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EPR Steering inequalities with 
Communication Assistance
Sándor Nagy1 & Tamás Vértesi2

In this paper, we investigate the communication cost of reproducing Einstein-Podolsky-Rosen 
(EPR) steering correlations arising from bipartite quantum systems. We characterize the set of 
bipartite quantum states which admits a local hidden state model augmented with c bits of classical 
communication from an untrusted party (Alice) to a trusted party (Bob). In case of one bit of information 
(c = 1), we show that this set has a nontrivial intersection with the sets admitting a local hidden state and 
a local hidden variables model for projective measurements. On the other hand, we find that an infinite 
amount of classical communication is required from an untrusted Alice to a trusted Bob to simulate the 
EPR steering correlations produced by a two-qubit maximally entangled state. It is conjectured that a 
state-of-the-art quantum experiment would be able to falsify two bits of communication this way.

Quantum entanglement is a remarkable phenomenon that has no counterpart in classical physics1,2. Beyond 
its fundamental importance, it is a crucial resource in quantum information and quantum computing3. 
Entanglement gives rise to the phenomenon of Bell nonlocality4,5, which lies at the heart of device-independent 
quantum information processing6. Such device-independent protocols are greatly immune against errors which 
are due to deviations of the ideal description of the setup from the actual physical implementation.

There is an intermediate form of non-separability between entanglement and nonlocality linked to the phe-
nomenon of Einstein-Podolsky-Rosen (EPR) steering7, which was put on a firm basis recently by Wiseman, 
Doherty and Jones8,9 by introducing an information task for arbitrary quantum systems. Since then, both the 
detection10–13 and quantification14–20 of EPR steering have been thoroughly investigated with interesting applica-
tions in quantum information21–23 and recent experimental tests24–28. More recent experiments have addressed 
multipartite quantum steering29 and one-way steering30,31.

Quantum correlations can be phrased in terms of an information task wherein a referee, say Charlie, wants to 
verify that two parties, called Alice and Bob, share an entangled state (see Fig. 1 displaying the setup). In the 
preparation stage of the protocol, Alice and Bob share a number of copies of a bipartite state ρ, and for each of 
those states Charlie asks them to perform one of a number of measurements chosen by Charlie at random. Alice’s 
and Bob’s measurements are denoted by Ma x and Mb y, respectively, where x and y denote the choice of measure-
ments and a and b their corresponding outputs. By repeating the procedure many times, they form the joint 
probability distribution ( )P ab xyQ , which is given by

ρ( ) = ( ⊗ ). ( )P ab xy M Mtr 1Q a x b y

That is, the object of our study is the probability distribution of the outputs of the two parties dependent on 
each party’s input (i.e. choice of measurement settings). Throughout we will assume that measurements are pro-
jective ones, that is, =M Ma x a x

2  and =M Mb y b y
2 . Note that for two-outcome settings (which is our main con-

cern) this is not a limitation32.
Basically, there are three options to certify entanglement depending on the number of trusted parties partici-

pating in the protocol. Charlie trusts both Alice and Bob (and their apparatuses). Charlie trusts (say) Bob, but not 
Alice. Finally, Charlie trusts neither Alice nor Bob.

In the latter case of no trust at all (i.e. the Bell nonlocality scenario), we say that a quantum state ρ is Bell local 
or equivalently admits a local hidden variables (LHV) model (for projective measurements), when the statistics 
( )P ab xyQ  originating from arbitrary local (projective) measurements Ma x and Mb y in (1) can be reproduced by 

a distribution of the form
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∑ λ( ) = ( ) ( ) ( ), ( )λ λ λP ab xy P P a x P b y 2

where λ is some shared classical random variable distributed according to the density P(λ), and ( )λP a x  and 
( )λP b y  are arbitrary local response functions of Alice and Bob, respectively. In that case, the distribution 
( )P ab xyQ  cannot violate any Bell inequality. Conversely, if the distribution ( )P ab xyQ  cannot be written in the 

form (2), it violates a Bell inequality. This implies that some form of extra communication is required between 
Alice and Bob in order to reproduce the statistics ( )P ab xyQ .

On the other hand, in case of partial trust (i.e. an EPR steering scenario), we obtain the data ( )P ab xyQ  
with an additional knowledge that Bob’s system is well-characterized. That is, Charlie trusts Bob’s measure-
ments {Mb|y}b,y. In that case, the state ρ shared by Alice and Bob is said to be unsteerable or equivalently to 
admit a local hidden state (LHS) model, when the statistics ( )P ab xyQ  can be reproduced by a distribution of 
the form (2), where now

σ( ) = ( ). ( )λ λP b y tr M 3b y

In that case, the distribution ( )P ab xyQ  cannot violate the so-called steering inequalities. Conversely, if the 
distribution ( )P ab xyQ  cannot be written in the form (2) with the above restriction (3) on ( )λP b y , it violates a 
steering inequality. Again, this means that some communication has to be taken place between Alice and Bob to 
reproduce the obtained statistics ( )P ab xyQ .

