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Abstact
Diffusion and solid state reactions were investigated in Pd–Cunanocrystallinefilms bymeans of
secondary neutralmass spectrometry depth profiling technique. The heat treatments weremade at
low temperatures (where the volume diffusionwas frozen in) for long enough annealing times to
reach saturation. In the early stage there is a grain boundary interdiffusion. At longer times first a Pd
plateau developed inside theCu layer. Later on theCupenetrationwas alsomore andmore extended
in the Pd, even the average composition of Cu in Pd became higher than the average Pd composition
inCu.Depending on the ratio of the initial thicknesses, the system (for thickness ratios corresponding
to 50/50Cu/Pd or to 75/25Cu/Pd) arrived either at themixture of pure Pd andβ-CuPd phase or to
themixture ofα′-Cu3Pd andβ-CuPd phases, respectively, as dictated by the phase diagram. The
process is interpreted as grain boundary diffusion induced solid state reaction.

1. Introduction

It is known that in thin layered systems homogenization can occur even at low temperatures where the volume
diffusion can be neglected [1–4]. During these processes the interdiffusion takes place along grain-boundaries,
GBs. The unequal GB atomic fluxes create stresses, the relaxation of which can result in (i)diffusion induced
recrystallization (DIR) aswell as (ii) in diffusion-induced grain boundarymotion (DIGM). DuringDIR grains
are createdwith awell-defined composition of the diffusing element. InDIGM the grain boundariesmove
perpendicular to the original boundary plane and leave an alloyed zone behind. Furthermore it was also
illustrated [5–12] that complete homogenization of bilayered films can also happen by formations of reaction
products along the grain boundaries, (grain boundary diffusion induced reaction, GBDIREAC [4]). Themost
important difference, as compared to thewell-investigated cases ofDIGM/DIR in systems forming solid
solutions, lies in the formation of newphases. Nevertheless, in all these cases the nucleation and growth (either
the nuclei formed in the vicinity of the original interface or formed along theGBs inside thefilm) are different
from the normal planar nucleation and growth of the reaction product, when a compact reaction layer forms
and grows at the original interface.

In our previous paper the interdiffusion in Pd–Cu thin film systemwas investigated in the temperature range
of 120 °C–310 °C [7].We have shown—in agreementwith the experimental observations of [6] too—that the
saturation ofGBs inCuwas reached in very short times (in the early stages of the process), while wewere able to
determine theGBdiffusion coefficient of Cu in Pd. In addition at 310 °Cafter 1 h annealing time an almost
complete homogenizationwith a composition of Cu3Pdwas observed. The high concentration level of Pd in the
center of the Cu layer, on the basis of TEMobservations as well, was interpreted bymovingGBs leaving behind
regions of Cu3Pd composition. Sincewe did not detect the formation of a compact reaction layer near the
original interface we interpreted our results byGBDIREAC.

In this paperwe present systematic and detailed analysis of the later stages of phase formations with long-
termheat treatments at low temperatures (225 °C–310 °C) in nanocrystalline PdCu system.
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2. Experimental details

Polycrystalline Pd/Cubilayers weremade on Si single crystalline substrate with dcmagnetron sputtering. The
pressure of the high purity Ar sputtering gas and the deposition rates of Cu and Pdwere 5×10−3 mbar, as well
as 0.5 nm s−1 and 0.6 nm s−1, respectively. The chamberwas evacuated to 9×10−7 mbar before the deposition
process to clear away every contamination. Filmswith thickness ratios corresponding toCu:Pd atomic ratios of
1:1 and 3:1 i.e. 37.5 nm(Pd)/30 nm(Cu) aswell as 21 nm(Pd)/50 nm(Cu)films, respectively were produced. In
addition, to change the thickness of thefilms, 62.5 nm(Pd)/50 nm(Cu) and 33.6 nm(Pd)/80 nm(Cu) bilyers
were also deposited. The heat treatments weremade in vacuum (p<5×10−6 mbar) in the temperature range
180 °C–280 °C.The concentration-depth profiles weremeasured by secondary neutralmass spectrometry
(SNMS) techniquewhere noble gas (Ar) plasmawas used for sputtering and also for ionizing the sputtered
neutral parts. The available best depth resolution is better than 2 nm [13, 14] due to the extremely homogenous
plasma profile and the lowbombarding energy (350 eV). From the intensity (count per second) versus sputtering
time plots the concentration-depth profiles were calculated, using relative sensitivity factors and assuming linear
relationship between themeasured intensities and composition. The formed phases were also inspected by
means of x-ray diffraction (XRD) using CuKα radiation in θ–2θmode.

