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Abstract 

 

This paper is devoted to present the results of creation of gold nanoparticles on 

titanium surface. We focused on the problem how to create gold nanoparticles on the titanium 

surface with defined particle size and distribution, which could be interesting for several 

applications (e.g. providing well-defined substrates for biomedical research, etc.). To do that 

the sample is affected by the complex physical rout of gold nanoparticles formation: by gold 

ion implantation, thin Au layer deposition and thermal annealing. The effect of the 

technology, influence on the surface structure and its parameters were investigated by the X-

ray diffraction, Scanning Electron and Atomic Force Microscopy, as well as by Secondary 

Neutral Mass Spectrometry methods. 
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Titanium is a widely used material for different applications in industry and medicine. 

The latter relates to implants with high stability and biocompatibility, where properties of the 

tissue-Ti/TiO2 interaction are really important. Titanium itself is a biocompatible material; 

however its osseointegration can generally be influenced by modifying the surface structure, 

which is playing an important role in their successful clinical application [1, 2]. Several 

studies shows that the formation of titanium oxide layer obviously improving the biological 

compatibility of titanium and present many surface treatment methods to increasing the 

thickness of native oxide layer [3-5]. However, beside of this, the use of titanium implants 

with composite surfaces can exhibit antibacterial properties and influence cell growth 

processes [6, 7]. These processes could be enhanced by adding gold nanoparticles (GNP), 

besides of that they also can easily establish special bonds to biomolecules [8]. A number of 

chemical and physical ways are known and used for GNP fabrication [8-13]. In our work we 

focused on two methods, used either separately or in combination:  

(1) the nano-structurization of thin gold layer, deposited by magnetron sputtering 

method onto the surface of natural titanium sample kept under normal environmental 

conditions. We call that the physical vapor deposition (PVD) method. 

(2) irradiation by Au ions provided by an electron cyclotron resonance (ECR) ion 

source (further called the ECR method) [14,15].   

The heat treatment (annealing) of the samples also was applied in order to form GNP 

on the surface. Scanning Electron Microscope (SEM), Secondary Neutral Mass Spectrometry 

(SNMS) and Atomic Force Microscope (AFM) were used to establish the interconnection 

between the applied technology and the parameters of the resulted surface.  

One of the novelties of this work was the modification of the Ti surface by gold ion 

beam produced by the ECR ion source (ECRIS) [16]. For this measurement the Au ion beam 

was produced by sputtering method [17], i.e a gold pastille was bombarded by oxygen ions in 
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the plasma. The extracted ion beam was straightly transported to the targets so all the beam 

components hit the samples. Before irradiation the extracted complex ion beam was analyzed 

by charge-to-mass ratio resulting in a beam spectrum. The peaks in the spectrum were 

identified and measured, and thus the ratios of the beam components could be exactly 

calculated. The composition of the beam was: Au - 2.4 %, O - 78%, H - 10 %, C - 8%, others 

1.6%. The dose of the irradiation of gold ions was 1.5·10
16

 ion/cm
2
. Due to the different 

charges the gold ions were distributed not in a form of a thin layer, but stopped at different 

depth forming a density distribution in the surface layer of samples. 

The 0.5 mm thick titanium plates (99.6 at%, grade 2, Spemet Co., Taipei, Taiwan) 

with dimension of 10mm x 10mm were mechanically polished to #2000 grid level, followed 

by 1μm Al2O3 powder polishing to produce a mirror-like surface. All substrates were 

immersed in fresh 30% HNO3 for 30 minutes at room temperature. In the next step all plates 

were sonicated in ethanol for 30 min, rinsing with distilled water for further 30 min and were 

dried in air.  

 Before ECR irradiation half part of the samples were covered by the stainless steel 

sheet. After irradiation this sheet was turned in 90˚ degree and the sample was covered with 

15 nm thick gold layer by magnetron sputtering method. In this way we produced four 

different treated 5x5 mm parts on the same Ti sample. After preparation the samples were 

annealed at 550 
0
C for 6 hours at atmospheric pressure to form gold nanoparticles from both 

Au components (irradiated and deposited). The following parts of the samples were 

investigated: 1 – pure Ti surface (Ti part), 2 – Ti surface irradiated with Au ions (ECR part), 3 

– Ti surface irradiated with Au ions and covered with gold layer (ECR+PVD part), 4 – Ti 

surface covered with gold layer (PVD part).  