Finally, in the case that Charlie trusts both Alice’s and Bob’s measurement devices, the LHS model above 
becomes a quantum separable (QS) model, where there exist local density operators σλ

A and σλ
B such that the 

response functions of Alice and Bob in the formula (2) are given respectively by σ( ) = ( )λ λP a x Mtr A
a x  and 

σ( ) = ( )λ λP b y Mtr B
b y . Failure of satisfying this model implies entanglement. This again can be detected through 

the violation of certain inequalities which are conventionally called entanglement witnesses.
However, observing either a violation of a LHV model in the Bell nonlocality scenario, or violation of a LHS 

model in the EPR steering scenario, or violation of a QS model in the entanglement scenario will not quantify 
the amount of communication beyond the fact that some communication was indeed required. In case of Bell 
nonlocality, where no trust is assumed in either devices, Bacon and Toner provided a general framework for 
a measure of nonlocality by allowing the parties to communicate some bits of information after selecting the 
measurement settings33. They in particular proved that correlations produced by projective measurements on the 
two-qubit singlet state can be simulated with a local hidden variables model (LHV) augmented by a single bit of 
communication34.

In this paper, we pose an analogous question in the EPR steering scenario. Our aim is to quantify the correla-
tions arising from quantum (projective) measurements conducted by Alice on her share of an entangled particle. 

Figure 1.  The setup for simulating (a) Bell nonlocal and (b) EPR steering correlations with local models using 
auxiliary communication. In (a) the simulation protocol is as follows. The two parties distribute shared 
randomness λ. Charlie sends settings ( , )x y  to the two parties. After obtaining the settings, Alice is allowed to 
communicate to Bob a classical message consisting of c bits. Finally, Alice and Bob give outputs a and b as a 
function of available information for each party. The (b) protocol is similar to (a) with the difference that 
Charlie fully trusts Bob, hence, we can assume that Bob performs a given set of quantum measurements {Mb|y}b,y 
on σλ.
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To do so, we allow some amount of classical communication from the untrusted party Alice to a trusted party 
Bob.

The structure of the paper is as follows. We first present the Bell nonlocality setup by Bacon and Toner33. Then 
we translate this setup to the EPR-steering scenario. In particular, we develop a computational framework to 
decide if an EPR correlation produced by quantum theory can be simulated by a LHS model plus exchanging a 
number of bits of communication. We provide an efficient code based on semidefinite programming (SDP)35 to 
solve such a membership problem. This allows us to explore the shape of the set of two-qubit states admitting a 
LHS model augmented with one bit of communication, a set we denote by ( )LHS 1 . Specifically, we prove that the 
set ( )LHS 1  is strictly larger than the set of states admitting a LHS model (for projective measurements). On the 
other hand, we conduct an extensive numerical search which indicates that there exist two-qubit quantum states 
admitting a LHV model (assuming projective measurements), which nevertheless cannot be described by a LHS 
model assisted with 1 bit of classical communication. Finally, we show that an infinite amount of classical com-
munication is required from an untrusted Alice to a trusted Bob to simulate the statistics of any bipartite pure 
entangled state in this scenario.

Results
Bell nonlocality with communication.  Bacon and Toner use the following classical protocol to simulate 
a Bell scenario33 (see also ref. 36 for more recent results). Let us consider =c dlog2  bits of classical communica-
tion sent from Alice’s device to Bob’s device. Upon receiving input x, Alice’s device sends communication c and 
outputs a with probability ( , )P a c x . Upon receiving input y and communication c, Bob’s device outputs b with 
probability ( )P b y . We thus have that

∑( ) = ( ) ( ).
( )=

P ab xy P ac x P b yc
4c

d

1

In the simulation protocol, we also would like to take into account the possibility that Alice and Bob’s devices 
are correlated due to a common random variable λ, which was prepared and distributed between the parties 
before receiving inputs x and y from Charlie. In that case, the set of admissible distributions is formed by all con-
vex combination of strategies labeled by λ:

∑ ∑λ( ) = ( ) ( ) ( ),
( )λ

λ λ
=

P ab xy P P ac x P b yc
5c

d

1

where each λ( ) ≥P 0 and λ∑ ( )=λ P 1. Bacon and Toner33 quantify the amount of resource by the number of bits 
of communication c to match ( )P ab xyQ  with the distribution ( )P ab xy  in Eq. (5). They prove that c =  1 bit of 
communication assistance (i.e. sending a message with =d 2 levels) is enough for Alice and Bob to reproduce any 
correlations ( )P ab xyQ  by measuring arbitrary projective measurements on a maximally entangled two-qubit 
state34. Figure 1(a) displays this setup.

EPR steering with communication.  We ask the analogous question what happens if (unlike in case of the 
Bell nonlocality scenario) Charlie completely trusts Bob’s measurement device. This is the framework of EPR 
steering. In this case, we obtain the data ( )P ab xyQ  with an additional knowledge that Bob’s equipment is 
well-characterized. Hence our model is the same as (5), but with the constraint that

σ( ) = ( ), ( )λ λ,P b yc Mtr 6c b y

where Bob’s measurements {Mb|y}b,y are trusted by Charlie and the states σλ,c are of unit trace and positive. Note, 
however, that in this case Bob’s measurements will not depend on the communication c, since they can be consid-
ered as supplied by Charlie. Please see Fig. 1.(b), which shows this setup. Hence we get

∑ ∑λ σ( ) = ( ) ( ) ( ),
( )λ

λ λ
=

,P ab xy P D ac x Mtr
7c

d

c b y
1

where ( , )λD a c x  are some deterministic strategies labeled by λ taking values 0 or 1. Note that we used the fact that 
unshared randomness of ( , )λP a c x  can always be considered as part of shared randomness (represented by λ) and 
hence can be absorbed into it. For instance, if Alice performs m measurements ( = ,…,x m1 ) with two outcomes 
each ( = ,a 1 2), and the communicated message is one bit ( = ,c 1 2), each deterministic strategy λD  can be con-
sidered as an m-component vector = ( , …, )

v v vm1  with four possible entries ( , )1 1 , ( , )1 2 , ( , )2 1 , and ( , )2 2  standing 
for the values ( , )a c . Hence, in this case there are 4m different deterministic strategies for Alice.

