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Abstract. We hypothesized that the results of red blood cell mechanical stability test show interspecies differences. The compar-9

ative investigations were performed on blood samples obtained from rats, beagle dogs, pigs and healthy volunteers. Mechanical10

stress was applied in nine combinations: 30, 60 or 100 Pa shear stress for 100, 200 or 300 seconds. Generally, rat erythrocytes11

showed the highest capability of resistance. With the applied combinations of mechanical stress pig erythrocytes were the most12

sensitive. On human erythrocytes 60 Pa for 200 s was the minimum combination to result significant deformability deterioration.13

By increasing the magnitude and duration of the applied mechanical stress we experienced escalating deformability impairment14

in all species. 100 Pa shear stress for 300 seconds on human erythrocytes showed the largest deformability impairment. The15

mechanical stability test results were also dependent on osmolality. At hypoosmolar range (200 mOsmol/kg) the mechanical16

stress improved EI data mostly in rat and porcine blood. At higher osmolality (500 mOsmol/kg), the test did not show detectable17

difference, while in 250–300 mOsmol/kg range the differences were well observable. In summary, erythrocytes’ capability of18

resistance against mechanical stress shows interspecies differences depending on the magnitude and duration of the applied19

stress, and on the osmolality.
20

Keywords: Red blood cell deformability, mechanical stability, membrane stability, comparative hemorheology, osmotic gradient21

ektacytometry22

1. Introduction22

Due to physiological and pathophysiological changes, including extraphysiological effects (e.g.,23

extracorporeal circulation, intravascular devices and implants), that affect red blood cell deformability24

determining parameters (cytoskeleton and morphological properties, surface-volume ratio, inner viscos-25

ity, cell membrane viscosity) the erythrocytes’ capability of resistance against shear stress may alter26

[2, 5, 16, 17, 22]. In this aspect the red blood cell mechanical (membrane) stability test may provide use-27

ful information [3]. The mechanical stress, depending on its magnitude and duration, may cause trauma28

to the erythrocytes (and to other blood cells as well), resulting in decreasing deformability and enhanced29

aggregation if the stress is ‘sub-lethal’, and fragmentation/hemolysis, if being larger [5, 17, 18].30
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When using mechanical stability test, various shear stress magnitude-duration combinations can be31

applied. However, the effect is depending on the cells’ mechanical properties. Increasing amount of32

data is available in the literature on interspecies diversity of blood composition, including hematological33

and hemorheological parameters as well [15, 27, 31]. However, there is a lack of data on mechanical34

stability.35

We hypothesized, that just like other micro-rheological parameters, the mechanical stability may also36

show interspecies differences. We aimed to conduct a comparative, descriptive study using rat, canine,37

porcine and human blood samples investigating the possible diversity of erythrocyte mechanical stability38

at various combinations in magnitude and duration of shear stress, and osmolality.39

2. Materials and methods40

2.1. Experimental animal and human blood samples41

The animal experiment parts were approved and registered by the University of Debrecen Committee42

of Animal Research (permission Nr.: 19/2011/UD CAR), in accordance with national and EU regulations43

(the Hungarian Animal Protection Act (Law XVIII/1998) and the Edict 63/2010). Human blood samples44

were obtained from volunteers under Clinical Ethical Committee approval (permission Nr.: DE OEC45

RKEB/IKEB 3625-2012).46

2.2. Study design47

2.2.1. Mechanical stability tests at various combinations of shear stress magnitude and duration48

In the morning hours blood samples were taken from 6 healthy male Sprague-Dawley outbred rats (age:49

4 months, bodyweight: 522 ± 42.9 g) via lateral tail vein puncture (anesthesia: 60 mg/kg, i.p. thiopenthal);50

8 healthy male inbred beagle dogs (age: 9–11 months, bodyweight: 13.75 ± 0.78 kg) via cephalic vein51

puncture; 11 healthy female Hungahib pigs (age: 10–12 weeks, bodyweight: 19.05 ± 2.89 kg) via medial52

saphenous vein puncture (anesthesia: 15 mg/kg, i.m. ketamine, 1 mg/kg, i.m. xylazine); and 7 female53

volunteers via median cubital vein puncture (age: 31–48 years). Blood samplings were carried out using54

21 G BD Eclipse™ blood collection needle into 3 ml BD Vacutainer® tube containing 1.8 mg/ml K3-EDTA55

as anticoagulant (Becton, Dickinson and Company, USA). Laboratory measurements were completed56

within 2 hours [14, 26].57

Each blood sample was subjected to mechanical stability test (see below) using nine combinations of58

shear stress magnitude and durations as the followings: 30, 60, or 100 Pa for 100 s, 200 s or 300 s.59

2.2.2. Effects of osmolality on mechanical stability results60

Five aliquots of blood samples per each abovementioned species were investigated further. On those61

samples the mechanical stability test at 100 Pa for 300 sec were carried out using 200, 250, 300, and62

