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ing individuals.  Conclusion:  These differences in the charac-
teristics of ESBL producers may represent different sources 
of colonization. Most LTC applicants harboured  K. pneumoni-
ae  or  E. coli  that were probably hospital-acquired whereas 
the  E. coli  isolates of many healthy individuals showed simi-
larities to environmental  E. coli .  © 2015 S. Karger AG, Basel 

 Introduction 

 Enterobacteriaceae that produce extended-spectrum 
beta-lactamases (ESBLs) have become a major problem 
worldwide, especially since the occurrence and spread of 
the  bla  CTX-M  family. Many of these enzymes, in contrast 
to the  bla  TEM  and  bla  SHV  groups, are linked to epidemic 
clones  [1]  and some of them, e.g. the  bla  CTX-M-15 -produc-
ing  Escherichia coli  O25b:ST131 and  Klebsiella pneu-
moniae  ST11, ST15 and ST147 clonal complexes, have be-
come pandemic both in the nosocomial and community 
settings as well as in long-term care (LTC) facilities  [1–3] . 
The switch from  K. pneumoniae  to  E. coli  as the major 
ESBL producer species is also linked to the dissemination 
of  bla  CTX-M  genes  [4] .

  The gastrointestinal tracts of humans and even ani-
mals are obviously a major source of ESBL producer spe-
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 Abstract 

  Aims:  We compared the prevalence of extended-spectrum 
beta-lactamase (ESBL) producers in the faecal samples of 
1,109 healthy individuals screened for employment purpos-
es and in 531 asymptomatic individuals applying for long-
term care (LTC).  Methods:  Eosin-methylene blue agar plates 
supplemented with 2 mg/l cefotaxime were used to deter-
mine which individuals were ESBL producers. ESBL pheno-
type was confirmed by double-disk synergy test and ESBL 
genes were identified by sequencing. ESBL producers were 
characterized by co-resistance and integron carriage.  Re-

sults:  ESBL producers were more frequent in the LTC appli-
cants than in the employment screening individuals (7.2 vs. 
2.0%; p < 0.0001), with 43  Escherichia coli , 18  Klebsiella pneu-
moniae , 1  Klebsiella oxytoca  and 1  Proteus mirabilis  being 
found. In the employment screening individuals, only  E. coli  
was found. Most ESBL genes (79.4%, 50/63) were  bla  CTX-M  
type;  bla  CTX-M-15  was more frequent in the LTC applicants (p < 
0.001). Regarding ESBL genes and integron diversity,  E. coli  
isolates from the LTC applicants were more similar to 
 K.  pneumoniae  than to  E. coli  from the employment screen-
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cies  [5, 6]  and also serve as a site for the horizontal spread 
of resistance genes  [7] . The duration of asymptomatic 
carriage can be very long, up to several years in some cas-
es  [8] , and international travel contributes to even more 
efficient spreading  [9] . Carriage rates, and therefore the 
risk of colonization, in travelers returning home are high-
est in Southeast Asia  [6, 8] , as high as 69.3%. North  Africa 
and the eastern Mediterranean are also associated with a 
higher carriage risk in travelers  [9] .

  Although a number of studies have been published on 
faecal carriage rates in different populations (both pa-
tients and asymptomatic individuals), colonization pat-
terns have only started to be understood. Therefore, the 
aim of this study was to compare the prevalence of faecal 
carriage and the characteristics of ESBL producers among 
applicants for LTC and individuals screened for employ-
ment purposes.

  Materials and Methods 

 Samples and Isolates 
 A total of 1,640 faecal samples from 2 groups of asymptomatic 

individuals not suffering from infection at the time of sampling 
were investigated between March 2009 and April 2010. Samples 
were collected and sent for screening for enteric pathogens from 
1,109 individuals (300 males and 809 females with a median age of 
34 years, range 15–68 years) being screened for employment eligi-
bility purposes (e.g. jobs at hospitals, kindergartens and food-pro-
cessing plants) and 531 individuals (218 males and 313 females 
with a median age of 75 years, range 0–100 years) who needed to 
be screened prior to admittance to LTC facilities. The vast major-
ity of individuals were located in north-eastern Hungary from the 
EU regions of Northern Hungary and the Northern Great Plain.

  The samples were directly inoculated onto eosin-methylene 
blue agar plates supplemented with 2 mg/l cefotaxime. All colonies 
with different morphology were further identified by means of bio-
chemical tests; enterobacterial isolates were then processed fur-
ther.

  According to Clinical and Laboratory Standards Institute 
guidelines, antibiotic susceptibility testing was performed by the 
disc-diffusion method against imipenem, cefotaxime, ceftazidime, 
cefepime, ciprofloxacin, colistin, trimethoprim–sulfamethoxazole 
(co-trimoxazole), doxycycline, amikacin, gentamicin, tobramycin 
and tigecycline. All isolates showing a decreased susceptibility to 
at least 1 third-generation cephalosporin or to cefepime were test-
ed for ESBL phenotype using the double-disc synergy test (Oxoid, 
Basingstoke, UK) and then re-identified using a MALDI Biotyper 
(Bruker, Bremen, Germany). Imipenem-resistant isolates were 
also tested using the Hodge test as specified in the Clinical and 
Laboratory Standards Institute guidelines.

  In the case of isolates displaying an ESBL phenotype, DNA was 
extracted by heat treatment. PCR amplifications were carried out 
in a MyCycler PCR machine (BioRad, Hercules, Calif., USA). Spe-
cies identification for  K. pneumoniae  and  E. coli  isolates was con-
firmed by species-specific PCRs  [10, 11] .

  Genetic Relatedness 
 The epidemiological relationship was analyzed by enterobac-

terial repetitive intergenic consensus PCR (ERIC-PCR) with 
ERIC2 and ERIC1R primers (as described earlier  [12] ) and 
pulsed-field gel electrophoresis (PFGE). Plugs were prepared as 
described earlier  [13] , macrorestriction was performed using 
XbaI (Fermentas, Vilnius, Lithuania) in a CHEF DRIII machine 
(Bio-Rad) in 1% SeaKem Gold agarose (Lonza) at 14   °   C. Electro-
phoresis was performed at 6 V/cm, with a reorientation angle of 
120°, and switch times were ramped between 2 and 64 s for 20 h 
for both species. Gels were stained with ethidium bromide and 
visualized under UV light. Banding patterns were analyzed with 
Fingerprinting II software (Bio-Rad). The threshold for probable 
unrelatedness was set at <85% similarity. The Simpson index of 
diversity (D) was calculated to assess diversity, as described ear-
lier  [14] .