In fact, given the statistics ( )P ab xyQ  and a set of measurement operators {Mb|y}b,y in Eq. (7), this is a feasibility 
problem to check if a LHS model augmented with c bits of communication can reproduce the distribution 
( )P ab xyQ . If so, the underlying state of the distribution ( )P ab xyQ  in (1) can be reproduced with a LHS model 

with some extra communication c. Then, by definition, ρ is within the set ( )LHS c .
We can write this feasibility problem as an SDP code. To this end, we define the sub-normalized states 

σ λ σ= ( )λ λ, ,
Pc c for all λ( , )c , which satisfy σ σ=λ λ, , ′ 

tr trc c  for all different pairs ( , ′)c c  and σ∑ =λ λ,tr 1c  for 
all = ,…,c d1 . Then, we have to solve the following feasibility SDP program:
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

P ab xy D a c x M a b x y

c c

c

c

find { }

subject to tr

tr tr

tr 1

0 8

c

Q
c

d

c b y

c c

c

c

1

where the data ( )P ab xyQ  is arising from formula (1) and Mb y are fixed measurements of Bob. We can in fact 
simplify a bit the above code by eliminating Bob’s measurements Mb y. To this end, let us define the conditional 
(unnormalized) states prepared by Alice on Bob’s subsystem by

( )σ ρ= ⊗ . ( )�Mtr 9a x A a x

This set of states is called assemblage18,19 and captures the whole physics of an EPR steering scenario. With this 
assemblage, we have σ( ) = ( )P ab xy MtrQ a x b y . Let us assume that Bob’s measurements Mb y form a complete 
basis of Bob’s Hilbert space. In case of a two-dimensional Hilbert space, this can be the three Pauli matrices, 

( )σ= + ( − ) /ˆ�M 1 2b y
b

y , where σ̂ y, = , ,y 1 2 3 denote the Pauli operators and the two possible outcomes are 
denoted by = ,b 0 1. Then, the SDP code simplifies to

∑∑

∑

σ

σ σ

σ σ λ

σ

σ λ

= ( ) ∀ ,

= ∀ , ≠ ′

= ∀

≥ ∀ , ( )

λ

λ
λ λ

λ λ

λ
λ

λ

,

=
,

, , ′

,

,



 





D ac x a x

c c

c

c

find { }

subject to

tr tr

tr 1

0 10

c

a x
c

d

c

c c

c

c

1

It is worth noting that the above code simplifies to the one derived in ref. 18 in case of =c 0 bit of communi-
cation (that is, =d 1).

Exploring the shape of the LHS(1) set of states.  In this subsection, we explore the shape of the ( )LHS c  
set, where we set =c 1 bit. Specifically, we ask how it fits into the set of bipartite states which admit a LHS or LHV 
model. Let us note that the new set ( )LHS 1  is also convex by construction. We find a nontrivial structure of this 
new set. To this end, we investigate special one-parameter slices of the full two-qubit state space. In particular, we 
choose two special one-parameter families, the Werner states of two-qubits and another family, which coincides 
with the two-qubit reduced state of the n-qubit Wn state37 for parameters = /p n2 . The obtained results suggest 
that the ( )LHS 1  set of states has a nontrivial shape as depicted in the schematic picture of Fig. 2.

We use the SDP code (10) to test one-parameter families of two-qubit quantum states. Namely, let us write the 
state as a mixture of a pure entangled state and a noisy part parameterized by the weight v:

ρ ψ ψ ρ( ) = + ( − ) , ( )v v v1 11noise

where ρnoise is some fixed separable state and ψ  is any two-qubit entangled pure state. A small variation of the 
semi-definite program (10) (please see Methods section for the actual code) gives us an efficient method to place 
an upper bound on vcrit, where vcrit denotes the boundary of states admitting a LHS(1) model. Such numerical 
computations, as well as all subsequent ones presented in this paper, were carried out using the Matlab packages 
YALMIP38 and the SDP solver SeDuMi39.

Then, using a heuristic search (e.g., we used an Amoeba routine40), we lower the value of this upper bound on 
vcrit by varying the set of measurements {Ma|x}a,x. This way, we get better and better upper bounds to the true value 
of vcrit by minimizing the parameters entering Alice’s set of measurements {Ma|x}a,x. We remark that due to the 
heuristic nature of the search, the program may not provide us a global minimum for vcrit, however, for reasonable 
number of settings (say, ≤m 6A ) and a fair number of independent iterations, the obtained bound to our experi-
ence is quite reliable.

