclusions

In this paper, the non-negative INAR process with seasonal structure based on the model
proposed by Al-Osh and Alzaid [2] is introduced and its main properties are derived. Three esti-
mators for the model parameters are considered, the YW, conditional least squares and CML esti-
mators, and their relative merits as estimators are compared from simulation studies. The CML
estimator, as expected, is the most efficient, although it is also the most computationally inten-
sive of the three. However, the magnitude of the gain in terms of bias and MSE makes the CML
estimator a much better choice for seasonal models in all situations, a similar conclusion to that
obtained for the standard INAR(1) model; see, for example, Al-Osh and Alzaid.[2] Thus, the use
of CML to estimate the model parameters of an INAR(1)s process is recommended here. Finally,
the INAR(1)s model is applied to a real data set to show the potential of this new model. The
INAR(1) model is also used to fit the same data. Not surprisingly, the INAR(1)s model presents a
better fit. Looking at the ACF plot, it is clear that there are seasonal and nonseasonal autoregres-
sive contributions. Therefore, an interesting extension of the model proposed here is to combine
both INAR(1) and INAR(1)s models in only one process, such as the standard SARMA time-
series models. This is a current research of the authors and the subject of a forthcoming paper.
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Appendix

Proof of Proposition 1

Proof Define the random variables Xt,n as

Xt,n :=
n

∑

k=0

φk ◦ ǫt−ks = ǫt +
n

∑

k=1

ǫt−ks
∑

j=1

Zt,k,j, t ∈ Z, n ∈ Z+, (A1)

where the Bernoulli variables {Zt,k,j}k,j∈N are independent and mutually independent of the innovation process {ǫt}t∈Z

with EZt,k,j = φk for all k, j ∈ N and t ∈ Z. We prove that {Xt,n}n∈Z+ forms a Cauchy sequence in probability for all
t ∈ Z. If λ and σ 2 represent, respectively, the mean and variance of the innovation sequence, then we obtain, for all
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0 < n < m,

E

[

m
∑

k=n

φk ◦ ǫt−ks

]

=
m

∑

k=n

φkλ ≤ φn

1 − φ
λ,

var

[

m
∑

k=n

φk ◦ ǫt−ks

]

=
m

∑

k=n

(φ2kσ 2 + φk(1 − φk)λ) ≤ φ2n

1 − φ2
σ 2 + φn

1 − φ
λ,

(A2)

using properties (iv) and (v) of the thinning operator, see Silva and Oliveria.[20] Since φ ∈ [0, 1), the right-hand sides in
Equation (12) tend to 0 as n → ∞. This implies that the sequence {Xt,n}n∈Z+ forms a Cauchy sequence in mean square
sense and hence in probability, as well. Thus, for all t ∈ Z, there exists a random variable Xt , which is the limit on the

right-hand side in Equation (3), such that Xt,n
P→ Xt as n → ∞. Let the non-negative integer-valued stochastic process

{Yt}t∈Z satisfy the Equation (1). By substituting successively we obtain

Yt = φ ◦ Yt−s + ǫt = φ ◦ (φ ◦ Yt−2s + ǫt−s) + ǫt .

Using that φ ◦ (ψ ◦ X )
d= (φ ψ) ◦ X and φ ◦ (X + Y)

d= φ ◦ X + φ ◦ Y for any φ, ψ ∈ [0, 1] and any independent pair
of non-negative integer-valued random variables X , Y (see [2, p.262]), we have the following equality in distribution:

Yt
d= φ2 ◦ Yt−2s + φ ◦ ǫt−s + ǫt = φ2 ◦ Yt−2s + Xt,1,

since ǫt−s and Yt−2s are independent. By induction, for all n ∈ N, we have

Yt
d= φn ◦ Yt−ns +

n−1
∑

k=0

φk ◦ ǫt−ks = φn ◦ Yt−ns + Xt,n−1. (A3)

If µY and σ 2
Y represent, respectively, the mean and variance of a stationary solution {Yt}t∈Z, we obtain

E[φn ◦ Yt−ns] = φnµY ,

var[φn ◦ Yt−ns] = φ2nσ 2
Y + φn(1 − φn)µY .

Since φ ∈ [0, 1), we obtain limn→∞ E[φn ◦ Yt−ns] = limn→∞ var[φn ◦ Yt−ns] = 0. Therefore, (φn ◦ Yt−ns)
P→ 0 as n →

∞, and thus, by Equation (13), Xt,n
d→ Yt as n → ∞ for all t ∈ Z, where

d→ denotes convergence in distribution. Hence,

Yt
d= Xt for all t ∈ Z, which means the uniqueness of the stationary marginal solution. Finally, it is showed that the

distribution of the process {Xt}t∈Z is the solution of the Equation (1). Using the above-mentioned properties of the
binomial thinning operator, the following is derived:

Xt,n =
n

∑

k=0

φk ◦ ǫt−ks
d= ǫt + φ ◦

(

n−1
∑

k=0

φk ◦ ǫt−s−ks

)

= φ ◦ Xt,n−1 + ǫt , t ∈ Z.