500 mOsmol/kg PVP solutions.63

2.3. Laboratory investigations64

Hematological parameters were tested by a Sysmex F-800 semi-automated microcell counter (TOA65

Medical Electronics Co., Ltd., Japan). Red blood cell count (RBC [T/l]), hemoglobin concentration66
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(Hgb [g/dl]), hematocrit (Hct [%]), mean corpuscular volume (MCV [fl]), mean corpuscular hemoglobin67

(MCH [pg]) and mean corpuscular hemoglobin concentration (MCHC [g/dl]) are presented in this68

paper.69

Red blood cell deformability was determined by LoRRca MaxSis Osmoscan rotational ektacytometer70

(Mechatronics BV, The Netherlands), in which the cells’ elongation index (EI) was tested in the function71

of shear stress (SS [Pa]) [14]. Measurements were carried out at 37◦C. Polyvinylpyrrolidone (PVP) –72

phosphate buffered saline (PBS) solution was used as high-viscosity suspending media (PVP: 36073

kDa, Sigma-Aldrich Co. USA; PVP-PBS solution viscosity = 30.83 mPas, osmolality = 298 mOsmol/kg,74

pH = 7.2). For the comparison of the EI-SS curves the following parameters were used: EI values at 3 Pa,75

maximal elongation index (EImax) and the shear stress belonging to the half EImax (SS1/2, [Pa]) calculated76

by the device’s software according to the Lineweaver-Burk equation, and their ratio (EImax / SS1/2) was77

also used [4].78

After regular ektacytometry measurements, the cell membrane stability tests were carried out. The79

method consists of two regular deformability tests, before and after a shearing period with controlled80

magnitude and exposure time of the shearing force [3]. Every sample was tested with nine combinations81

of shearing force and duration: 30, 60 or 100 Pa shear stress for 100, 200 or 300 seconds. Measurements82

were carried out under the same conditions described for the regular deformability test. For evaluating83

the effect of the various mechanical stress combinations, the EI-SS curves obtained before and after84

the shearing were compared with the parameters described above, together with their ratio (after versus85

before values).86

In the study part (described in sub-chapter 2.2.2.) the shearing protocol at 100 Pa for 300 sec was87

applied as mechanical stress. Here the measurements were carried out in PVP-PBS solutions at various88

osmolality: 200, 250, 300, and 500 mOsmol/kg (pH 7.2, viscosity = 29–31 mPas).89

2.4. Statistical analysis90

Data are presented as means ± standard deviation (S.D.). For comparing EI values before versus after91

the mechanical stress paired t-test or Wilcoxon signed-rank test was used, depending on data distribu-92

tion and equality of variances. For comparing the effect of various mechanical stress combinations on93

deformability impairment one way ANOVA with Bonferroni’s post hoc test or one way ANOVA on ranks94

with Dunn’s test were used. For inter-species comparison two sample t-test/Mann-Whitney rank sum test95

was applied depending on the normality of data distribution. A p < 0.05 value was considered statistically96

significant.97

3. Results98

3.1. Red blood cell describing hematological parameters99

Erythrocyte-related quantitative and qualitative hematological parameters are shown in Table 1. Red100

blood cell count was the highest in the rat, then in an order of dog, pig and human. Mean corpuscular101

volume was the highest in the human, then in an order of dog, pig and rat. Besides dog mean corpuscular102

hemoglobin concentration, all parameters were significantly different from the human values (for rat103

hemoglobin concentration: p = 0.032, for the other parameters: p < 0.001).104



U
nc

or
re

ct
ed

 A
ut

ho
r P

ro
of

4 N. Nemeth et al. / Interspecies diversity of erythrocyte mechanical stability at various combinations

Table 1

Selected quantitative and qualitative hematological parameters and red blood cell deformability describing parameters of rat
(n = 6), dog (n = 8), pig (n = 11) and human (n = 7)

rat dog pig human

RBC [T/l] 7.29 ± 0.87∗ 6.5 ± 0.45∗ 5.92 ± 0.60∗ 4.64 ± 0.37
Hgb [g/dl] 13.03 ± 0.98∗ 13.44 ± 0.98∗ 9.45 ± 0.75∗ 11.59 ± 0.65
Hct [%] 46.68 ± 4.11∗ 50.28 ± 3.98∗ 38.44 ± 4.03∗ 42.76 ± 4.14
MCV [fl] 59.75 ± 5.14∗ 77.48 ± 5.00∗ 65.31 ± 7.32∗ 92.26 ± 8.19
MCH [pg] 18.01 ± 1.46∗ 20.71 ± 1.06∗ 16.05 ± 1.04∗ 25.04 ± 1.35
MCHC [g/dl] 30.39 ± 4.36∗ 26.83 ± 2.07 24.72 ± 1.84∗ 27.26 ± 2.15
EI at 3 Pa 0.312 ± 0.02∗ 0.267 ± 0.013∗ 0.306 ± 0.018∗ 0.248 ± 0.011
EImax 0.579 ± 0.017∗ 0.551 ± 0.025∗ 0.505 ± 0.025∗ 0.528 ± 0.029
SS1/2 [Pa] 2.28 ± 0.38∗ 4.33 ± 0.8 1.99 ± 0.33∗ 4.2 ± 0.74
EImax / SS1/2 [Pa–1] 0.24 ± 0.04∗ 0.13 ± 0.03 0.26 ± 0.05∗ 0.13 ± 0.03