We first consider the Werner state of two qubits41, which is given by

ρ ψ ψ( ) = + ( − )
⊗
, ( )− −

� �v v v1
4 12W

where ψ = ( − )/− 01 10 2  is the singlet state and v is the visibility. The Werner state is separable up to 
= /v 1 3 and exhibits a LHS model up to = /v 1 28,9,28. These models are tight, hence > /v 1 3 implies entangle-

ment, whereas > /v 1 2 implies violation of EPR steering inequalities.
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Concerning the LHS(1) model, we find the following results. First, in the Methods section a LHS(1) model is 
provided up to visibility = / .v 1 2 0 7071 of the Werner states. On the other hand, Amoeba optimization 
provides us with a steering inequality for =m 4 settings which is violated above the parameter = .v 0 7842. Also, 
by setting Alice’s 12 measurements to point toward the vertices of an icosahedron on the Bloch sphere, we get a 
more powerful steering inequality which is violated above = .v 0 7423 (note that due to reflection symmetry of the 
icosahedron, it is enough to consider =m 6 vertices in the actual code). Therefore, there is no LHS(1) model 
below = .v 0 7423, as depicted in Fig. 3. We state it as an open problem what the exact value of the critical v above 
which no LHS(1) model exists if m goes to infinity. On the other hand, there is a 465 setting Bell inequality42,43, 
which is violated by a Werner state above = .v 0 7056, which implies that there exists no LHV model for the 
Werner state for > .v 0 7056. Again, this bound is shown in Fig. 3. The above bounds entail that the ( )LHS 1  set has 
portions outside the LHV  (i.e. Bell local) set of states. This is the shaded region depicted in Fig. 3 and proves in 
turn the existence of point A in the schematic Fig. 2 (i.e., a state which is nonlocal and admits a LHS(1) model). 
Since the set of states admitting a LHV model is a strict superset of the states admitting a LHS model44,45, it follows 
that the ( )LHS 1  set is strictly different from the LHS set. We provide an alternative proof of this fact in the 
Methods section.

Note that the hierarchy ⊆ ⊆QS LHS LHV  of the sets is implied by the definitions. Moreover, it is known 
due to the works of refs 41,44 that the above relations are strict, that is, we have  QS LHS LHV . It is interesting 
to ask if the same hierarchy applies in the presence of a fixed amount of communication (say 1 bit). Indeed, 
implied by the definition of these sets, we have ( ) ⊆ ( ) ⊆ ( )QS c LHS c LHV c  for any c bits. We now show that 
the inclusion relations are strict, that is,  ( ) ( ) ( )QS c LHS c LHV c  for any finite number of c bits. The first strict 
inclusion relation comes from the fact that there is no QS(∞) model (and consequently no QS (c) model for any 
c as well) for the Werner state for > /v 1 2. A sketch of this proof is deferred to the Methods section. Recalling that 
the Werner state admits a LHS(1) model (and consequently a LHS (c) model for ≥c 1) up to = /v 1 2, it follows 
the strict relation ( ) ( )QS c LHS c . The second strict relation ( ) ( )LHS c LHV c  in case of =c 1 comes from the 
fact that the Werner state for parameter =v 1 admits a LHV(1) model due to the model of Toner and Bacon34 and 
on the other hand there is no LHS(1) model above = .v 0 7423 due to our result. Furthermore, in the following 
section we prove that no LHS(c) model with finite c exists for the two-qubit maximally entangled state (i.e., for the 
Werner state with v =  1). Then we have ( ) ( )LHS c LHV 1  for any finite c and the second strict relation 

( ) ( )LHS c LHV c  follows for any finite ≥c 1.
The other family of states to be investigated looks as follows:

ρ ψ ψ( ) = + ( − ) ⊗ , ( )+ +p p p1 0 0 0 0 13R

where ψ = ( + )/+ 01 10 2. Notice that this state is the two-qubit reduced state of the n-qubit Wn state37 for 
= /p n2 . We note that for this particular = /p n2 , the state is ( − )n 1 -symmetric extendable46, hence there is a 

LHV model (and therefore also a LHS model) for −n 1 settings (with arbitrary number of outcomes). The LHS 
bound seems to be tight, as we could recover the bound of = /v n2  up to numerical precision for ≤n 6 settings 
using the SDP method developed in ref. 18 (please see second column of Table 1). This correspondence suggests 
that there is no LHS model for any finite p >  0 if the number of settings is large enough. Using our numerical 
search described in the Methods section, we find the threshold values p regarding the LHS(1) model in the third 
column of Table 1.

Figure 2.  Schematic view of the different set of states. All depicted sets are convex. The smallest set 
corresponds to quantum separable (QS) states, the largest set contains all states. States which have a LHV model 
(i.e. Bell local) are in between these sets. States which have a LHS model (i.e. unsteerable) are sandwiched 
between the LHV  and QS sets. The new set (whose boundary is drawn by a dashed line) is termed as ( )LHS 1  and 
it has a nontrivial intersection with the LHS and LHV  sets. In this paper, we prove the existence of point A and 
conjecture supported by extensive numerical calculations the existence of point B.
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On the other hand, we conjecture that the local bound pLHV is / .1 2 0 7071. Our conjecture is based on a 
linear programming approach combined with a heuristic search over the measurement angles47 of Alice and Bob 
to get an upper bound on pLHV for a given number of measurement settings. For two settings per party ( =m 2), 
we have the (analytical) upper bound of /1 2 on pLHV. However, by moving up to =m 8 settings per party, using 
numerical computations, this upper bound value did not become lower. Note that due to the heuristic nature of 
the search we cannot guarantee that /1 2  is the optimal value. Though, at this level of complexity we are fairly 
confident about the validity of this threshold value. Moreover, we conjecture that this bound cannot be beaten 
beyond =m 8 settings as well. Similar conclusion was drawn by Amirtham48. The above results (modulo our 
conjecture) indicate a point B in Fig. 2, displaying portions of the LHV  set lying outside the ( )LHS 1  set.