  Identification of ESBL Genes 
 The  bla  TEM ,  bla  SHV ,  bla  CTX-M  genes were detected by PCR, as 

described previously  [15–17] ;  bla  TEM  and  bla  SHV  genes were iden-
tified by sequencing (Macrogen, Amsterdam, The Netherlands) 
using the same primers, while  bla  CTX-M  genes were identified by 
the sequencing of primers of group-specific PCRs  [18] . Sequence 
alignment and analyses were performed using CLC DNA Work-
bench v4.0 (CLC Bio, Aarhus, Denmark).

  Aminoglycoside Resistance Genes and Characterization of 
Integrons 
 The aminoglycoside resistance genes  aac(3’)-IIa (aacC2) , 

 aac(6’)-Ib (aacA4), aph(3’)-Ia (aphA1) ,  ant(2’)-Ia (aadB) ,  ant(3’)-
Ia (aadA1) ,  armA ,  rmtA  and  rmtB  were sought for as previously 
described  [19–22] . The detection of class 1 and class 2 integrons 
was performed by PCR assays according to Mazel et al.  [23]  and 
the amplification and sequencing of the variable regions were per-
formed as described by White et al.  [24] , using newly designed 
internal primers when necessary. Sequences were assembled in the 
CLC DNA Workbench 4.0 (CLC Bio), and gene cassettes were 
identified using the GenBank (http://www.ncbi.nlm.nih.gov). 
Identification of class 1 and class 2 integrons with variable regions 
of the same size was performed by restriction analysis using at least 
two enzymes for each cassette array, including  Eco RI,  Hind III,  
Mse I and  Rsa I (Fermentas). 

  Phylogenetic Analysis of E. coli and Virulence Genes 
 Phylogenetic groups of  E. coli  were determined using the mul-

tiplex PCR method developed by Clermont et al.  [25] . Phylogroups 
A and B1 are considered commensal, while groups B2 and D in-
clude strains responsible for extra-intestinal infections  [25] . The 
pandemic O25b-ST131 clone was screened in the isolates of the 
phylogenetic group B2 with a PCR-based assay  [26] .

  A multiplex PCR assay was used to determine the presence of 
virulence factor genes characteristic for enterovirulent  E. coli  pa-
thotypes, as described previously  [27] .

  We used PCR with previously described primers to search for 
genes coding for the putative extra-intestinal virulence factors of 
 E. coli , including adhesins ( papC ,  fimH ,  sfaS  and  sfa/focDE ), toxins 
( cnf1  and  cvaC ), factors related to iron acquisition ( iutA  and  fyuA ), 
the capsule system ( kpsMT II ) and miscellaneous factors ( ibeA , 
PAI,  traT  and  csgA )  [28] .
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  Statistical Analysis 
 Prevalences were compared by means of the χ 2  test or the Fish-

er exact test as appropriate. Age distribution in the different 
groups was compared by means of the Kolmogorov-Smirnov test. 
The distribution of genes coding for ESBLs, aminoglycoside-
modifying enzyme genes and co-resistance patterns were all ana-
lyzed by χ 2  test, and the pairwise comparisons derived were ad-
justed with the Bonferroni correction. The association of genes 
with each other or with different characteristics was analyzed us-
ing the Pearson correlation. PAST v3.0 was used to perform the 
statistical tests  [29] . 

 Results 

 Epidemiology of ESBL Producers 
 The overall prevalence of ESBL carriers was 3.7% 

(60/1,640). The LTC facility applicants carried ESBL pro-
ducers (7.2%; 38/531) significantly more frequently (p < 
0.001) than the individuals on employment screening 
(2.0%; 22/1,109). The risk of carriage of ESBL producers 
was not affected by the region where patients lived, by 
their gender or by their age in any of the comparisons.

  Of the 63 ESBL-producing isolates from the 60 pa-
tients, 43  E. coli , 18  K. pneumoniae , 1  Klebsiella oxytoca  
and 1  Proteus mirabilis  were identified. Three individuals 
harboured multiple ESBL-producing isolates simultane-
ously ( K. pneumoniae  and  E. coli  in 2 individuals and 
 K. oxytoca  and  E. coli  in 1 individual, all from the LTC 
applicant group). Among the individuals on employ-
ment screening, only  E. coli  isolates could be found, but 

the proportion of  E. coli  and  K. pneumoniae  isolates was 
similar (21/41 vs. 18/41) in the LTC facility applicants.

  Out of the 63 ESBL-positive isolates, 50 harboured a 
 bla  CTX-M  gene; the majority of these were  E. coli  (38/50). 
The distribution of ESBL genes in the 2 groups is shown 
in  figure 1 . All isolates carrying  bla  CTX-M  other than 
  bla  CTX-M-15  were  E. coli ; 1  E. coli  isolate harboured 
  bla  CTX-M-15  and  bla  CTX-M-2  simultaneously. All  K. pneu-
moniae  and 5  E. coli  isolates (11.6%) carried  bla  SHV-12 ; 
in  the case of  K.  pneumoniae , 11 isolates harboured 
  bla  CTX-M-15  and  bla  SHV-12  at the same time. The distribu-
tion of the ESBL genes was significantly different (p = 
0.001) between the 2 study groups;  bla  CTX-M-15  was more 
frequent in the LTC applicants (p < 0.001), and the fre-
quencies of other genes were comparable. When com-
paring ESBL gene distribution among  K. pneumoniae  
(all from the LTC applicants),  E. coli  from the LTC ap-
plicants and  E. coli  from the people on employment 
screening, a significant difference was found (p < 0.001). 
All 3 isolate groups showed significantly different distri-
butions in pairwise comparisons (p < 0.001 to p = 0.026), 
mostly due to the different distribution of  bla  CTX-M-15 . In 
addition,  K. pneumoniae  carried  bla  SHV-12  more fre-
quently than  E. coli  among the LTC applicants and in the 
employment screening group (p < 0.001).