means±S.D., ∗p < 0.05 vs. human.
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Fig. 1. Red blood cell elongation index (EI) – shear stress [Pa] curves of rat, canine, porcine and human blood samples before
and after 100 Pa shear stress for 300 seconds. means ± S.D., ∗p < 0.05 vs. before.
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Fig. 2. Ratio of the elongation index (EI) values measured after and before the 30 Pa mechanical stress in rat (A), dog (B),
pig (C) and human (D). Data under 0.95 Pa are not plotted. means ± S.D., ∗p < 0.05:100 s vs. 300 s; #p < 0.05:100 s vs. 200 s;
+p < 0.05:200 s vs. 300 s.

3.2. Red blood cell deformability105

Red blood cell deformability describing elongation index (EI) – shear stress (SS) curves showed inter-106

species differences both in the shape of the curves and in the EI values. Generally, the highest EI values107

were measured in rat blood and the lowest in the human. The shape of the canine EI – SS curves was108

the most similar to the human ones but with higher values. Rat and porcine EI values ran parallel to each109

other at lower shear stress levels, and then above 3 Pa the slope of the porcine curves became flatter.110

The calculated parameters (Table 1) reflected well the inter-species differences of the EI – SS curves.111

All values, except for canine SS1/2 and EImax / SS1/2 values, were differed highly significantly from the112

human values (p < 0.001).113

3.3. Red blood cell membrane stability at various combinations of shear stress magnitude and114

duration115

The most expressed differences were observed when the mechanical stress with 100 Pa was used for116

300 seconds (Fig. 1). In Fig. 1 the elongation index – shear stress curves determined before and after the117

mechanical stress can be observed. Using smaller shear stress and by shorter duration, the differences118

were diminished, but not in the same manner in the investigated species.
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Due to the 30 Pa mechanical stress rat erythrocytes did not show significant EI impairment, as the ratio of119

EI values measured after and before the mechanical test – as a representative parameter for the magnitude120

of EI impairment – was close to 1 and its value did not change as exposure time increased (Fig. 2A,121

Table 2). Canine erythrocytes showed improved deformability –higher EI values– after the mechanical122

stress of 30 Pa. At 100-second duration significantly higher EI values were measured generally at the123

10–30 Pa shear stress zone, while in case of 200 and 300-second duration at all measured shear stress124

levels. As it is shown on Fig. 2, the magnitude of the improvement significantly depended on the exposure125

time (under 10 Pa) (Fig. 2B, Table 3). In case of the pig the lowest combination of the mechanical stress126

(30 Pa for 100 seconds) already caused significant lowering in the EI values measured generally at the127

10–30 Pa shear stress zone, but its magnitude –EI after/before– was independent on the exposure time128

(Fig. 2C, Table 4). Human erythrocytes expressed slight, but not obvious deformability improvement that129

could also be seen at 100 and 200-second duration time (Fig. 2D, Table 5).130

The application of the mechanical stress at 60 Pa caused significant impairment in the EI values mea-131

sured at all shear stress values, except for dog, in which blood samples this shear stress did cause important132

changes in EI values (Fig. 3A-D, Table 2–5). The magnitude of the EI impairment was basically inde-133

pendent from the length of the exposure time. However, slight difference was seen in the human, and also134

in the rat at lower shear stress levels.135

As shown on Fig. 1 (A-D), the highest mechanical stress (100 Pa for 300 seconds). The shape of the EI136

– SS curves were highly irregular under 0.95 Pa, mostly in the human and the least in the rat (Fig. 4A-D,137

Table 2–5). Due to the 100 Pa shear stress applied for 300 seconds human erythrocytes showed the largest138

deformability impairment, the elongation index dropped by 17.6–42.4% between the 0.95–10 Pa range139

and by 5.5–12.6% between 10–30 Pa (except at 0.95 Pa shear stress, p < 0.001 at all tested shear stress140

values points: 1.69, 3, 5.33, 9.49, 16.87 and 30 Pa). The same values in rat were 8.6–21.5% and 2–5.2%141