Steering-like inequalities with any finite number of communication.  In this subsection, we go 
beyond the case of one bit of communication (i.e., =c 1). To this end, we construct a steering inequality with 
= ( )c dlog2  number of bits of communication, which can be violated by a 2-qubit maximally entangled state for 

any finite d if the number of settings m for Alice is large enough. Violation implies that there is no LHS(c) model 
for any finite number of c bits for a 2-qubit maximally entangled state. Combing this result with a recent work of 
ref. 20 entails that the same applies to any pure bipartite entangled state. More details about equivalence of states 
with respect to LHS(c) models are found in the Methods section.

Let us also remark that there is an interesting nested feature of the sets ( )LHS c , namely they satisfy 
( − ) ⊆ ( )LHS c LHS c1  for any ≥c 1 implied by the definition (where we identified ( ) ≡LHS LHS0 ). Moreover, 

in case of =c 1, we have just shown that the inclusion relation is strict, that is  ( )LHS LHS 1 . It can be shown that 
in case of → ∞c  all states are recovered, that is, the set ( → ∞)LHS c  approaches the set of all quantum states. We 
conjecture and state it as an open problem whether ( − ) ( )LHS c LHS c1  holds true in case of any finite ≥c 1.

A steering inequality with communication assistance is a linear functional of the joint probabilities ( )P ab xy ,

∑ α≡ ( ) ≤ ,
( ), , ,

, , ,S P ab xy L
14a b x y

a b x y c

where the bound Lc holds for any statistics ( )P ab xy  of the form (5) arising from a LHS(c) model. Note that in the 
absence of communication ( =c 0), we return to the standard steering inequalities. Hence, if a PQ distribution of 
the form (1) violates bound Lc in (14), it implies that the underlying state of the probability distribution PQ lies 
outside the ( )LHS c  set.

Let us consider a steering-like inequality augmented with c bits of communication involving m binary out-
come settings both on Alice and Bob’s side28,

Figure 3.  Regions of the parameter v in which the two-qubit Werner state is quantum separable, admits an 
LHS, LHS(1), and LHV models. It shows the shaded interval . , / .[0 7056 1 2 0 7071], where the state has a 
LHS(1) model, nevertheless it is nonlocal. We note that the values /1 3 and /1 2 corresponding to the respective 
QS and LHS models are tight. That is, any v larger than these values results in failure of these models. However, 
according to the figure, this is not the case for the LHS(1) and LHV models and there arises a gap between the 
best upper and lower bounds on the critical value of v.

#settings pLHS pLHS(1)

 2 .0 6667 1

3 .0 5000 0.8084

4 .0 4000 0.7099

5 .0 3333 0.6278

6 .0 2857 0.5677

Table 1.  Table for certain critical parameters p for the one-parameter family of two-qubit states given by 
formula (13). The leftmost column stands for the number of settings, whereas the next two columns show (upper 
bounds to) the critical p value with respect to number of settings for a LHS model and a LHS(1) model, 
respectively.
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∑ δ= ≤
( ), =

, ,S
m

E L1
15

m
x y

m

x y x y c
1

where δ is the Kronecker delta function, = ( | ) + ( | ) − ( | ) − ( | ),E P xy P xy P xy P xy00 11 01 10x y  is the expectation 
value involving Alice’s x and Bob’s y dichotomic measurements. Let Bob’s observables σ= ⋅

� ��B uy y  point toward 
fixed dimensions uy. In particular, let us arrange Bob’s observables to lie on the x-z plane of the Bloch sphere, 

π π= ( ( / ), , ( / ))
u y m y mcos 0 siny  for settings = ,…,y m1 .

According to model (7), in case of communicating =c dlog2  bits (i.e., a d level classical message is sent from 
Alice to Bob), the Lc value corresponding to the LHS(c) limit is defined by maximizing the following expression

σ
=
∑

=
∑ ⋅

( )
ρ= ,

=
( )

� ��

S
E

m

A u

m 16m
x
m

x x x
m

x x
1

1
r x

over all possible sign functions = ±A 1x , = ,…,x m1  and qubit states ρ ( )r x  with all possible ( )r x  function 
 →m d, where π π= ( ( / ), , ( / ))

u x m x mcos 0 sinx .
Let us now choose the particular case of sending = ( − )c mlog 12  bits (i.e. Alice communicates a = −d m 1 

level message to Bob). Then, Lc is given by maximizing

σ σ
=

− + ⋅ + ⋅
, ( )
ρ′ ′

� �� � ��
S

m A u A u

m

2
17m

x x x x

where ρ is any single qubit state and ≠ ′ ∈ ,…,x x m{1 }. Let us choose the state ρ optimally as the eigenstate of