  Genetic Diversity 
 The genetic diversity among  E. coli  isolates was high 

on both ERIC-PCR (data not shown) and PFGE ( fig. 2 ; 
D  = 0.99 and 0.96, respectively). One isolate was not 
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  Fig. 1.  Distribution of ESBL genes in the 2 
groups.  *  *  *  p < 0.001. 
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  Fig. 2.  Dendrogram generated from macrorestriction patterns of the  E. coli  isolates. 

number ESBL gene phylogroup study group
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typeable with ERIC-PCR but its PFGE analysis was 
 successful. The diversity of  E. coli  between the 2 groups 
was comparable (D = 0.99 vs. 0.99 and D = 0.94 vs. 0.95, 
respectively). Isolates in the same cluster were not 
 uniform with regard to the ESBL genes and integrons 
carried.

  In contrast,  K. pneumoniae  isolates were markedly less 
diverse, both with ERIC-PCR (data not shown) and PFGE 
( fig. 3 ; D = 0.58 and 0.31, respectively); a PFGE clone con-
taining 15 of the 18 isolates was detected. Notably, 1 of 
the distinct isolates was the carbapenem nonsusceptible 
isolate.

  Resistance Patterns and Aminoglycoside Resistance 
Genes 
 All ESBL-producing isolates were susceptible to colis-

tin; carbapenem nonsusceptibility (Hodge test: negative) 
was detected in a single  K. pneumoniae  isolate harbouring 
 bla  SHV-12 . The  K. pneumoniae  clone detected was resistant 
to all the drugs tested, except for carbapenem and colistin, 
and it carried the  aac(6’)-Ib  gene but no other tested ami-
noglycoside resistance genes.

  As shown in  figure 4 , resistance rates significantly dif-
fered between  E. coli  isolates from individuals on employ-
ment screening and on screening for LTC admission in the 
case of ciprofloxacin, amikacin, tobramycin and trime-
thoprim-sulfamethoxazole (p = 0.048 to p < 0.002). When 
comparing commensal vs. pathogenic  E. coli  isolates as 
classified by phylogroups, the resistance pattern was simi-
lar; however, the significant differences in ciprofloxacin 
and trimethoprim-sulfamethoxazole disappeared. In con-
trast to the  K. pneumoniae  clone, isolates showing resis-
tance to all non-beta-lactam antibiotic groups (except co-
listin) were not found in either  E. coli  group.

  In the  E. coli  isolates, the presence of the  bla  CTX-M-15  
gene correlated positively with ciprofloxacin, amikacin 
and tobramycin resistance ( table 1 ). The gene  bla  CTX-M-1 , 
on the contrary, correlated negatively with resistance to 
amikacin and tobramycin.

  The prevalences of aminoglycoside resistance genes 
are shown in  figure 5 ; all isolates were negative for  ant(2’)-
Ia ,  armA ,  rmtA  and  rmtB  genes. In the case of  E. coli  from 
the LTC applicants, aminoglycoside resistance genes 
were distributed unevenly (p = 0.017) with more frequent 

  Fig. 3.  Dendrogram generated from macrorestriction patterns of  K. pneumoniae  isolates.     

number ESBL gene
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carriage of  aac(6’)-Ib  than  aph(3’)-Ia  and  ant(3’)-Ia  (p = 
0.048 for both comparisons), but not more frequent than 
the carriage of  aac(3’)-IIa . In the  E. coli  from the employ-
ment screening group, the gene distribution was also un-
even (p < 0.001), but  ant(3’)-Ia  was more dominant than 
 aac(6’)-Ib  and  aph(3’)-Ia  (p = 0.005 and p = 0.02, respec-
tively). When applying the phylogroup-based classifica-
tion of  E. coli , pathogenic isolates showed a pattern very 
similar to that of the isolates from the LTC applicants, but 

the dominance of  aac(6’)-Ib  over  aph(3’)-Ia  and  ant(3’)-
Ia  was more marked (p = 0.004 for both comparisons). 
The commensal isolates were similar to the isolates from 
the employment screening group.

  The presence of the  bla  CTX-M-15  gene in  E. coli  was as-
sociated with the presence of  aac(3’)-IIa  as well as  aac(6’)-
Ib , and it correlated with the absence of  aph(3’)-Ia  and 
 ant(3’)-Ia  ( table  1 ). The carriage of  bla  CTX-M-1 , in turn, 
was negatively correlated with  aac(6’)-Ib .

  Integrons 
 The  K. pneumoniae  clone carried a class 1 integron 

with a single  ant(3’)-1b  gene, which was also found in 2 
of the 3 independent isolates. In  E. coli , integron carriage 
correlated negatively with  bla  CTX-M-15  ( table 1 ). The car-
riage rate of class 1 integrons was significantly higher in 
the  E. coli  from the employment screening group than 
from the LTC applicants (68.2%, 15/22 vs. 28.6%, 6/21; 
p = 0.01). Class 2 integrons were found in 6.3% (4/63) of 
the isolates (3 among the LTC facility applicants and 1 in 
an individual for employment screening); of these, 2 
 E. coli  isolates harboured both integron types (1 isolate 
was from the LTC applicant group and the other from the 
employment screening group). 

  Seven and 2 different gene cassette arrays were identi-
fied amongst the class 1 and 2 integrons, respectively 
( fig. 6 ). These arrays did not show any association with 
the ESBL gene carried or the study group of origin.
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  Fig. 4.  Resistance rates in ESBL-producing isolates obtained from 
long-term care facility applicants and individuals on employment 
screening. amik = Amikacin; cip = ciprofloxacin; dox = doxycy-

cline; gen  = gentamicin; tig  = tigecycline; tmp + smx  = trime-
thoprim-sulfamethoxazole (co-trimoxazole); tob  = tobramycin. 
 *  p < 0.05;  *  *  p < 0.01;  *  *  *  p < 0.001.   