Before and after annealing the samples were investigated with several different 

methods: SEM (Hitachi S-4300 CFE), AFM (Veeco diCaliber) and X-Ray diffraction (XRD). 
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In order to have a good statistic results all samples were investigated in 10 different places by 

SEM and AFM. The θ-2θ XRD measurements were carried out with a Siemens CuKα X-ray 

tube (λ=1.54 Å) and a horizontal goniometer equipped with graphite monochromator. The 

parameters of the nanostructures were calculated using a standard image analyzing process on 

the SEM pictures made by National Instrument Vision Assistant. Energy dispersive x-ray 

spectroscopy (EDX) in the SEM system was used for checking the chemical components of 

the investigated samples. An INA-X type SNMS equipment (SPECS, Berlin) was used to 

measure the depth distribution of the elements to make a comparison with SRIM (Stopping 

and Range of Ions in Matter) simulation.  

The implanted gold ions in Ti samples showed a Gaussian-like depth density 

distribution with a maximum around 10 nm in depth. The irradiation conditions were modeled 

by the well-known simulation code, SRIM [18]. Figure 1 represents the comparison of the 

penetration calculation by SRIM to the data of the SNMS measurement, which was done on a 

sample before heat treatment. Gold ions penetrate into Ti up to about 13 nm, while oxygen 

strongly decreases in 3-5 nm depth showing the thickness of the oxide layer on Ti. The 

formation of this oxide layer probably also enhance the biological compatibility of the 

titanium implants [3,6]. In the SRIM simulations gold ions with realistic composition 

(obtained from the ECR beam spectra) were used. It was established that the model 

calculations are not perfect, but in good agreement with the experimental results; hence the 

SRIM can be used for modelling the penetration of the Au ions in the Ti samples during such 

a low-energy implantation. (For comparison Figure 1(a) shows the theoretical distribution of 

gold ions in TiO, as well.) Figure 1b shows that the implantation of Au ions was successful 

and the measured penetration depth corresponds with the SRIM calculation. However, results 

of the more sensitive SNMS method show that annealing (which is necessary for GNP 

creation) increases thickness of the oxide layer on Ti surface up to 100-120 nm. 
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Figure 2 and 3 represent the SEM and AFM images of different parts of the Ti sample 

before and after heat treatment. AFM was used to measure the average roughness of the 

surface before and after the heat treatment, this way the RMS value was established. The 

figures demonstrate the occurrence of nanostructures in case of the 4 areas due to annealing, 

whose parameters (average size and filling factor) depend on the surface treatment. The 

average roughness of different part of the samples, before heat treatment, was the following:  

Ti – 5 nm, Ti+ECR – 3 nm, Ti+ECR+PVD – 3 nm, Ti+PVD – 4 nm. While the after heat 

treatment it has changed: Ti – 11 nm, Ti+ECR – 9 nm, Ti+ECR+PVD – 17 nm, Ti+PVD – 25 

nm. We can state that the heat treatment results in an increase of the roughness of all parts of 

the sample.  

The structural characteristics of the pure Ti part of the sample were measured by XRD 

before and after annealing (Fig. 4). The spectrum of the investigated sample has changed 

definitely due to annealing. Appearance of TiO nanocrystals was observed after heat 

treatment. Characteristic peaks appeared at 35.1, 38.4, 40.2, 53.0 and 27.4, 35.9, 54.4 2θ 

degrees, which correspond to Ti and TiO2 (rutile), respectively [19, 20]. The size of the TiO2 

crystals has been calculated by the Scherrer-equation [21, 22] and was determined in average 

size of 14 nm. The change of the roughness of pure Ti surface could be explained by the 

presence of TiO2 nanostructures which is supported by XRD measurement. The XRD data is 

show - within the limits of sensitivity of this method - that before the annealing only metallic 

Ti exists, while TiO2 nanocrystals appear after annealing. The peaks, which belong to these 

nanocrystals, are in connection with the rutile phase of the TiO2. 