σ σ⋅ + ⋅ , ( )′
� �� � ��u u 18x x

which reduces to maximizing

=
− + +

. ( )
′ ′

 

S
m A u A u

m
2

19m
x x x x

This expression is maximized by e.g. choosing =x 1, ′ =x 2 and = = +A A 11 2 , resulting in the LHS(c) 
maximum:

π
= −

− ( / )
( )L

m
m

1 2
1 cos 2

20c

corresponding to = ( − )c mlog 12  bits of communication.
As we can see, the value Lc is strictly smaller than 1 for any m. On the other hand, quantum mechanics allows 

us to obtain the algebraic bound of 1 in the left-hand side of the inequality (15). The quantum strategy comprises 
a maximally entangled state ψ−  and Alice’s measurements = −

 v ux x, for = ,…,x m1  whereby we get the per-
fect correlation =E 1xx  for all x.

Therefore, we have an example, where we are unable to simulate quantum strategies by augmenting the LHS 
model with any finite number of bits of communication = ( − )c mlog 12  from Alice to Bob. Note, however, that 
as m goes to infinity the Lc value becomes close to 1, resulting in a very poor noise resistance. We pose it as an 
intriguing problem to construct more powerful steering-like inequalities exhibiting better noise tolerance.

As an experimentally relevant case, let us choose =m 5, in which case the number of communicated bits is 
= ( − ) =c mlog 1 22 . In that case, the LHS(c =  2) bound in formula (20) becomes = .L 0 98042 . Due to our 

result, a Werner state with visibility larger than L2 along with well-chosen measurements violates this two-bit 
bound L2. In light of recent experimental progress demonstrating EPR steering24–26, we believe this bound should 
be overcome in state-of-the-art photonic experiments.

Discussion
In this paper, we extended the notion of Bell inequalities with auxiliary communication to the EPR steering sce-
nario. To do so, we introduced a general framework based on an efficient SDP method. With this tool, we charac-
terized the set of bipartite states which admits a local hidden state model augmented with 1 bit of classical 
communication (the so-called LHS(1) model) from untrusted Alice to trusted Bob. This ( )LHS 1  set of states was 
proven to be strictly larger than the set of states admitting an LHS model (for projective measurements). 
Moreover, this ( )LHS 1  set turns out to have portions outside the LHV  set. On the other hand, we conducted an 
extensive numerical search which indicates that there exist local two-qubit quantum states, which nevertheless 
cannot be described by an LHS(1) model (assuming projective measurements). We also showed that an infinite 
amount of classical communication is required from Alice to trusted Bob to simulate the EPR-steering statistics 
arising from any bipartite pure entangled state.

There is a number of open questions which deserves further investigations.

•	 We found a gap for the visibility v in case of the Werner states between the best LHS(1) model (defining a 
lower bound) and violation of a steering-like inequality with one bit of communication (defining an upper 
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bound). Would it be possible to close this gap either by improving the lower bound or by improving the upper 
bound value?

•	 Based on extensive numerical search we conjectured that the LHV  set has portions outside the ( )LHS 1  set of 
states. Is there a formal proof of this conjecture?

•	 We quantified quantum steering with the amount of classical communication between the two parties. What 
happens if we consider other resources such as certain no-signalling resources?

•	 Another question concerns one-way steerability of quantum states49. As an extension of one-way steerable 
states, we ask whether there exists a bipartite quantum state, such that Alice can steer Bob’s state, however, it is 
impossible for Bob to steer Alice’s state even allowing 1 bit of classical communication between them.

•	 It would be also interesting to see how our results relate to LHV models allowing classical communication. 
We know that 2 bits of communication suffice to simulate projective measurements on any two-qubit entan-
gled state34. However, in the EPR steering scenario due to our results any finite number of bits is not enough. 
Does the same result hold true if we add some noise to the singlet state?

•	 In case of =c 1 we have shown that the nested relation ( − ) ( )LHS c LHS c1  holds true. It would be interest-
ing to see if this strict hierarchical relation generalizes to any finite number of c bits.

•	 Finally, it is also interesting to consider the extension of the steering task with communication to the multi-
partite realm (see, e.g., refs 23,29,50).

Methods
Semidefinite program to compute critical weights.  Here we provide an SDP program to compute an 
upper bound on vcrit in the formula (11). Assuming the form of the state (11), the assemblage σa x defined by Eq. (9) 
in function of parameter v is given by

σ ( ) = + ( − ) , ( )v vF v G1 21a x a x a x

where

( )
( )
ψ ψ

ρ

= ⊗

= ⊗ ( )

�

�

F M

G M

tr

tr 22

a x A a x

a x A noise a x

are some fixed matrices. With these expressions in hand, we get the following SDP optimization problem:

∑∑

∑

σ

σ σ λ

σ

σ λ

+ ( − ) = ( ) ∀ ,

= ∀ , ≠ ′

= ∀

≥ ∀ , ( )

λ
λ λ

λ λ

λ
λ

λ

=
,

, , ′

,

,



 





v

F v G D ac x a x

c c

c

c

maximize

subject to 1

tr tr

tr 1

0 23

a x a x
c

d

c

c c

c

c

1

LHS(1) model for a Werner state.  Here we present a simulation protocol which gives an LHS model aug-
mented with 1 bit of classical communication for the 2-qubit Werner state up to the visibility /1 2. We proceed 
in two steps. Our first protocol will work for visibility up to /2 3, whereas the second one, building on the first 
protocol, works up to the higher visibility of /1 2.