3. Results

Figures 1 and 2 show the time evolution of the concentration-depth profiles at 220 °C for two different thickness
ratios. One can see thatfirst a Pd plateau developed inside theCu layer at both thickness ratios and there is a
gradual increase of theCu composition in Pd closer to the initial interface. After longer annealing times there is a
thin plateau at about 50/50 composition near the original interface in the 37.5 nm(Pd)/30 nm(Cu) bilayer (see
figure 1(d)). In this diffusion couple the composition profiles gradually approached to each other at longer,
prolonged aging (figure 1(f)), indicating the homogenizationwith an average composition close to 50%. In the
bilayerwith composition ratio 1:3, 21 nm(Pd)/50 nm(Cu), the situation is similar on theCu side (figure 2(b)),
while in the Pd, probably due to the smaller Pd thickness, already after 12 h treatment a homogeneous layer with
50/50 composition has been developed (figure 2(c)). In addition, aftermore prolonged heat treatment, the
composition on theCu side started to approach to the composition corresponding toCu3Pd (figure 2(d)) and at
the same time the composition ratio on the original Pd side also gradually shifted from theCuPd content to
moreCu rich compositions. In order to investigate the terminal state of bothfilm ratios we also prepared thicker
films corresponding to the same compositions with a bit increased individual thicknesses and heat treated them
at higher temperature (280 °C, figure 3). It can be seen from figures 3(b) and (d) that again the systems
approached to the expectedCuPd andCu3Pd final compositions, but obviously duringmuch shorter times.

In contrast to our previous work [7], where only SNMSdepth profilingwas applied, XRDwas also used to
identify the growing phases. Figure 4 shows theXRDpattern of the 37.5 nm(Pd)/30 nm(Cu)film. Themarked
peaks of the XRDpatternwere identified by the corresponding XRDpatterns of Cu, Pd andCuPd [6]. The
silicon substrate has two reflections, at 69.1° and 33°. The latter is related to enhanced stresses in the Si substrate
[15]. XRDpatterns of the as-deposited sample show the reflections of pure Pd and pureCu only, which gradually
decrease during the heat treatment. It can be seen that simultaneously with the decrease of the intensity of peaks
for purematerials the reflections of theCuPd phase appear and grow (see (001), (110) and (112) reflections of
this phase). Unfortunately the reflections of Cu (111) andCuPd (110) overlap at 43.3°. Figure 5 shows theXRD
patterns of the 21 nm(Pd)/50 nm(Cu)film, corresponding to the 1:3 Pd:Cu ratio. The diffraction lines of the
purematerials disappeared after 48 h long annealing. Reflections for theCuPd phase are observable, but the
Cu3Pd phase cannot be identified.

XRD results on thicker samples (figure 6(a)) indicate that, as compared tofigure 4,more reflections from the
CuPd phase can be observed and the reflections from the pureCu and Pd disappeared in the 62.5 nm(Pd)/
50 nm(Cu)film, corresponding to the 1:1 Cu/Pd ratio. On the other hand, as it can be seen infigure 6(b) in the
33.6 nm(Pd)/80 nm(Cu)filmwith 3:1Cu/Pd ratio, strong reflections from theCu3Pd phase can be identified
with some traces of reflections from theCuPd after 1 h heat treatment at 280 °C.

Using the Scherrer formula [16], which is based on the line broadening of XRDpeaks due to small grain size,
D, the values ofDwere estimated from the full-width at half-maximumof the XRDpeaks (table 1). It can be seen
from their comparison, although thismethod due to the instrumental line broadening inevitably
underestimates the grain sizes, that probably because the grain structure is textured, the grain sizes estimated
fromdifferent reflections are a bit different. On the other hand the grain sizes of the product and parent phases
are the samewithin the errors of evaluation (about 2–3 nm).
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4.Discussion

Weobserved an almost full homogenization after long annealing times on the SNMS concentration-depth
profiles (figures 1–3). TheXRDmeasurements confirmed the conclusions drawn from the SNMSprofiles:
depending on the initial film thicknesses the system arrived either into theCuPd orCu3Pd phases or to their
mixture (see also below). Indeed, in accordancewith the XRD results of [6] the phases, calledCuPd aswell as the
Cu3Pd above, correspond to theβ (CuPd) andα′ (Cu3Pd) phaseswith average equilibrium compositions 40 at%
Pd aswell as 15 at%Pd, respectively in accordance with the phase diagram [17]. Furthermore the presence of
super-lattice reflections (withmixed, even and odd, indexes) indicates that theβ phase is at least partly ordered
(figures 4 and 6(a)). Also, following the arguments in [6] it is likely, that themarked reflections (Cu3Pd) originate
from theα′-Cu3Pd phase.