(p < 0.001 at all tested shear stress values), in dog 14.5–20.8% and 9.2–12.3% (p < 0.001 at all shear142

stresses, except for 0.95 Pa: p = 0.007), and in pig 10.6–26.8% and 3.3–7% (p < 0.001 at most of the shear143

stress levels, except for 16.87 and 30 Pa were p = 0.002 and p = 0.024 values existed).144

Figure 5 summarizes the erythrocytes’ capacity of resistance against increased in the four investigated145

species by the ratio of the EImax / SS1/2 values determined from EI-SS curves after and before the146

mechanical stress. The values did not change obviously with the exposure time when we used the shearing147

protocol at 30 Pa. In canine blood even a slight improvement was seen. Using 60 Pa shearing, the values148

moderately decreased in rat, increased in dog and decreased in porcine and human blood. In all the four149

species EImax / SS1/2 values decreased with the increase of exposure time when tested at 100 Pa stress level150

(Fig. 5).151

3.4. Osmolality-dependent alterations of red blood cell membrane stability data152

Osmolality changes both in hypo- or hyperosmolar direction strongly influenced the mechanical153

stability test results (100 Pa for 300 s) (Figs. 6–9). Interestingly, the tests carried out on using hypoos-154

molar PVP-PBS solution (200 mOsmol/kg) showed improvement of the EI values after the mechanical155

shearing in all the four investigated species, most expressedly in rat and porcine blood (Figs. 6 and156

8A). Tests at 250 mOsmol/kg reflected the deterioration described above in the main results, expect157

for porcine blood, in which still an improvement was seen (Fig. 8B). At 500 mOsmol/kg no obvi-158

ous changes were detected, because of the irregular curves caused by the presence of shrunken cells.159

(Figs. 6–9D).160
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Table 2

Rat red blood cell deformability parameters measured before and after the various combinations of mechanical stress (30, 60 or 100 Pa for 100, 200 or 300
seconds)

30 Pa 60 Pa 100 Pa

100 s 200 s 300 s 100 s 200 s 300 s 100 s 200 s 300 s

EI at 3 Pa before (B)0.309 ± 0.02 0.311 ± 0.017 0.314 ± 0.019 0.310 ± 0.018 0.314 ± 0.021 0.317 ± 0.02 0.314 ± 0.019 0.31 ± 0.029 0.31 ± 0.025
after (A) 0.307 ± 0.018 0.312 ± 0.014 0.312 ± 0.02 0.300 ± 0.02∗ 0.300 ± 0.016∗ 0.298 ± 0.017∗ 0.282 ± 0.013∗ 0.269 ± 0.022∗ 0.261 ± 0.023∗

A/B ratio 0.994 ± 0.023 1.004 ± 0.019 0.994 ± 0.014 0.967 ± 0.014# 0.956 ± 0.022# 0.94 ± 0.028# 0.897 ± 0.024# 0.871 ± 0.028# 0.842 ± 0.033#

EImax before 0.573 ± 0.027 0.59 ± 0.016 0.583 ± 0.017 0.585 ± 0.018 0.578 ± 0.012 0.578 ± 0.013 0.575 ± 0.015 0.581 ± 0.017 0.572 ± 0.016
after 0.573 ± 0.015 0.579 ± 0.018∗0.582 ± 0.022 0.574 ± 0.025 0.586 ± 0.009 0.576 ± 0.017 0.553 ± 0.011∗0.541 ± 0.013∗ 0.53 ± 0.016∗

A/B ratio 1.001 ± 0.033 0.981 ± 0.011#0.998 ± 0.014 0.98 ± 0.022 1.013 ± 0.03# 0.998 ± 0.021# 0.962 ± 0.018 0.932 ± 0.044# 0.928 ± 0.027
SS1/2 [Pa]before 2.48 ± 0.39 2.53 ± 0.32 2.53 ± 0.34 2.55 ± 0.29 2.51 ± 0.37 2.38 ± 0.34 2.38 ± 0.45 2.47 ± 0.56 2.49 ± 0.56

after 2.53 ± 0.26 2.66 ± 0.25 2.67 ± 0.27 2.84 ± 0.44∗ 2.89 ± 0.32∗ 3.09 ± 0.28∗ 3.59 ± 0.28∗ 4.12 ± 0.48∗ 4.44 ± 0.4∗

A/B ratio 1.032 ± 0.081 1.058 ± 0.066#1.056 ± 0.059 1.113 ± 0.104# 1.16 ± 0.125# 1.313 ± 0.193 1.537 ± 0.203# 1.722 ± 0.304# 1.834 ± 0.308#

n = 6, means ± S.D., ∗p < 0.05 vs. before, #p < 0.05 vs. human (data in Table 5).
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Table 3

Canine red blood cell deformability parameters measured before and after the various combinations of mechanical stress (30, 60 or 100 Pa for 100, 200 or 300
seconds)