Our first one bit protocol is as follows. Alice and Bob share two independently and uniformly distributed 
random variables λ

��
1 and λ

��
2 over the unit sphere. The protocol proceeds as follows:

1.	 Alice receives input vector a.
2.	 Alice outputs α = +1 if λ λ⋅ > ⋅

� �� � ��a a0 1 , otherwise outputs α = −1.
3.	 Alice sends a bit c to Bob which labels λ

��
c, = ,c 1 2 for which α = + 1.

4.	 Upon receiving this information, Bob outputs the state σ =λ
λ σ+ ⋅�
� ��1
2c

c .

The goal of this protocol is to reproduce the assemblage (9) originating from a two-qubit Werner state (12). 
The assemblage of a Werner state is given by

( )σ ρ α σ
= ( ) ⊗ =

+ ⋅
, ( )α α

� ��
� �v M vatr 1 1

4 24a A W a

where α σ= ( + ⋅ )/α


M a1 2a  are rank-1 projectors, where α =  ± 1. Because of redundancy, it is enough to 
reproduce the following object

σ σ σ σ= − = ⋅ ( )+ | − |
� ��� � � va1

2 25a a a1 1



www.nature.com/scientificreports/

9Scientific Reports | 6:21634 | DOI: 10.1038/srep21634

in case of a Werner state with visibility v.
On the other hand, the object σ→a  coming from the simulation protocol can be expressed as

∫σ
π

λ λ
λ σ λ λ

λ σ
= ×







( ⋅ ) , ⋅ > ⋅

( ⋅ ) , .

λ

λ

�� ��
� �� �� � �� � ��

� �� ��

�

�
� d d

a a a

a

1
4

sgn if

sgn otherwise
a 2 1 2

1 1 2

2

1

2

Using symmetries, we can further write

∫σ
π

λ λ λ λ σ=


 ⋅ , ⋅



 ⋅ . ( )

�� �� � �� � �� � ��� d d a a a1
2

1
4

max{ }
26a 2 1 2 1 2

Comparing this formula with (25), the critical visibility v is given by the closed form expression

∫π λ λ λ λ= , = . ( )
�� ��

v d d1
4

max{ } 2
3 27z z2 1 2 1 2

where we used the fact that because of spherical symmetry we can take a pointing to the north pole (i.e. to positive 
z-axis), hence λ λ⋅ =

� ��a c cz for = ,c 1 2 and we also used the fact that

∫ (| |, | |) = . ( )du du u umax{ } 2
3 281 2 1 2

for uniformly distributed u1, u2 in the interval ,[0 1].
We now improve the above one bit protocol up to visibility = /v 1 2. To this end, we use the same protocol as 

before, but this time λ
��

1 and λ
��

2 are correlated variables. We choose them as λ =
�� �Uez1 , λ =

�� �Ue x2 , such that the 
×2 2 matrix U  is distributed according to the Haar measure on ( )SU 2 . In that case, the protocol gives 
σ σ σ= −+ | − |
  a a a1 1  with

∫σ
π

ν λ λ σ=


 ( ) ⋅ , ⋅



 ⋅ , ( )

� �� � �� � ��� U a a a1
2

1
4

max{ }
29a 2 1 2

where ν ( )U  defines the Haar measure on ( )SU 2  and λ =
�� �Uez1 , λ =

�� �Ue x2 . Let us set ≡ a ez by rotating the coor-
dinate system appropriately and denote = u Uez. With these substitutions, we obtain the formula for the critical 
visibility

∫π= ( , ) = ,
( )

v du u u1
4

max 1
2 30z x

where integration was performed over the unit sphere.

The LHS(1) set is strictly larger than the LHS set.  Here we prove the title. For the two-qubit Werner 
states the LHS set of states is bounded by = /v 1 28,9,28. Hence any LHS(1) model giving a threshold value higher 
than = /v 1 2 does the job. Hence, the LHS(1) model with threshold = /v 1 2  presented in Methods section 
previously provides us with the desired proof. We give here a LHS(1) model with a smaller threshold = .v 0 5899. 
Though, this value is worse than our previous threshold = /v 1 2, the present proof is completely different and 
maybe of independent interest. In fact, the proof below for an LHS(1) model is a special instance of the algorith-
mic procedure to construct LHS models appeared in refs 52,53.