The average size (diameter) of the GNP on the sample after heat treatment were the 

following: Ti+ECR – 60 nm, Ti+ECR+PVD – 160 nm, Ti+PVD – 90 nm, while their filling 

factor: Ti+ECR – 0.3 %, Ti+ECR+PVD – 11 %, Ti+PVD – 11.2 %. Analyzing the size 
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distribution of the created particles we have determined that the size fit well with a Gaussians 

distribution (Fig. 5). The broader distribution in the case of ECR+PVD can be interpreted by 

the collective appearance of smaller and bigger GNPs. It seems that the smaller particles arise 

partially from the implanted Au, being partially embedded and increasing this way the 

mechanical stability of the nanocomposite. The appearance of bigger GNPs in the ECR+PVD 

part and the differences between the parameters of nanostructures can be explained by 

variation of diffusion rate and Ostwald-ripening on different parts of the sample. The surface 

of the Ti sample implanted with Au ions was less rough than without this treatment. On this 

part the process of Ostwald-ripening results a faster surface diffusion of gold. That’s why the 

GNP creation was faster in the less rough part of the sample. Comparison of the ECR+PVD 

part with the PVD part showed us, that larger nanoparticles were formed, the filling factor and 

the number of the nanoparticles are smaller and the distance between the gold nanostructures 

is larger (Fig. 2). It is clearly observable that the relatively small amount of ECR-shot gold 

ions in the titanium remarkably changes the size distribution of GNPs created by PVD.   

Combined technology of titanium surface structurization, which includes formation of 

gold nanoparticles complemented with annealing was reported in this paper. We present a 

method for the formation of gold nanoparticles on titanium surface, created by the 

combination of different methods: ion implantation, deposition by magnetron sputtering 

method and thermal annealing.  It was shown that the multiply charged Au ions were 

successfully implanted into Ti sample. The ion irradiation resulted in decreasing of the 

sample’s surface roughness. Moreover, the depth profile of implanted gold proves that a small 

amount of gold nanostructures exist even under the surface of Ti, that can improve the 

stability of the resulting composite structure.  

Gold nanoparticles of different dimensions were formed after gold layer deposition 

and annealing. In the same investigated area the amount of the detected gold particles was less 
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in PVD than in ECR+PVD, which can be explained by the different size of the nanostructures 

(Fig. 5). Larger gold nanostructures were formed on that part which was previously implanted 

with Au ions (ECR+PVD) and they were complemented by smaller ones. In connection with 

this fact, the size of the created GNP on Ti can be easily controlled and investigated during 

the technology process. 

Annealing of the sample results appearing of TiO2 rutile nanocrystals which are 

biocompatible material and its combination with GNP can be used for further improvement of 

this type of implant materials. The biomedical effect of GNPs formed by the combined 

method shown in this paper is planned to be checked in the near future. In the case of bonding 

to biomolecules, a rough estimation can be given for the parameters (size and distance 

between nanoparticles) of the GNP system because these parameters are somehow related to 

the size of the biomolecules. Besides of that, it is planned to test the biomolecule 

immobilization on the GNP coated Ti surfaces. 
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Figure captions: 

 

Fig. 1. a) Calculation with SRIM of the implantation of Au ions in the Ti and TiO samples. b) 

SNMS depth profile of the Ti sample, which was irradiated with Au ions before heat 

treatment. 

 

Fig. 2. SEM images of the surface of the Ti sample at different places. Upper pictures: before 

heat treatment, lower pictures: after heat treatment. From left to right: Ti part, ECR part, PVD 

part and ECR+PVD part. 

 

Fig. 3. AFM images of the surface of the Ti sample at different places. Upper pictures: before 

the heat treatment, lower pictures: after the heat treatment. From left to right: Ti part, ECR 

part, PVD part and ECR+PVD part. 

 

Fig. 4. X-ray diffraction patterns of the as-deposited (a) and annealed (b) pure Ti sample. 

 

Fig. 5. The size distribution of GNPs (symbols). Lines are Gaussian curves. 
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