30 Pa 60 Pa 100 Pa
100 s 200 s 300 s 100 s 200 s 300 s 100 s 200 s 300 s

EI at 3 Pa before (B)0.258 ± 0.013 0.265 ± 0.004 0.265 ± 0.008 0.26 ± 0.02 0.262 ± 0.022 0.272 ± 0.003 0.274 ± 0.009 0.275 ± 0.005 0.275 ± 0.003
after (A) 0.26 ± 0.012 0.28 ± 0.009∗0.285 ± 0.017∗ 0.256 ± 0.022 0.258 ± 0.028 0.272 ± 0.01 0.231 ± 0.013∗ 0.224 ± 0.011∗ 0.223 ± 0.01∗

A/B ratio 1.009 ± 0.0261.053 ± 0.035# 1.074 ± 0.053# 0.982 ± 0.029# 0.983 ± 0.041# 1 ± 0.033# 0.844 ± 0.035# 0.816 ± 0.033# 0.812 ± 0.036#

EImax before 0.564 ± 0.028 0.573 ± 0.018 0.565 ± 0.023 0.556 ± 0.027 0.537 ± 0.023 0.537 ± 0.019 0.543 ± 0.018 0.535 ± 0.021 0.546 ± 0.025
after 0.562 ± 0.027 0.579 ± 0.009 0.576 ± 0.022 0.549 ± 0.021 0.535 ± 0.026 0.549 ± 0.022 0.499 ± 0.017∗ 0.49 ± 0.17∗ 0.477 ± 0.007∗

A/B ratio 0.995 ± 0.024 1.013 ± 0.047 1.02 ± 0.027 0.989 ± 0.056 0.998 ± 0.048# 1.024 ± 0.05# 0.919 ± 0.037 0.917 ± 0.049 0.876 ± 0.048
SS1/2 [Pa]before 4.08 ± 0.58 3.82 ± 0.71 4.1 ± 0.83 4.42 ± 0.98 4.74 ± 0.79 4.63 ± 0.75 4.42 ± 0.65 4.55 ± 0.81 4.21 ± 0.92

after 4 ± 0.49 3.41 ± 0.33 3.8 ± 0.54 4.54 ± 0.8 4.95 ± 1.12 4.38 ± 0.68 5.96 ± 0.55∗ 6.71 ± 0.58∗ 6.26 ± 0.6∗

A/B ratio 0.985 ± 0.091 0.91 ± 0.136 0.939 ± 0.095 1.053 ± 0.21# 1.067 ± 0.263# 0.968 ± 0.223# 1.379 ± 0.271# 1.522 ± 0.337# 1.567 ± 0.44#

n = 8, means ± S.D., ∗p < 0.05 vs. before, #p < 0.05 vs. human (data in Table 5).
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Table 4

Porcine red blood cell deformability parameters measured before and after the various combinations of mechanical stress (30, 60 or 100 Pa for 100, 200 or 300
seconds)

30 Pa 60 Pa 100 Pa
100 s 200 s 300 s 100 s 200 s 300 s 100 s 200 s 300 s

EI at 3 Pa before (B)0.313 ± 0.018 0.301 ± 0.018 0.304 ± 0.024 0.317 ± 0.016 0.303 ± 0.017 0.304 ± 0.021 0.306 ± 0.016 0.308 ± 0.018 0.3 ± 0.016
after (A) 0.301 ± 0.02 0.303 ± 0.017 0.297 ± 0.025 0.3 ± 0.023∗ 0.283 ± 0.025∗ 0.287 ± 0.02∗ 0.274 ± 0.022∗ 0.255 ± 0.017∗ 0.244 ± 0.031∗

A/B ratio 0.963 ± 0.072 1.009 ± 0.087 0.976 ± 0.054 0.947 ± 0.076 0.935 ± 0.087 0.946 ± 0.044#0.899 ± 0.072# 0.83 ± 0.057# 0.815 ± 0.092#

EImax before 0.498 ± 0.018 0.518 ± 0.027 0.507 ± 0.023 0.496 ± 0.03 0.503 ± 0.014 0.501 ± 0.018 0.509 ± 0.027 0.506 ± 0.029 0.508 ± 0.032
after 0.485 ± 0.031 0.492 ± 0.03 0.496 ± 0.021 0.489 ± 0.03 0.478 ± 0.017∗ 0.468 ± 0.025∗0.474 ± 0.016∗ 0.47 ± 0.02∗ 0.449 ± 0.032∗

A/B ratio 0.975 ± 0.053 0.951 ± 0.075# 0.981 ± 0.073 0.987 ± 0.064 0.952 ± 0.044 0.935 ± 0.045 0.932 ± 0.034 0.931 ± 0.04 0.885 ± 0.068
SS1/2 [Pa]before 1.97 ± 0.31 1.94 ± 0.42 1.9 ± 0.36 1.92 ± 0.3 2.15 ± 0.3 2.05 ± 0.35 2.11 ± 0.21 2 ± 0.39 1.85 ± 0.31

after 2.12 ± 0.31 2.02 ± 0.32 2.12 ± 0.37 2.6 ± 0.41∗ 3.15 ± 0.54∗ 3.23 ± 0.31∗ 4.22 ± 0.49∗ 5.18 ± 0.49∗ 5.14 ± 0.89∗