 Table 1.  Correlation of carriage of blaCTX-M-15 and blaCTX-M-1 with 
resistance to antibiotics and aminoglycoside resistance genes in 
E. coli isolates

blaCTX-M-15 blaCTX-M-1

Ciprofloxacin resistance r = 0.43** n.s.
Gentamicin resistance n.s. n.s.
Amikacin resistance r = 0.58*** r = –0.41**
Tobramycin resistance r = 0.63*** f = –0.39**
Tigecycline resistance n.s. n.s.
Carriage of aac(3’)-IIa r = 0.39* n.s.
Carriage of aac(6’)-Ib r = 0.70*** r = –0.40*
Carriage of aph(3’)-Ia r = –0.35* n.s.
Carriage of ant(3”)-Ia r = –0.36* n.s.
Carriage of class I integron r = –0.49*** n.s.

 n.s.  = Not significant. Bold text represents negative correla-
tions. * p < 0.05; ** p < 0.01; *** p < 0.001.
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Fig. 6. Schematic representation of the various cassette arrange-
ments found in class 1 and class 2 integrons. The arrows display 
different genes. The grey boxes indicate the 3 ′  and 5 ′  conservative 
segments. Integron numbers for class 1 integrons according to the 

Integrall database (http://integrall.bio.ua.pt/?nomenclature) are 
also shown. The number of isolates carrying each cassette array is 
shown on the right.  a  The          P. mirabilis  isolate also carried this array.
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  Phylogrouping of E. coli and Analysis of Virulence 
Genes 
 Phylogenetic group analysis showed that group A cov-

ered 46.5% of strains, followed by groups B2 (25.6%), B1 
(23.3%) and D (4.6%). The commensal  E. coli  phylogroup 
A was more frequent in the employment screening group 
(14/22 vs. 6/21; p = 0.02), but phylogroup B2 was more 
frequent in the LTC applicants (9/21 vs. 2/22; p = 0.01). 
All phylogroup B2 isolates belonged to the  bla  CTX-M-15  
producer O25b:ST131 pandemic clone. 

  None of the isolates belonged to the entero-virulent 
pathogroups for which tests were conducted. The fre-
quency of the examined extra-intestinal virulence factor 
according to phylogroup is shown in  table 2 . Isolates be-
longing to pathogenic phylogroups showed a higher 
prevalence of the genes  kpsMT II  (p = 0.002) and  fyuA 
 (p < 0.001) than those from commensal phylogroups. The 
genes  sfaS ,  cnf1 ,  ibeA ,  sfa/focDE  and PAI   were complete-
ly absent from the commensal isolates. The comparison 
 E. coli  isolates according to source population yielded 
similar results, but only the prevalence of PAI was sig-
nificantly different (p = 0.017). Virulence factor patterns 
were not linked to the type of ESBL gene  carried.

  Discussion 

 Asymptomatic carriage of ESBL-producing Entero-
bacteriaceae was documented as early as 1989 in hospital 
patients  [30] , and reports of carriage in healthy individu-

als soon followed  [31, 32] . It became obvious that differ-
ent geographical regions show different carriage rates in 
communities, ranging from 0.6 to 11.6% in Europe  [6] , 
with the highest prevalence being reported in LTC appli-
cants from Belgium. Much higher rates have been found 
in other regions, e.g. 63.3% in Egypt  [33]  and 69.3% in 
Thailand  [34] . This geographical difference is underlined 
by studies reporting international travel as a risk factor 
for the carriage of ESBL producers  [8, 35, 36] . Faecal car-
riage rates seem to be increasing  [6, 37, 38] .

  The prevalence rate found in this study among healthy 
individuals (those screened for employment purposes) is 
comparable or somewhat lower than rates reported by 
European studies  [39, 40] . In contrast, the LTC applicants 
showed much higher prevalence, closer to that seen in 
hospitalized patients who were free of ESBL-related infec-
tions  [41]  a few years earlier and also that found in a con-
temporary study from Belgium targeting a similar patient 
group  [42] .

  The distribution of the ESBL genes in the 2 study pop-
ulations differed. In the  K. pneumoniae  and  E. coli  from 
the LTC applicants, it was similar to that in a European 
study on ESBL producers from human clinical samples 
 [43] , while higher gene diversity was found in the  E. coli  
from the employment screening group.

  Co-resistance patterns showed similarities with previ-
ous findings, e.g. the association of  bla  CTX-M  genes with 
ciprofloxacin and amikacin resistance  [44, 45] . Co-resis-
tance, as expected, was highest in  K. pneumoniae   [45] , 
with a single, multi-resistant clone being dominant 
among the isolates. The co-resistance pattern of the 2 
 E. coli  types was also very different. Resistance to cipro-
floxacin, amikacin and tobramycin was significantly 
more prevalent in the LTC applicants, with the amikacin 
and tobramycin resistance being caused mainly by car-
riage of the  aac(6’)-Ib  gene linked to  bla  CTX-M-15   carriage. 
In agreement, it was also shown that ciprofloxacin resis-
tance is associated with aminoglycoside resistance in ES-
BL-producer and non-ESBL producer  E. coli   [46] .

  In contrast, ESBL producers from the employment 
screening individuals were characterized by lower co-re-
sistance rates, a low frequency of  aac(6’)-Ib  and a high 
prevalence of  ant(3’)-Ia , a gene which is frequently pres-
ent in the intestinal  E. coli  of healthy individuals  [47] . This 
difference can be attributed to the high frequency of the 
ST131 carrying  bla  CTX-M-15  in the LTC applicant group, 
while  bla  CTX-M-1  carrier isolates, regardless of origin, were 
characterized by their low rate of co-resistance to other 
antibiotic classes and their lack of the  aac(6’)-Ib  gene. In 
addition, several virulence factors were more frequently 

 Table 2.  Distribution of virulence genes according to E. coli phy-
logenetic groups

Gene Number of positive isolates per phylogroup

A
(n = 20)

B1
(n = 10)

B2
(n = 11)

D
(n = 2)

Total
(n = 43)

iutA 6 6 8 1 21 (48.8%)
papC 1 2 3 1 7 (16.3%)
kpsMT II 5 1 8 1 15 (34.9%)
fyuA 3 4 10 1 18 (41.9%)
sfaS 0 0 3 0 3 (7.0%)
cvaC 5 6 4 0 15 (34.9%)
traT 9 10 9 1 29 (67.4%)
cnf1 0 0 2 0 2 (4.6%)
ibeA 0 0 3 0 3 (7.0%)
sfa/focDE 0 0 3 0 3 (7.0%)
PAI 0 0 10 1 11 (25.6%)
fimH 15 10 11 2 38 (88.4%)
csgA 19 10 2 1 32 (74.4%)
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found in the isolates from LTC applicants, also attribut-
able to the higher frequency of ST131 in this group.