Let us pick the icosahedron, a platonic solid which has 12 vertices and 20 faces. Using the SDP defined in Methods 
A, we compute = .v 0 7423crit  for the measurements pointing toward the 12 vertices of the icosahedron. Note that the 
icosahedron has a reflection symmetry through the center, and it is enough to take only 6 of its vertices:

φ
φ

φ
φ

φ
φ

= ( , , )
= ( , , − )
= ( , , )
= ( , − , )
= ( , , )
= ( − , , ) ( )













u
u
u
u
u
u

0 1
0 1
1 0
1 0

0 1
0 1 31

1

2

3

4

5

6

where ϕ is the golden ratio ϕ = ( + )/1 5 2. Following refs 50–53, any vector u which is within the (largest) 
inscribed sphere of this icosahedron, can be expressed as the convex combination of the 12 vertices (the ones in 
(31) and its inverted versions). The computation takes roughly 1 min on a normal desktop PC. If we normalize the 
vertices (31) such that all of them have unit length from the origin, the radius of the inscribed sphere is 
= ( + )/ ∼ .r 5 2 5 15 0 794654. Hence, the Werner state with visibility = .v 0 742344crit  has a LHS(1) model for 

any set of noisy observables of Alice µ= (→)A A u  for µ ≤ = .r 0 794654. As a side remark, we note that the above 
value of = .v 0 742344crit  can be obtained by using the steering-like inequality = ∑ /= ,S E mm x

m
x x1  presented in the 

Results section. Indeed, by setting Bob’s Bloch vectors in (15) according to (31) will recover this value up to numer-
ical precision. An optimal LHS(1) strategy is as follows: ( ) = ( , , , , , )r x 1 0 0 0 0 1  and Ax =  [1, − 1, − 1, 1, 1, 1]. With this 
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strategy, we have to maximize σ σ σ σ σ σ= ( / )( − ⋅ − ⋅ + ⋅ + ⋅ + ⋅ + ⋅ )
ρ ρ

� �� � �� � �� � �� � �� ��S u u u u u u1 66 2 3 4 5 1 6
0 1

 over 

ρ ρ,0 1. The maximum is given by = ( / )( − − + + + + ) = + .
� � � � � � �S u u u u u u1 6 0 7423446 2 3 4 5 1 6

5
18

11
18 5

.
We now use the identity µ ρ ρ µ( ⊗ ( )) = ( ⊗ ( ))A v A vtr 1 tr 1A W A W , which in words tells us that the statistics 

of noisy observables µA on the Werner state ρ ( )vW  perfectly match the statistics of noiseless observables A on the 
Werner state having visibility µv. We thus have a Werner state with visibility ≤ .v rv 0 589907crit , which gives 
us a LHS(1) model for ≤ .v 0 5899 as announced.

No QS(∞) model for Werner states for v > 1/2.  Here we provide a sketch of the proof for the title. We 
first give an inequality which proves the (known) result that the Werner state is entangled above = /v 1 3. The 
same inequality will be used to prove that the Werner state does not admit a QS(∞) model for > /v 1 2. The ine-
quality is as follows.

∑ δ= ≤
( ), =

, ,QS
m

E L1
32

m
x y

m

x y x y c
1

which is similar to inequality (15). Here we assume that both Alice’s and Bob’s measurements are continuously 
and evenly distributed on the Bloch sphere, and our task is to compute Lc in case of =c 0 and = ∞c  bits of com-
munication from Alice to Bob.

Let us start with =c 0. Then we use the definition ( )λ σ σ= ∑ ( ) ( )λ λ λ,E P A Btr trx y
A

x
B

y  in the QS model, where 
σ= ⋅

� ��A ux x  and σ= ⋅
� ��B uy y . Exploiting spherical symmetry and the convex property of the definition ,Ex y, we 

can take σ σ= =λ λ 0 0A B  without loss of generality and the maximization provides

∫π= = , ( )
L du u1

4
1
3 33z0 2

2

where u is distributed uniformly on the unit sphere and uz  denotes ⋅
 e uz . Note that the maximum of the 

right-hand-side of inequality (32) is 1, attainable with a maximally entangled two-qubit state (i.e. Werner state 
with v = 1). Then we obtain the result that Werner states with v > 1/3 violate the quantum separability inequality 
(32), hence they are entangled in this range.

Next we deal with = ∞c . Since the amount of communication is unbounded, Alice is able to communicate 
her measurement settings x to Bob, which permits Bob to adjust his hidden state σλ

B according to x. This in turn 
implies the maximum

∫ ∫π= ( ⋅ ) = = . ( )∞
   L du u u du umax tr 0 0 1

4
1
2 34z2

Then we obtain the announced result that Werner states with v >  1/2 violate the quantum separability inequal-
ity (32), therefore there is no QS(∞) model for the parameter range v >  1/2.

Equivalence of states concerning the LHS(c) model.  An LHS(c) model for the 2-qubit Werner state 
gives rise to the same LHS(c) model for more general quantum states. To this end, we note the recent result on the 
equivalence of states using local filtering (or more generally of any trace non-increasing CP maps) on Bob’s side20. 
Following the same steps as in the proof of Lemma 2 in ref. 20, it can be shown that if Bob performs filtering 
operation on any state which has a LHS(c) model, the resulting state also admits a LHS(c) model. Now let Bob 
apply a local filter θ θ θ( ) = +F cos 0 0 sin 1 1B  on the Werner state (12). The state after this operation 
b e c o m e s  ρ ψ θ ψ θ σ( ) = ( ) ( ) + ( − ) / ⊗θ �v v v1 2 ,  a n d  σ ψ θ ψ θ= ( ) ( )trA ,  w h e r e 
ψ θ θ θ( ) = +sin 01 cos 10 . This result implies that ρ ( )θ v  has a LHS (1) model for any θ > 0 below 
= /v 1 2. However, this threshold may not be tight, that is, it does not rule out the possibility of a higher θ( )vcrit  

for θ π≤ /4.
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