A/B ratio 1.096 ± 0.243 1.071 ± 0.189 1.151 ± 0.031# 1.367 ± 0.215 1.483 ± 0.309 1.624 ± 0.35 2.018 ± 0.306 2.681 ± 0.626 2.812 ± 0.443

n = 11, means ± S.D., ∗p < 0.05 vs. before, #p < 0.05 vs. human (data in Table 5).
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Table 5

Human red blood cell deformability parameters measured before and after the various combinations of mechanical stress (30, 60 or 100 Pa for 100, 200 or 300
seconds)

30 Pa 60 Pa 100 Pa
100 s 200 s 300 s 100 s 200 s 300 s 100 s 200 s 300 s

EI at 3 Pa before (B)0.249 ± 0.0120.248 ± 0.013 0.25 ± 0.015 0.252 ± 0.011 0.248 ± 0.009 0.247 ± 0.01 0.245 ± 0.014 0.246 ± 0.012 0.25 ± 0.012
after (A) 0.253 ± 0.0110.253 ± 0.016 0.248 ± 0.021 0.233 ± 0.013∗ 0.224 ± 0.016∗ 0.218 ± 0.017∗ 0.193 ± 0.009∗ 0.174 ± 0.01∗ 0.17 ± 0.009∗

A/B ratio 1.018 ± 0.0221.018 ± 0.024 0.991 ± 0.04 0.924 ± 0.029 0.902 ± 0.037 0.88 ± 0.042 0.786 ± 0.035 0.709 ± 0.033 0.679 ± 0.022
EImax before 0.54 ± 0.0320.528 ± 0.024 0.524 ± 0.011 0.534 ± 0.027 0.533 ± 0.028 0.525 ± 0.031 0.523 ± 0.026 0.519 ± 0.052 0.522 ± 0.026

after 0.546 ± 0.0260.547 ± 0.032 0.53 ± 0.041 0.511 ± 0.016∗ 0.495 ± 0.02∗ 0.471 ± 0.04∗ 0.467 ± 0.036∗ 0.469 ± 0.031∗ 0.478 ± 0.012∗

A/B ratio 1.011 ± 0.0221.037 ± 0.024 1.013 ± 0.04 0.959 ± 0.029 0.929 ± 0.037 0.899 ± 0.042 0.908 ± 0.035 0.908 ± 0.033 0.917 ± 0.022
SS1/2 [Pa]before 4.09 ± 0.73 4.23 ± 0.65 4.38 ± 0.86 4.19 ± 0.62 4.1 ± 0.57 4.27 ± 1 4.2 ± 0.78 4.12 ± 0.93 4.23 ± 0.82

after 3.71 ± 0.68 3.82 ± 0.84 3.65 ± 0.56 5.53 ± 0.64∗ 6.01 ± 1.02∗ 5.9 ± 0.98∗ 7.82 ± 0.62∗ 9.44 ± 0.71∗ 10.13 ± 0.78∗

A/B ratio 0.915 ± 0.1130.906 ± 0.146 0.865 ± 0.214 1.333 ± 0.126 1.47 ± 0.195 1.419 ± 0.251 1.953 ± 0.351 2.379 ± 0.493 2.456 ± 0.392

n = 7, means ± S.D., ∗p < 0.05 vs. before.
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Fig. 3. Ratio of the elongation index (EI) values measured after and before the 60 Pa mechanical stress in rat (A), dog (B), pig (C)
and human (D). Data under 0.95 Pa are not plotted. means ± S.D., ∗p < 0.05:100 s vs. 300 s.

Comparing the ratio of EImax / SS1/2 values of EI-SS curves determined after and before the mechanical161

stress, inter-species differences could be observed (Fig. 10). The highest ratio values were observed at162

low osmolality, while 250 and 300 mOsmol/kg data showed similar results, the hyperosmolar condition163

triggered a decrease of the values, expect for pig, where it rather increased. In rat blood the difference164

between the values tested at 250 and 500 mOsmol/kg was the smallest, and it hardly changed. While in165

canine blood the 200–300 mOsmol/kg range was relatively stable, and at higher osmolality the values166

dropped. Human data changed in the smallest range, but with obvious direction: decreasing values as167

osmolality increased (Fig. 10).168

4. Discussion169

Mechanical stability of red blood cells is essential for their survivor in the circulation. Under physio-170

logical circumstances the shear stress on erythrocytes are generally under 5 Pa and usually not exceeding171