  The differences in the distribution of the carried ESBL 
genes and other characteristics between the 2 populations 
in this study may be explained, in our opinion, by the dif-
ferent probable source of colonization. Most carriers in 
the group being screened for work eligibility presumably 
represent acquisition events independent of hospitals 
(rather community-related) whereas the group of LTC 
applicants probably represents mainly nosocomial acqui-
sition. This serves as an explanation for the observations 
that  K. pneumoniae , a typical nosocomial pathogen, was 
absent in the employment screening group, and that the 
 E. coli  isolates from the LTC applicants were more similar 
to  K. pneumoniae  than to  E. coli  isolates from the employ-
ment screening group with regard to a number of charac-
teristics, including (1) a significantly lower diversity of 
the  bla  CTX-M  genes, (2) a significantly higher frequency of 
 bla  CTX-M-15  and (3) the occurrence of aminoglycoside re-
sistance genes  aac(6’)-Ib  and  ant(3’)-Ia . This assumption 
is further supported by the lower occurrence of the com-
mensal phylogroup A and the higher occurrence of the 
pathogenic phylogroup B2 in the  E. coli  from the LTC 
applicants and the frequent isolation of the pandemic 
ST131 clone from this group as well as by differences in 
the co-resistance patterns. Interestingly, these character-
istics of  E. coli  were better explained by origin (i.e. LTC 
applicants vs. employment screening) than by phylogroup-
ing (i.e. commensal vs. pathogenic).

  These data, taken together, suggest that ESBL carriage 
in the community (employment eligibility group) is char-
acterized by different colonization sources. The most ob-
vious source is the exportation of hospital-derived strains 
either by colonized patients who have been discharged or 
by hospital workers; such events may be responsible for 
the introduction of the pathogenic ST131 clone carrying 
 bla  CTX-M-15  which causes significant morbidity both in 
hospitals and in the community setting  [48] . The source 
for colonization with isolates carrying  bla  SHV  may be hor-
izontal gene transfer from exported  K. pneumoniae  iso-
lates  [49–51] , while various potential environmental 
sources should also be considered for  bla  CTX-M  genes oth-
er than  bla  CTX-M-15 , including food  [52, 53] , companion 
animals  [54, 55],  wild animals  [56, 57]  surface water  [58] , 
drinking water  [59]  and food  [52] , either through direct 
transfer of the resistant bacteria or by the horizontal 
spread of resistance plasmids to human commensal 
 E. coli .

  This assumption is supported by the dominance of 
 bla  CTX-M-1  among isolates from the work eligibility 

group and the parallel dominance of  bla  CTX-M-1  in ani-
mal-derived Hungarian ESBL-producing  E. coli  isolates 
 [53] , in a Polish sample set from water birds  [57]  and in 
samples from food and food animals in Switzerland  [52]  
as well as by the high frequency of  bla  CTX-M-2  and 
  bla  CTX-M-32  in samples originating in food animals  [53, 
60] . These  bla  genotypes were found exclusively in the 
individuals screened for work eligibility purposes in this 
study. The relatedness of animal and human isolates has 
also been demonstrated in some studies, pointing to a 
possible zoonotic spread of ESBL-producing  E. coli   [56, 
61] .

  The presented data underline the complex epidemiol-
ogy of ESBL producers in the community setting. The 
ESBL producers or ESBL-encoding genes may reach the 
human gut microbiota in the community setting via two 
main routes. Colonization may be the result of the expor-
tation of nosocomial  K. pneumoniae  or  E. coli , character-
ized by a dominance of  bla  CTX-M-15 , multiple co-resistance 
to other drug types and frequently by clonal spread. The 
other starting point may be the different environmental 
sources of mainly commensal  E. coli  characterized by di-
verse ESBL genes and a high diversity of genotypes of car-
rier bacteria as well as by a low rate of co-resistance. 
Though the extent of contribution to human infection by 
the latter group has still to be established, the increasing 
prevalence demonstrated by several authors  [6 ,  62]  is def-
initely cause for alarm.

  Acknowledgements 

 G. Kardos was supported by the scholarship TÁMOP 4.2.4. 
A/2-11-1-2012-0001 ‘National Excellence Program: Elaborating 
and operating an inland student and researcher personal support 
system’. The project was subsidized by the European Union and 
co-financed by the European Social Fund. 

 References   1 Damjanova I, Tóth A, Pászti J, Hajbel-Véko-
ny G, Jakab M, Berta J, Milch H, Füzi M: Ex-
pansion and countrywide dissemination of 
ST11, ST15 and ST147 ciprofloxacin-resistant 
CTX-M-15-type beta-lactamase-producing 
 Klebsiella pneumoniae  epidemic clones in 
Hungary in 2005 – the new ‘MRSAs’? J Anti-
microb Chemother 2008;   62:   978–985. 

  2 Woodford N, Ward ME, Kaufmann ME, Tur-
ton J, Fagan EJ, James D, Johnson AP, Pike R, 
Warner M, Cheasty T, Pearson A, Harry S, 
Leach JB, Loughrey A, Lowes JA, Warren RE, 
Livermore DM: Community and hospital 
spread of  Escherichia coli  producing CTX-M 
extended-spectrum beta-lactamases in the UK. 
J Antimicrob Chemother 2004;   54:   735–743. 



 Ebrahimi/Mózes/Mészáros/Juhász/Kardos   Chemotherapy
DOI: 10.1159/000375407

10

  3 Cantón R, Coque TM: The CTX-M beta-lac-
tamase pandemic. Curr Opin Microbiol 2006;  
 9:   466–475. 

  4 Livermore DM, Canton R, Gniadkowski M, 
Nordmann P, Rossolini GM, Arlet G, Ayala J, 
Coque TM, Kern-Zdanowicz I, Luzzaro F, 
Poirel L, Woodford N: CTX-M: changing the 
face of ESBLs in Europe. J Antimicrob Che-
mother 2007;   59:   165–174. 

  5 Ewers C, Grobbel M, Stamm I, Kopp PA, 
Diehl I, Semmler T, Fruth A, Beutlich J, Guer-
ra B, Wieler LH, Guenther S: Emergence of 
human pandemic O25:H4-ST131 CTX-M-15 
extended-spectrum-beta-lactamase-produc-
ing  Escherichia coli  among companion ani-
mals. J Antimicrob Chemother 2010;   65:   651–
660. 