Sincewe did not observed (except the thin plateau at intermediate time infigure 1(d)) formation and planar
growth of the reaction product at the initial interface, we offer the following interpretation. First theGB
diffusion of atoms fills up the grain boundaries. Indeed, taking 0.5 nm for the grain-boundarywidth, the grain-
boundary volume fraction should be less than 12.5 at% for d=12 nm (c≅3δ/d). The concentration of Pd in
Cu is above this value after fewhours. Later on themoving boundaries sweep through the grains and leave
behind an alloyed zone as it is usually observed inDIGM: themechanismof additionalmass transfer tomaintain
the phase growth is the interface diffusion along the newly formed interfaces. In addition the alloyed zone

Figure 1.Concentration profiles in the 37.5(Pd)/30 nm(Cu) bilayer after different annealing times at 220 °C.
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consists of the intermetallic phase(s) formed byGBDIREAC. This is valid on both sides of allfilms investigated.
The only difference is that, in the filmswith 1:3Pd/Cu ratio, this process if very profound on the Pd size, and
almost all amount of Pd from the center of the Pd grains was consumed by thismechanism before the full
homogenization reached. According to this explanation it is also clear why the composition profiles in
figures 1(b)–(d) show some changes with the distancemeasured from the position of the original interface. The
GBDIREACprocess starts earlier at positions closer to the original interface and resulting in a gradual change in
the depth profiles. At the vicinity of the original interface this can lead to a fast consumption of the interiors of
the pure grains leading to the formation of the thin plato as it can be seen infigure 1(d). Note that some
contribution to the above processes fromDIR can also play a role (see the discussion at the end of this section).

The fact that the system indeed arrived at thermal equilibrium in long time limit can also be illustrated by
taking into account that in films with 50/50 initial Cu/Pd ratio amixture of pure Pd and the equilibrium β phase
(with 40 at%Pd) should be present with the overwhelming amount of theβ phase (the existence range of theβ
phase is wide: it is about 10%). Indeed it can be seen infigures 1(f) and 3(b) that on the original Cu side the
composition is about 40 at%of Pd,while on the Pd side it exceeds the 60 at%Pd indicating that in this side not all
the Pd has been consumed and amixture of the pure Pd and the (Pd rich)β phase has been formed. This is
accordancewith the phase equilibrium: at 50/50 initial composition amixture of the pure Pd andβ phase
should be formed: this is why the average composition on the original Pd side is above the 60%Pd (mixture of Pd
andβ phase) and it corresponds to theβ phase (with 40%Pd) on theCu side. Indeed, as it can be seen infigures 4

Figure 2.Concentration profiles in the 21 nm(Pd)/50 nm(Cu) bilayer after different annealing times at 220 °C.
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and 6(a), only the reflections from the Pd and theCuPd are present after the heat treatments. Similarly in films
with 75/25 initial Cu/Pd ratio themixture of theα′ andβ phases should be present. As it can be seen from
figures 2(e) and 3(d) this is the case after longer annealing times: the composition is about 40 at%Pd on the Pd
side (β phase) and about 15%on theCu side (α′ phase). This is also supported by the XRD result shown in
figures 5 and 6(b): there are no peaks fromCu and Pd and only reflections from theβ andα′ phases are present.
There is onemore argument supporting that the system reached the thermal equilibrium in both of the above
two cases.While the time evolution of the composition profiles was quite fast in the first parts of the heat
treatments, there are almost no changes infigures 3(b) and (d) between 1 h and 4 h heat treatments, indicating
that the systemhas reached the equilibrium already after 1 h.

The contribution fromdiffusion induced re-crystallization, DIR, can not be fully excluded on the basis of
our present results only. First, similarly as it was observed in some thin film reactionswith nanocrystalline

Figure 3.Concentration-depth profiles in Pd/Cu 1:1 (62,5 nm:50 nm) and Pd/Cu1:3 (33.6 nm:80 nm) bilayers after deposition (a), 1
(b) and 4 (c) hours long annealing times at 280 °C.