10 Pa [13, 17, 19]. However, pathophysiological processes or non-physiological circulatory conditions172

can cause the increase of shear stress, which can lead to membrane injury of erythrocytes [3, 7]. Extent of173

the mechanical injury –that causes sub-lethal and later hemolytic trauma to the red blood cells– depends174

on the magnitude and exposure time of the shear stress [7, 17, 18], as well as on the mechanical sta-175

bility of the cells [7, 28, 29]. Hereditary membrane disorders and enzymopathies of the erythrocytes176

or any pathophysiological processes that causes injury to the red blood cells result impaired membrane
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Fig. 4. Ratio of the elongation index (EI) values measured after and before the 100 Pa mechanical stress in rat (A), dog (B),
pig (C) and human (D). Data under 0.95 Pa are not plotted. means ± S.D., ∗p < 0.05:100 s vs. 300 s; #p < 0.05:100 s vs. 200 s;
+p < 0.05:200 s vs. 300 s.

stability and lower capacity of resistance against increased shear stress [8, 11, 12, 24, 25]. The end point177

of the mechanical injury is the lysis of the cells due to membrane rupture. The mechanical trauma that178

does not cause hemolysis yet but results in deterioration of cells’ micro-rheological parameters, such as179

deformability and aggregation, is called sub-lethal trauma [17]. It was firstly mentioned by Brinsfield180

et al in 1962, and they experienced a decrease in red blood cell count after extracorporeal circulation181

lasting 10–48 hours in experimental animals [6]. It causes impaired red blood cell deformability and182

increased aggregation, which have a negative effect on microcirculation and tissue perfusion. Through183

several cascade-like mechanisms and by effect on leukocyte- and platelet functions supra-physiological184

shear stress causes alteration in the hemodynamic parameters that will lead to further increase in the shear185

stress, and the process turns into a vicious circle [17, 18]. For investigating various pathophysiological186

processes that may alter shear forces in the circulations, and for developing-testing intravascular devices187

(e.g., stents, grafts, vascular prostheses, artificial valves and hearts, devices for extracorporeal circula-188

tion, special intravascular circulation-supporting devices, etc) in vivo studies are necessary [2, 3, 16,189

17, 22].190

We hypothesized that just like other physiological and hemorheological parameters this red blood cell191

property, the mechanical (membrane) stability, as capacity of resistance against increased shear stress,192

may also show interspecies differences. We investigated rat, dog, pig and human red blood cells using193

nine mechanical shear stress variations by combinations of magnitude (30, 60 and 100 Pa) and duration194
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Fig. 5. Ratio of the EImax / SS1/2 values measured after and before the various mechanical stress combinations in rat (A), dog (B),
pig (C) and human (D).means ± S.D., ∗p < 0.05 vs. 100 s at same Pa, #p < 0.05 vs. human relative change by equal stress.

(100, 200 and 300 s). Furthermore, we analyzed the effect of osmolality on the mechanical stability test195

results.196

Our main findings were the followings: (1) Red blood cell describing hematological parameters and red197

blood cell deformability describing elongation index – shear stress curve’s parameters showed obvious198

interspecies differences, which enforce the literature data. (2) With the applied combinations of mechan-199

ical stress pig erythrocytes were the most sensitive (30 Pa for 100 s caused significant deformability200

worsening). Generally, rat erythrocytes showed the highest capability of resistance. On human erythro-201

cytes 60 Pa for 200 s was the minimum combination to result significant deformability deterioration. (3)202

As the magnitude and the duration of the mechanical stress was increased the shape of the elongation203

index – shear stress curves became more and more prominently irregular under 0.95 Pa, and its magni-204

tude was different among the species. (4) Due to the 100 Pa shear stress applied for 300 seconds human205

erythrocytes showed the largest deformability impairment among the investigated species. (5) Out of the206

applied combinations for mechanical stress, in case of the 30 Pa canine erythrocytes showed improve-207

ment in elongation index values, of which magnitude was larger if duration of exposure was longer.208

The improvement of elongation index values were the largest when it was measured under 5 Pa, and it209

continuously decreased as elongation index was determined at higher shear stress levels. (6) Osmolality210
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Fig. 6. Red blood cell elongation index (EI) – shear stress [Pa] curves of rat blood samples before and after a mechanical stress
of 100 Pa for 300 seconds, tested in PVP-PBS solutions with osmolality of 200 mOsmol/kg (A), 250 mOsmol/kg (B), 300
mOsmol/kg (C) or 200 mOsmol/kg (D). means ± S.D., ∗p < 0.05 vs. before.

changes both in hypo- or hyperosmolar direction strongly influenced the mechanical stability test results211

in all species. In hypoosmolar range EI values rather improved after the mechanical shearing in all the212

four investigated species, mostly in rat and porcine blood. This phenomenon was not observable at 250,213