  6 Woerther PL, Burdet C, Chachaty E, Andre-
mont A: Trends in human fecal carriage of 
extended-spectrum beta-lactamases in the 
community: toward the globalization of CTX-
M. Clin Microbiol Rev 2013;   26:   744–758. 

  7 Salyers AA, Gupta A, Wang Y: Human intes-
tinal bacteria as reservoirs for antibiotic resis-
tance genes. Trends Microbial 2004;   12:   412–
416. 

  8 Tham J, Odenholt I, Walder M, Brolund A, 
Ahl J, Melander E: Extended-spectrum beta-
lactamase-producing  Escherichia coli  in pa-
tients with travellers’ diarrhoea. Scand J Infect 
Dis 2010;   42:   275–280. 

  9 Van der Bij AK, Pitout JD: The role of inter-
national travel in the worldwide spread of 
multiresistant Enterobacteriaceae. J Antimi-
crob Chemother 2012;   67:   2090–2100. 

 10 Heininger A, Binder M, Schmidt S, Unertl K, 
Botzenhart K, Döring G: PCR and blood cul-
ture for detection of  Escherichia coli  bactere-
mia in rats. J Clin Microbiol 1999;   37:   2479–
2482. 

 11 Liu Y, Liu C, Zheng W, Zhang X, Yu J, Gao Q, 
Hou Y, Huang X: PCR detection of  Klebsiella 
pneumoniae  in infant formula based on 16S-
23S internal transcribed spacer. Int J Food 
Microbiol 2008;   125:   230–235. 

 12 Versalovic J, Koeuth T, Lupski JR: Distribu-
tion of repetitive DNA sequences in eubacte-
ria and application to fingerprinting of bacte-
rial genomes. Nucleic Acid Res 1991;   19:  
 6823–6831. 

 13 Mózes J, Szűcs I, Molnár D, Jakab P, Fatemeh 
E, Szilasi M, Majoros L, Orosi P, Kardos G: A 
potential role of aminoglycoside resistance in 
endemic occurrence of  Pseudomonas aerugi-
nosa  strains in lower airways of mechanically 
ventilated patients. Diagn Microbiol Infect 
Dis 2014;   78:   79–84. 

 14 Hunter PR, Gaston MA: Numerical index of 
the discriminatory ability of typing systems: 
an application of Simpson’s index of diversity. 
J Clin Microbiol 1998;   26:   2465–2466. 

 15 Bedenić B, Randegger CC, Stobberingh E, 
Hächler H: Molecular epidemiology of ex-
tended-spectrum beta-lactamases from  Kleb-
siella pneumoniae  strains isolated in Zagreb, 
Croatia. Eur J Clin Microbiol Infect Dis 2001;  
 20:   505–508. 

 16 Edelstein M, Pimkin M, Palagin I, Edelstein I, 
Stratchounski L: Prevalence and molecular 
epidemiology of CTX-M extended-spectrum 
beta-lactamase-producing  Escherichia coli  
and  Klebsiella pneumoniae  in Russian hospi-
tals. Antimicrob Agents Chemother 2003;   47:  
 3724–3732. 

 17 Jouini A, Vinué L, Slama KB, Sáenz Y, Klibi 
N, Hammami S, Boudabous A, Torres C: 
Characterization of CTX-M and SHV extend-
ed-spectrum beta-lactamases and associated 
resistance genes in  Escherichia coli  strains of 
food samples in Tunisia. Antimicrob Agents 
Chemother 2007;   60:   1137–1141. 

 18 Pitout JD, Hossain A, Hanson ND: Phenotyp-
ic and molecular detection of CTX-M-beta-
lactamases produced by  Escherichia coli  and 
 Klebsiella  spp. J Clin Microbiol 2004;   42:  
 5715–5721. 

 19 Hannecart-Pokorni E, Depuydt F, De Wit L, 
van Bossuyt E, Content J, Vanhoof R: Charac-
terization of the ± 9 - N-aminoglycoside acet-
yltransferase gene  aac(6  ′  )-Im  associated with 
a sulI-type integron. Antimicrob Agents Che-
mother 1997;   41:   314–318. 

 20 Noppe-Leclercq I, Wallet F, Haentjens S, 
Courcol R, Simonet M: PCR detection of ami-
noglycoside resistance genes: a rapid molecu-
lar typing method for  Acinetobacter bauman-
nii . Res Microbiol 1999;   150:   317–322. 

 21 Frana TS, Carlson SA, Griffith RW: Relative 
distribution and conservation of genes encod-
ing aminoglycoside-modifying enzymes in 
 Salmonella enterica  serotype Typhimurium 
phage type DT104. Appl Environ Microbiol 
2001;   67:   445–448. 

 22 Bogaerts P, Galimand M, Bauraing C, Depla-
no A, Vanhoof R, De Mendonca R, Rodri-
guez-Villalobos H, Struelens M, Glupczynski 
Y: Emergence of ArmA and RmtB aminogly-
coside resistance 16S rRNA methylases in Bel-
gium. J Antimicrob Chemother 2007;   59:   459–
464. 

 23 Mazel D, Dychinco B, Webb VA, Davies J: 
Antibiotic resistance in the ECOR collection: 
integrons and identification of a novel  aad  
gene. Antimicrob Agents Chemother 2000;  
 44:   1568–1574. 

 24 White DG, Zhao S, Sudler R, Ayers S, Fried-
man S, Chen S, McDermott PF, McDermott 
S, Wagner DD, Meng J: The isolation of anti-
biotic-resistant Salmonella from retail ground 
meats. N Engl J Med 2001;   345:   1147–1154. 

 25 Clermont O, Bonacorsi S, Bingen E: Rapid 
and simple determination of the  Escherichia 
coli  phylogenetic group. Appl Environ Micro-
biol 2000;   66:   4555–4558. 

 26 Clermont O, Dhanji H, Upton M, Gibreel T, 
Fox A, Boyd D, Mulvey MR, Nordmann P, 
Ruppé E, Sarthou JL, Frank T, Vimont S, Arlet 
G, Branger C, Woodford N, Denamur E: Rap-
id and simple detection of the O25b-ST131 
clone of  Escherichia coli  encompassing the 
CTXM-15 producing strains. J Antimicrob 
Chemother 2009;   64:   274–277. 