Figure 4.XRD spectra of the (37.5(Pd)/30 nm(Cu) thinfilm after different annealing times at 220 °C. Peaks belonging to super-lattice
reflections are denoted by *.
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structures [5, 18], DIR, could produce new grains and their growth and subsequent nucleation at themoving
interfaces could lead to a similar increase of the amount of the reaction product as observed. Second, the
observation of the transient thin planar phase infigure 1(d), can also be a result of nucleation of the newphase at
the intersection of theGBswith the initial interface and their subsequent growth could lead the formation of a
continuous planar layer. On the other hand the grain sizes of the new phases did not considerably differ from the

Figure 5.XRD spectra of the 21 nm(Pd)/50 nm(Cu) thinfilm in the as deposited state and after 48 h annealing time at 220 °C. Peaks
belonging to super-lattice reflections are denoted by *.

Figure 6.XRDpatterns of the Pd:Cu 1:1 (62.5 nm:50 nm) (a) and Pd:Cu 1:3 (33.6 nm:80 nm) (b) thinfilms after 1 h annealing time at
280 °C. Peaks belonging to super-lattice reflections are denoted by *.
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initial values of the parentfilms (table 1). Since after the nucleation of new grains byDIR some recrystallization
can take place, furthermicroscopic investigationwould be necessary to explore the details.

5. Conclusions

Wehave shown that the intermixing between theCu and Pd thinfilms takes place by grain-boundary/interface
diffusion leading to phase formation along the grain-boundaries. During this process the newphases grow by the
motion of newly formed interfaces. The system arrived either at themixture of pure Pd andβ-CuPd phase or to
themixture ofα′-Cu3Pd andβ-CuPd phases, when the initial thickness ratio corresponded to 50/50Cu/Pd or
to 75/25Cu/Pd, respectively. Furthermore, XRD results showed that theβ phasewas at least partially ordered.

Acknowledgments

Thisworkwas supported by TÁMOP4.2.2/B-15/1/KONV-2015-0001 as well as by the TÁMOP4.2.4. A/2-11-
1-2012-0001 ‘National Excellence Program’ (authorG LKatona) projects, which is implemented through the
NewHungaryDevelopment Plan co-financed by the European Social Fund and the EuropeanRegional
Development Fund. Support from theHungarian–Chinese bilateral project, TÉT_12_CN-1-2012-0036, is also
acknowledged. This work has been also supported by theOTKA (Hungarian Scientific Research Fund) project
NF 101329.

ReferencesQ2

[1] SchmitzG, BaitherD, KasprzakM,KimTHandKruse B 2010The hidden link between diffusion-induced recrystallization and ideal
strength ofmetals Scr.Mater. 63 484–7

[2] KosevichVM,GladkikhAN,KarpovskyiMVandKlimenkoVN1995Q3 Interdiffusion in two-layer Pd/Ag films: II. ‘Cold’
homogenizationmechanisms Interface Sci. 2

[3] Paritskaya LN,Kaganovskii Y andBogdanovVV2005 Size-dependent interdiffusion in nanomaterials Solid State Phenom. 123–30
(http://scientific.net/SSP.101-102.123)(accessed 17 June 2015)

[4] BekeDL et al 2012Q4 Kinetic pathways of diffusion and solid-state reactions in nanostructured thin filmsPhilos.Mag. 1–11
[5] Shenouda S S, LangerGA,KatonaGL,Daróczi L, Csik A andBekeDL 2014 Production ofNiSi phase by grain boundary diffusion

induced solid state reaction betweenNi2Si and Si(100) substrateAppl. Surf. Sci. 320 627–33
[6] Chakraborty J,WelzelU andMittemeijer E J 2008 Interdiffusion, phase formation, and stress development inCu–Pd thin-film

diffusion couples: interface thermodynamics andmechanisms J. Appl. Phys. 103 1–15
[7] MolnárG et al 2013 Evolution of concentration profiles in Pd–Cu systems studied by SNMS techniqueVacuum 98 70–4

Table 1.Grain sizes as calculated fromXRDpatterns.