300 or 500 mOsmol/kg.214

It is known that and already widely investigated that like other physiological parameters, hemorheo-215

logical ones also show interspecies differences [27, 31]. Red blood cell deformability is determined by216

several cellular factors [9, 10, 21, 24], and one of the most important in the maintenance of mechanical217

stability is the integrity of spectrin-based membrane skeleton [5, 10, 24]. Interspecies differences in the218

mechanical stability of red blood cells can be partly explained by the quantitative and qualitative differ-219

ence in the spectrin-network and the levels of protein phosphorylation, especially for the protein 4.1 R that220

modulates spectrin and actin affinity and membrane stability of erythrocytes [10, 20, 28, 30]. However,221

it should be taken under consideration that this mechanical stability measurement cannot be performed222

in vivo, and although all measurements were completed within 2 hours under the same protocol, different223

species red blood cells are sensitive to in vitro conditions at a different manner [14, 15, 26, 31]. Changes224

in the erythrocytes’ metabolic state may also cause membrane stiffening due to reduced skeletal junction225

phosphorylation [28].226
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Fig. 7. Red blood cell elongation index (EI) – shear stress [Pa] curves of canine blood samples before and after a mechanical
stress of 100 Pa for 300 seconds, tested in PVP-PBS solutions with osmolality of 200 mOsmol/kg (A), 250 mOsmol/kg (B),
300 mOsmol/kg (C) or 200 mOsmol/kg (D). means ± S.D., ∗p < 0.05 vs. before.

Similarly to our findings on dog erythrocyte deformability improvement, recently it was reported227

by Meram et al. that a very brief (few-second) duration of 5–20 Pa shear stress may even improve228

deformability of human red blood cells up to by 8% [23]. Simmonds et al. also observed improved229

deformability on human red blood cells under physiological shear stress and they found that the sub-230

hemolytic threshold for human erythrocytes was 30–40 Pa with 300 s exposure time [29]. However,231

Arwatz and Smits, investigating two whole blood samples using a custom-made Taylor-Couette apparatus,232

found only 1-2% hemolysis when 50 Pa shear stress for 50 seconds was applied, 5% at 50 Pa for 300233

seconds, and 10–12% at 200 Pa for 300 seconds [1]. In our experiment elongation index – shear stress234

curves became more and more prominently irregular under 0.95 Pa shear stress as the magnitude and235

exposure time of the applied mechanical stress increased. It was probably due to increasing amount of236

erythrocyte fragmentation and hemolysis [3, 17].237

We have not found explanation in the literature for the strange observation on osmolality-dependency238

of the mechanical stability results together with their inters-species differences of this study. In hypotonic239

environment the cells are swelling, their shape become more spherical and their surface-to-volume ratios240

are changing accordingly resulting in decreased deformability and increased stretching-straining of the241

membrane. If a shear stress is applied on this condition it might cause altered shear stress distribution242

on the cells compared to a discocyte formation. It is hypothesized that due to the elastic characteristics243
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Fig. 8. Red blood cell elongation index (EI) – shear stress [Pa] curves of porcine blood samples before and after a mechanical
stress of 100 Pa for 300 seconds, tested in PVP-PBS solutions with osmolality of 200 mOsmol/kg (A), 250 mOsmol/kg (B),
300 mOsmol/kg (C) or 200 mOsmol/kg (D). means ± S.D., ∗p < 0.05 vs. before.

of the cells (membrane), the stretching effect of mechanical shearing might be more expressed under244

this condition (mechanical shearing at low osmolality). Rat and pig erythrocytes, having smaller MCV245

(Table 1), showed more expressed ‘improvement’ during mechanical stability test at 200 mOsmol/kg246

compared to dog or human. Previously we also observed significant difference in of the elongation index247

– osmolality (osmoscan) curves were shifted to right compared to rat, dog or human [27]. It seems that248

the interspecies diversity of hemorheological factors become much more complicated as we investigate249

with further and further techniques.250

5. Conclusion251

In summary, erythrocytes’ capability of resistance against mechanical stress shows interspecies dif-252

ferences depending on the magnitude and duration of the applied stress, and on the osmolality. The253

differences can be significant, and the behavior of red blood cells against shear stress is not uniform254

among species. It have to be taken into consideration when the red blood cell mechanical (membrane)255

stability test is applied in research and/or in testing vascular grafts, prostheses and artificial devices that256

can be implanted into the circulation or blood can be perfused through it extracorporeally.257
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Fig. 9. Red blood cell elongation index (EI) – shear stress [Pa] curves of human blood samples before and after a mechanical
stress of 100 Pa for 300 seconds, tested in PVP-PBS solutions with osmolality of 200 mOsmol/kg (A), 250 mOsmol/kg (B),
300 mOsmol/kg (C) or 200 mOsmol/kg (D). means ± S.D., ∗p < 0.05 vs. before.
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