Taking the limit in probability as n → ∞ the equality Xt
d= φ ◦ Xt + ǫt is obtained, that is, the distribution of Xt is a

stationary marginal distribution to Equation (1). This completes the proof. �

Proof of Proposition 2

Proof (a) Let ϕW denote the characteristic function of a random variable W. If W = φ ◦ X , where X is a non-
negative integer-valued random variable, then ϕW (t) = E(φ eit + 1 − φ)X . In particular, if X ∼ Po(λ), then ϕW (u) =
exp{φλ(eiu − 1)}. By the uniqueness of the characteristic function, using Equation (13), ϕYt = ϕφn◦Yt−ns · ϕXt,n−1 is

obtained. Since (φn ◦ Yt−ns)
P→ 0 as n → ∞, (see the proof of Proposition 1) we have ϕφn◦Yt−ns → 1 as n → ∞. Thus,

ϕXt,n → ϕYt as n → ∞. Since ǫt has Poisson distribution with mean λ for all t ∈ Z, Xt,n is a sum of independent random
variables and φ ∈ [0, 1), we obtain

ϕXt,n (u) =
n

∏

k=0

exp{φkλ(eiu − 1)} = exp

{

n
∑

k=0

φkλ(eiu − 1)

}

→ exp

{

λ

1 − φ
(eiu − 1)

}

as n → ∞ for all u ∈ R. Thus, by the uniqueness of the characteristic function, Po(λ/(1 − φ)) provides the only
stationary distribution.
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(b) Let γ denote the covariance function of the stationary INAR(1)s process {Yt}t∈Z, that is, γ (k) := cov(Yt−k , Yt),
k ∈ Z. By Equation (1), we have

γ (k) = cov(Yt−k , Yt) = cov(Yt−k , φ ◦ Yt−s) + cov(Yt−k , ǫt) = φ cov(Yt−k , Yt−s) = φγ (k − s),

where we used the assumption that Yt is independent of future values of ǫt and the fact that cov(φ ◦ U , V) = φ cov(U , V)

if the Bernoulli variables defining φ ◦ U are mutually independent both of U and V . Suppose that k = hs + r, where
h ∈ Z+ and r ∈ {0, 1, . . . s − 1}. Then, by induction, we obtain γ (k) = φhγ (r). Thus, if r = 0, that is, k is a positive
integer multiple of s, then γ (k) = φhγ (0), where γ (0) is the variance of the process {Yt}t∈Z. If r > 0, then it is clear that
it is enough to compute the covariance between Yt and Yt−r . However, these random variables belong to the different
seasonal components of the INAR(1)s process and thus they are independent. This gives the result. �

Proof of Theorem 3

Proof Let Y0, Y1, . . . , Yn be a sample of a Poisson INAR(1)s process. The aim of the following discussion is to show
that the regularity conditions given in Theorem 3.2 of [13] are satisfied. Since ∂g/∂φ = y, ∂g/∂λ = 1, and ∂2g/∂φ2 =
∂2g/∂φ∂λ = ∂2g/∂λ2 = 0, the regularity conditions (i), (ii), and (iii) on Klimko and Nelson [13, p.634] hold. Define the
2 × 2 matrix V according to Equation (3.2) in [13] as

Vij = Eθ

(

∂g(θ , Yt−s)

∂θ i

· ∂g(θ , Yt−s)

∂θ j

)

, i, j = 1, 2

and the 2 × 2 matrix W according to Equation (3.5) in [13] as

Wij = Eθ

(

u2
t (θ)

∂g(θ , Yt−s)

∂θ i

· ∂g(θ , Yt−s)

∂θ j

)

, i, j = 1, 2,

where ut(θ) = Yt − g(θ , Yt−s). Using the above-mentioned partial derivatives of the function g(·, ·),

V11 = Eθ (Y
2
t−s) = λ

1 − φ
+ λ2

(1 − φ)2
,

V12 = Eθ (Yt−s) = λ

1 − φ
,

V22 = Eθ (1) = 1

and

W11 = Eθ ((Yt − φYt−s − λ)2Y 2
t−s) = φλ + λ2

(

1 + 3φ

1 − φ

)

+ λ3
(

1 + φ

(1 − φ)2

)

,

W12 = Eθ ((Yt − φYt−s − λ)2Yt−s) = φλ + 1 + φ

1 − φ
λ2,

W22 = Eθ ((Yt − φYt−s − λ)2) = λ(1 + φ)

are obtained. The entries of the matrix W are derived by the following argument. Since, by Equation (1),

Yt − φYt−s − λ =
Yt−s
∑

j=1

(Zj − φ) + (ǫt − λ),

where {Zj}j∈N is an i.i.d. Bernoulli random sequence with mean φ, then, by conditioning with respect to Yt−s, we obtain

W11 = Eθ

⎛

⎜

⎝

⎛

⎝

Yt−s
∑

j=1

(Zj − φ) + (ǫt − λ)

⎞

⎠

2

Y 2
t−s

⎞

⎟

⎠

= Eθ

⎛

⎝Y 2
t−s

Yt−s
∑

j=1

(Zj − φ)2

⎞

⎠ + Eθ

(

(ǫt − λ)2)
Eθ (Y

2
t−s).