 27 Persson S, Olsen KE, Scheutz F, Krogfelt KA, 
Gerner-Smidt P: A method for fast and simple 

detection of major diarrhoeagenic  Escherichia 
coli  in the routine diagnostic laboratory. Clin 
Microbiol Infect 2007;   13:   516–524. 

 28 Braun G, Vidotto MC: Evaluation of adher-
ence, hemagglutination, and presence of 
genes codifying for virulence factors of  Aci-
netobacter baumannii  causing urinary tract 
infection. Mem Inst Oswaldo Cruz 2004;   99:  
 839–844. 

 29 Hammer Q, Harper DAT, Ryan PD: PAST: 
paleontological statistics software package for 
education and data analysis, v1.34 (March 17, 
2005). 

 30 De Champs C, Sauvant MP, Chanal C, Sirot 
D, Gazuy N, Malhuret R, Baguet JC, Sirot J: 
Prospective survey of colonization and infec-
tion caused by expanded-spectrum-beta-lac-
tamase-producing members of the family En-
terobacteriaceae in an intensive care unit. J 
Clin Microbiol 1989;   27:   2887–2890. 

 31 Franiczek R, Sobieszczanska B, Grabowski M, 
Mowszet K, Pytrus T: Occurrence of extend-
ed-spectrum beta-lactamases among  Esche-
richia coli  isolates from hospitalized and 
healthy children. Folia Microbiol (Praha) 
2003;   48:   243–247. 

 32 Rodrigues C, Shukla U, Jog S, Mehta A: Ex-
tended-spectrum beta-lactamase-producing 
flora in healthy persons. Emerg Infect Dis 
2005;   6:   981–982. 

 33 Abdul Rahman EM, El-Sherif RH: High rates 
of intestinal colonization with extended-spec-
trum lactamase-producing Enterobacteriace-
ae among healthy individuals. J Investig Med 
2011;   59:   1284–1286. 

 34 Luvsansharav UO, Hirai I, Nakata A, Imura 
K, Yamauchi K, Niki M, Komalamisra C, Ku-
solsuk T, Yamamoto Y: Prevalence of and risk 
factors associated with faecal carriage of CTX-
M beta-lactamase producing Enterobacteria-
ceae in rural Thai communities. J Antimicrob 
Chemother 2012;   67:   1769–1774. 

 35 Peirano G, Laupland KB, Gregson DB, Pitout 
JD: Colonization of returning travelers with 
CTX-M-producing  Escherichia coli . J Travel 
Med 2011;   18:   299–303. 

 36 Tangden T, Cars O, Melhus A, Lowdin E: For-
eign travel is a major risk factor for coloniza-
tion with  Escherichia coli  producing CTXM-
type extended-spectrum beta-lactamases: a 
prospective study with Swedish volunteers. 
Antimicrob Agents Chemother 2010;   54:  
 3564–3568. 

 37 Coque TM, Baquero F, Canton R: Increasing 
prevalence of ESBL-producing Enterobacte-
riaceae in Europe. Euro Surveill 2008;   13:  
 19044. 

 38 Nicolas-Chanoine MH, Gruson C, Bialek-
Davenet S, Bertrand X, Thomas-Jean F, Bert 
F, Moyat M, Meiller E, Marcon E, Danchin 
N, Noussair L, Moreau R, Leflon-Guibout 
V: 10-fold increase (2006–2011) in the rate 
of healthy subjects with extended-spectrum 
beta-lactamase producing  Escherichia coli 
 faecal carriage in a Parisian check-up cen-
tre. J Antimicrob Chemother 2013;   68:   562–
568. 



 ESBL Carriage in Asymptomatic 
Individuals 

Chemotherapy
DOI: 10.1159/000375407

11

 39 Stromdahl H, Tham J, Melander E, Walder M, 
Edquist PJ, Odenholt I: Prevalence of faecal 
ESBL carriage in the community and in a hos-
pital setting in a county of Southern Sweden. 
Eur J Clin Microbiol Infect Dis 2011;   30:   1159–
1162. 

 40 Geser N, Stephan R, Korczak BM, Beutin L, 
Hachler H: Molecular identification of ex-
tended-spectrum-beta-lactamase genes from 
Enterobacteriaceae isolated from healthy hu-
man carriers in Switzerland. Antimicrob 
Agents Chemother 2012;   56:   1609–1612. 

 41 Rodriguez-Bano J, Lopez-Cerero L, Navarro 
MD, Diaz de Alba P, Pascual A: Faecal car-
riage of extended-spectrum beta-lactamase 
producing  Escherichia coli : prevalence, risk 
factors and molecular epidemiology. J Anti-
microb Chemother 2008;   62:   1142–1149. 

 42 Schoevaerdts D, Verroken A, Huang TD, 
Frennet M, Berhin C, Jamart J, Bogaerts P, 
Swine C, Glupczynski Y: Multidrug-resistant 
bacteria colonization amongst patients newly 
admitted to a geriatric unit: a prospective co-
hort study. J Infect 2012;   65:   109–118. 

 43 Tofteland S, Haldorsen B, Dahl KH, Simon-
sen GS, Steinbakk M, Walsh TR, Sundsfjord 
A; Norwegian ESBL Study Group: Effects of 
phenotype and genotype on methods for de-
tection of extended-spectrum-beta-lacta-
mase-producing clinical isolates of  Escherich-
ia coli  and  Klebsiella pneumoniae  in Norway.  
 J Clin Microbiol 2007;   45:   199–205. 

 44 Pitout JD, Hanson ND, Church DL, Laupland 
KB: Population-based laboratory surveillance 
for  Escherichia coli -producing extended-
spectrum beta-lactamases: importance of 
community isolates with  bla CTX-M genes. 
Clin Infect Dis 2004;   38:   1736–1741. 

 45 Hansen DS, Schumacher H, Hansen F, Steg-
ger M, Hertz FB, Schønning K, Justesen US, 
Frimodt-Møller N; DANRES Study Group: 
Extended-spectrum beta-lactamase (ESBL) 
in Danish clinical isolates of  Escherichia coli  
and  Klebsiella pneumoniae : prevalence, beta-
lactamase distribution, phylogroups, and co-
resistance. Scand J Infect Dis 2012;   44:   174–
181. 