Sample Heat treatement Peak Grain sizeD (nm)

Pd:Cu (37,5 nm/30 nm) (figure 4) as-deposited Pd(111) 17

Pd:Cu (37,5 nm/30 nm) (figure 4) as-deposited Pd(200) 7

Pd:Cu (37,5 nm/30 nm) (figure 4) as-deposited Cu(111) 11

Pd:Cu (37,5 nm/30 nm) (figure 4) 220 °C, 48 h Pd(111) 11

Pd:Cu (37,5 nm/30 nm) (figure 4) 220 °C, 48 h Pd(200) 10

Pd:Cu (37,5 nm/30 nm) (figure 4) 220 °C, 48 h CuPd(110) 14

Pd:Cu (37,5 nm/30 nm) (figure 4) 220 °C, 48 h CuPd(001) 6

Pd:Cu (21 nm/50 nm) (figure 5) as-deposited Pd(111) 14

Pd:Cu (21 nm/50 nm) (figure 5) as-deposited Pd(200) 7

Pd:Cu (21 nm/50 nm) (figure 5) as-deposited Cu(111) 14

Pd:Cu (21 nm/50 nm) (figure 5) 220 °C, 48 h CuPd(110) 11

Pd:Cu (21 nm/50 nm) (figure 5) 220 °C, 48 h CuPd(001) 13

Pd:Cu (62,5 nm/50 nm) (figure 6(a)) as-deposited Pd(111) 15

Pd:Cu (62,5 nm/50 nm) (figure 6(a)) as-deposited Pd(200) 9

Pd:Cu (62,5 nm/50 nm) (figure 6(a)) as-deposited Cu(111) 13

Pd:Cu (62,5 nm/50 nm) (figure 6(a)) 280 °C, 1 h CuPd(001) 18

Pd:Cu (62,5 nm/50 nm) (figure 6(a)) 280 °C, 1 h CuPd(110) 17

Pd:Cu (33,6 nm/80 nm) (figure 6(b)) as-deposited Pd(111) 14

Pd:Cu (33,6 nm/80 nm) (figure 6(b)) as-deposited Pd(200) 6

Pd:Cu (33,6 nm/80 nm) (figure 6(b)) as-deposited Cu(111) 13

Pd:Cu (33,6 nm/80 nm) (figure 6(b)) 280 °C, 1 h CuPd(110) 14

Pd:Cu (33,6 nm/80 nm) (figure 6(b)) 280 °C, 1 h Cu3Pd(111) 14

Pd:Cu (33,6 nm/80 nm) (figure 6(b)) 280 °C, 1 h Cu3Pd(200) 9

7

Mater. Res. Express 00 (2015) 000000 GMolnár et al

http://dx.doi.org/10.1016/j.scriptamat.2010.05.011
http://dx.doi.org/10.1016/j.scriptamat.2010.05.011
http://dx.doi.org/10.1016/j.scriptamat.2010.05.011
http://dx.doi.org/10.1007/BF00215172
http://dx.doi.org/10.4028/www.scientific.net/SSP.101-102.123
http://dx.doi.org/10.4028/www.scientific.net/SSP.101-102.123
http://dx.doi.org/10.4028/www.scientific.net/SSP.101-102.123
http://scientific.net/SSP.101-102.123
http://dx.doi.org/10.1080/14786435.2012.732712
http://dx.doi.org/10.1080/14786435.2012.732712
http://dx.doi.org/10.1080/14786435.2012.732712
http://dx.doi.org/10.1016/j.apsusc.2014.09.071
http://dx.doi.org/10.1016/j.apsusc.2014.09.071
http://dx.doi.org/10.1016/j.apsusc.2014.09.071
http://dx.doi.org/10.1063/1.2938079
http://dx.doi.org/10.1063/1.2938079
http://dx.doi.org/10.1063/1.2938079
http://dx.doi.org/10.1016/j.vacuum.2013.04.015
http://dx.doi.org/10.1016/j.vacuum.2013.04.015
http://dx.doi.org/10.1016/j.vacuum.2013.04.015


[8] Hartung F and SchmitzG 2001 Interdiffusion and reaction ofmetals: the influence and relaxation ofmismatch-induced stressPhys.
Rev.B 64 245418

[9] TynkovaA, KatonaGL, Langer GA, Sidorenko S I, Voloshko SMandBekeDL 2014 Formation of CuxAu1−x phases by cold
homogenization of Au/Cunanocrystalline thin filmsBeilstein J. Nanotechnology 5 1491–500

[10] KatonaGL et al 2013Grain boundary diffusion induced reaction layer formation in Fe/Pt thin filmsAppl. Phys.A 115 203–11
[11] BekeDL, Erdélyi Z andKatonaGL 2014Anomalous kinetics and regimes of growth of intermetallic phases during solid state reactions

in nanosystemsDiffus. Found. 107–39 (http://scientific.net/DF.2.107) (accessed 17 June 2015)
[12] Pan JD andBalluffiRW1982Diffusion induced grain boundarymigration in and thin filmsActaMetall. 30 861–70
[13] OechsnerH1993Recent instrumental developments in surface and thin-film analysis by electron andmass spectrometric techniques

Appl. Surf. Sci. 70–71 250–60
[14] Jorzick J, Lösch J, KopnarskiM andOechsnerH2004Detection in the ppm range and high-resolution depth profiling with the new

SNMS instrument INA-XAppl. Phys.A 78 655–8
[15] Hwang B-H2001Calculation andmeasurement of all (002)multiple diffraction peaks from a (001) siliconwafer J. Phys. D: Appl. Phys.