Here, again by conditioning with respect to Yt−s, we have

Eθ

⎛

⎝Y 2
t−s

Yt−s
∑

j=1

(Zj − φ)2

⎞

⎠ = Eθ (Y
3
t−s)Eθ ((Zj − φ)2)

and the result follows for entry W11 since Eθ (Y
3
t−s) = λ/(1 − φ) + 3(λ/(1 − φ))2 + (λ/(1 − φ))3. The entries W12 and

W22 can be similarly derived. It is easy to check that the matrix V is positive definite. Finally, it is clear that conditions
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(3.3) and (3.4) in [13] are also satisfied. Hence, the estimator θ̂CLS of θ has the following asymptotic distribution:

√
n(θ̂CLS − θ)

d→ N (0, V−1WV−1).

Since

V−1 =

⎡

⎢

⎣

1 − φ

λ
−1

−1 1 + λ

1 − φ

⎤

⎥

⎦
, W =

⎡

⎢

⎢

⎣

φλ + λ2

(

1 + 3φ

1 − φ

)

+ λ3

(

1 + φ

(1 − φ)2

)

φλ + 1 + φ

1 − φ
λ2

φλ + 1 + φ

1 − φ
λ2 (1 + φ)λ

⎤

⎥

⎥

⎦

,

V−1WV−1 =

⎡

⎢

⎣

φ(1 − φ)2

λ
+ (1 − φ2) −(1 + φ)λ

−(1 + φ)λ λ + 1 + φ

1 − φ
λ2

⎤

⎥

⎦

is obtained and the proof is finished. �

Proof of Proposition 5

Proof (1) Let q := ⌈h/s⌉ and r := qs − h. Then, from Equation (A3), Equation (8) is obtained, that is, Yt+h =
Yt−r+qs = φq ◦ Yt−r + Xt−r,q−1, see Equation (A1). This statement follows from the facts that φq ◦ Yt−r ∼ B(Yn−r , φq),
Xt−r,q−1 ∼ Po(λ(1 − φq)/(1 − φ)) and the independence of φq ◦ Yt−r and Xt−r,q−1.

(2) Using Equation (8), E(φ ◦ X |X ) = φX , where X is a non-negative integer-valued random variable, and the fact
that ǫn+h−js is independent of the σ -algebra Fn for all j = 0, 1, . . . , q − 1, Eθ (Yn+h|Fn) is computed as follows:

Eθ (Yn+h|Fn) = Eθ

⎛

⎝φq ◦ Yn−r +
q−1
∑

j=0

φj ◦ ǫn+h−js

∣

∣

∣

∣

∣

∣

Fn

⎞

⎠

= φqYn−r + λ

q−1
∑

j=0

φj

= φq

(

Yn−r − λ

1 − φ

)

+ λ

1 − φ
.

(3) Using Equation (8), var(φ ◦ X |X ) = φ(1 − φ)X , where X is a non-negative integer-valued random variable, and
the fact that ǫn+h−js is independent of the σ -algebra Fn for all j = 0, 1, . . . , q − 1, varθ (Yn+h|Fn) is computed as follows:

varθ (Yn+h|Fn) = varθ

⎛

⎝φq ◦ Yn−r +
q−1
∑

j=0

φj ◦ ǫn+h−js

∣

∣

∣

∣

∣

∣

Fn

⎞

⎠

= varθ (φ
q ◦ Yn−r|Yn−r) + varθ

⎛

⎝

q−1
∑

j=0

φj ◦ ǫn+h−js

⎞

⎠

= φq(1 − φq)Yn−r +
q−1
∑

j=0

varθ (φ
j ◦ ǫn+h−js)

= φq(1 − φq)Yn−r + λ(1 − φq)

1 − φ
.

(4) Using the results given in (2) and (3), the following limits are obtained:

lim
h→∞

Eθ (Yn+h|Fn) = lim
h→∞

[

φq

(

Yn−r − λ

1 − φ

)

+ λ

1 − φ

]

= λ

1 − φ
,

lim
h→∞

varθ (Yn+h|Fn) = lim
h→∞

[

φq(1 − φq)Yn−r + λ(1 − φq)

1 − φ

]

= λ

1 − φ
.
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