 46 Tsukamoto N, Ohkoshi Y, Okubo T, Sato T, 
Kuwahara O, Fujii N, Tamura Y, Yokota S: 
High prevalence of cross-resistance to amino-
glycosides in fluoroquinolone-resistant  Esch-
erichia coli  clinical isolates. Chemotherapy 
2013;   59:   379–384. 

 47 Skurnik D, Le Menac’h A, Zurakowski D, Ma-
zel D, Courvalin P, Denamur E, Andremont 
A, Ruimy R: Integron-associated antibiotic 
resistance and phylogenetic grouping of  Esch-
erichia coli  isolates from healthy subjects free 
of recent antibiotic exposure. Antimicrob 
Agents Chemother 2005;   49:   3062–3065. 

 48 Lau SH, Kaufmann ME, Livermore DM, 
Woodford N, Willshaw GA, Cheasty T, 
Stamper K, Reddy S, Cheesbrough J, Bolton 
FJ, Fox AJ, Upton M: UK epidemic  Escherich-
ia coli  strains A-E, with CTX-M-15 beta-lac-
tamase, all belong to the international 
O25:H4-ST131 clone. J Antimicrob Che-
mother 2008;   62:   1241–1244. 

 49 Coque TM, Oliver A, Pérez-Díaz JC, Baquero 
F, Cantón R: Genes encoding TEM-4, SHV-2, 
and CTX-M-10 extended-spectrum beta-lac-
tamases are carried by multiple  Klebsiella 
pneumoniae  clones in a single hospital (Ma-
drid, 1989–2000). Antimicrob Agents Che-
mother 2002;   46:   500–510. 

 50 Tellevik MG, Sollid JE, Blomberg B, Jureen R, 
Urassa WK, Langeland N: Extended-spec-
trum beta-lactamase-type SHV-12-produc-
ing Enterobacteriaceae causing septicemia in 
Tanzanian children: vectors for horizontal 
transfer of antimicrobial resistance. Diagn 
Microbiol Infect Dis 2007;   59:   351–354. 

 51 Doi Y, Adams-Haduch JM, Peleg AY, D’Agata 
EM: The role of horizontal gene transfer in the 
dissemination of extended-spectrum beta-lac-
tamase-producing  Escherichia coli  and  Klebsi-
ella pneumoniae  isolates in an endemic setting. 
Diagn Microbiol Infect Dis 2012;   74:   34–38. 

 52 Geser N, Stephan R, Hächler H: Occurrence 
and characteristics of extended-spectrum be-
ta-lactamase (ESBL) producing Enterobacte-
riaceae in food producing animals, minced 
meat and raw milk. BMC Vet Res 2012;   8:   21. 

 53 Tóth A, Juhász-Kaszanyitzky É, Mag T, Haj-
bel-Vékony G, Pászti J, Damjanova I: Charac-
terization of extended-spectrum beta-lacta-
mase (ESBL) producing  Escherichia coli  
strains isolated from animal and human clin-
ical samples in Hungary in 2006–2007. Acta 
Microbiol Immunol Hung 2013;   60:   175–185. 

 54 Carattoli A, Lovari S, Franco A, Cordaro G, 
Di Matteo P, Battisti A: Extended-spectrum 
beta-lactamases in  Escherichia coli  isolated 
from dogs and cats in Rome, Italy, from 2001 
to 2003. Antimicrob Agents Chemother 2005;  
 49:   833–835. 

 55 Wieler LH, Ewers C, Guenther S, Walther B, 
Lübke-Becker A: Methicillin-resistant staph-
ylococci (MRS) and extended-spectrum beta-
lactamases (ESBL)-producing Enterobacteri-
aceae in companion animals: nosocomial in-
fections as one reason for the rising prevalence 
of these potential zoonotic pathogens in clin-
ical samples. Int J Med Microbiol 2011;   301:  
 635–641. 

 56 Bonnedahl J, Drobni M, Gauthier-Clerc M, 
Hernandez J, Granholm S, Kayser Y, Melhus 
A, Kahlmeter G, Waldenström J, Johansson 
A, Olsen B: Dissemination of  Escherichia coli  
with CTX-M type ESBL between humans and 
yellow-legged gulls in the south of France.  
 PLoS One 2009;   4:e5958. 

 57 Literak I, Dolejska M, Janoszowska D, Hrusa-
kova J, Meissner W, Rzyska H, Bzoma S, 
Cizek A: Antibiotic-resistant  Escherichia coli  
bacteria, including strains with genes encod-
ing the extended-spectrum beta-lactamase 
and QnrS, in waterbirds on the Baltic Sea 
coast of Poland. Appl Environ Microbiol 
2010;   76:   8126–8134. 

 58 Tacão M, Moura A, Correia A, Henriques I: 
Co-resistance to different classes of antibiot-
ics among ESBL-producers from aquatic sys-
tems. Water Res 2014;   48:   100–107. 

 59 De Boeck H, Miwanda B, Lunguya-Metila O, 
Muyembe-Tamfum JJ, Stobberingh E, Glupc-
zynski Y, Jacobs J: ESBL-positive Enterobac-
teria isolates in drinking water. Emerg Infect 
Dis 2012;   18:   1019–1020. 

 60 Bortolaia V, Larsen J, Damborg P, Guarda-
bassi L: Potential pathogenicity and host 
range of extended-spectrum beta-lactamase-
producing  Escherichia coli  isolates from 
healthy poultry. Appl Environ Microbiol 
2011;   77:   5830–5833. 

 61 Overdevest I, Willemsen I, Rijnsburger M, Eu-
stace A, Xu L, Hawkey P, Heck M, Savelkoul 
P, Vandenbroucke-Grauls C, van der Zwaluw 
K, Huijsdens X, Kluytmans J: Extended-spec-
trum beta-lactamase genes of  Escherichia coli  
in chicken meat and humans, The  Netherlands. 
Emerg Infect Dis 2011;   17:   1216–1222. 

 62 Valverde A, Coque TM, Sánchez-Moreno 
MP, Rollán A, Baquero F, Cantón R: Dramat-
ic increase in prevalence of fecal carriage of 
extended-spectrum beta-lactamase-produc-
ing Enterobacteriaceae during non-outbreak 
situations in Spain. J Clin Microbiol 2004;   42:  
 4769–4775.   