34 2469–74
[16] PattersonA 1939The scherrer formula for x-ray particle size determination Phys. Rev. 56 978–82
[17] Massalski TB andOkamotoH1990Q5 Binary Alloy PhaseDiagrams (ASM International) pp 1454–6
[18] SobiechM,Krüger C,Welzel U,Wang J-Y,Mittemeijer E J andHügelW2011 Phase formation at the Sn/Cu interface during room

temperature aging:microstructural evolution, whiskering, and interface thermodynamics J.Mater. Res. 26 1482–93

8

Mater. Res. Express 00 (2015) 000000 GMolnár et al

http://dx.doi.org/10.1103/PhysRevB.64.245418
http://dx.doi.org/10.3762/bjnano.5.162
http://dx.doi.org/10.3762/bjnano.5.162
http://dx.doi.org/10.3762/bjnano.5.162
http://dx.doi.org/10.1007/s00339-013-7949-z
http://dx.doi.org/10.1007/s00339-013-7949-z
http://dx.doi.org/10.1007/s00339-013-7949-z
http://dx.doi.org/10.4028/www.scientific.net/DF.2.107
http://dx.doi.org/10.4028/www.scientific.net/DF.2.107
http://dx.doi.org/10.4028/www.scientific.net/DF.2.107
http://scientific.net/DF.2.107
http://dx.doi.org/10.1016/0001-6160(82)90084-0
http://dx.doi.org/10.1016/0001-6160(82)90084-0
http://dx.doi.org/10.1016/0001-6160(82)90084-0
http://dx.doi.org/10.1016/0169-4332(93)90437-G
http://dx.doi.org/10.1016/0169-4332(93)90437-G
http://dx.doi.org/10.1016/0169-4332(93)90437-G
http://dx.doi.org/10.1016/0169-4332(93)90437-G
http://dx.doi.org/10.1016/0169-4332(93)90437-G
http://dx.doi.org/10.1007/s00339-003-2275-5
http://dx.doi.org/10.1007/s00339-003-2275-5
http://dx.doi.org/10.1007/s00339-003-2275-5
http://dx.doi.org/10.1088/0022-3727/34/16/311
http://dx.doi.org/10.1088/0022-3727/34/16/311
http://dx.doi.org/10.1088/0022-3727/34/16/311
http://dx.doi.org/10.1103/PhysRev.56.978
http://dx.doi.org/10.1103/PhysRev.56.978
http://dx.doi.org/10.1103/PhysRev.56.978
http://dx.doi.org/10.1557/jmr.2011.162
http://dx.doi.org/10.1557/jmr.2011.162
http://dx.doi.org/10.1557/jmr.2011.162


QUERYFORM

JOURNAL: Materials Research Express

AUTHOR: GMolnár et al

TITLE: Low temperature homogenization in nanocrystalline PdCu thinfilm system

ARTICLE ID: mrxaa0512

The layout of this article has not yet beenfinalized. Therefore this proofmay contain columns that are not fully
balanced/matched or overlapping text in inline equations; these issueswill be resolved once thefinal corrections
have been incorporated.

We have been provided funding information for this article as below. Please confirmwhether this information
is correct. TÁMOP: 4.2.2/B-15/1/KONV-2015-0001, 4.2.4. A/2-11-1-2012-0001;Hungarian–Chinese
bilateral project, TÉT: _12_CN-1-2012-0036; OTKA (Hungarian Scientific Research Fund): NF 10132.

Page 1

Q1
Please specify the corresponding author and provide his/her email address.

Page 7

Q2
Please check the details for any journal references that do not have a link as theymay contain some incorrect
information.

Page 7

Q3
Please provide page range/article number details for reference [2].

Page 7

Q4
Please provide the volume for references [3, 4, 11].

Page 8

Q5
Publisher location and name are required for book references 17]. Please provide themissing information.


	1. Introduction
	2. Experimental details
	3. Results
	4. Discussion
	5. Conclusions
	Acknowledgments
	References



