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RUNNING TITLE 

The role of Hsp 60 in mouse tooth incisor development  



Abstract 

 

Since several heat shock proteins were investigated during tooth development, there is no 

available information about the spatial and temporal expression pattern of heat shock protein 

60 (Hsp 60). To characterise Hsp 60 expression in the structures of the developing tooth germ, 

we used western blotting, immunohistochemistry and in situ hybridisation. Hsp 60 was 

present in high amounts in the inner and outer enamel epithelia, enamel knot, stratum 

intermedium and also appeared in odontoblasts beginning at the bell stage. To obtain 

functional data on the possible effect of Hsp 60 on isolated mouse lower incisors, we 

performed in vitro culturing. To investigate the effect of exogenous Hsp 60 on the cell cycle 

during culturing, we used the BrdU incorporation test on dental cells. Exogenously 

administered Hsp 60 caused bluntness at the apical part of the 16.5 day-old tooth germs, but it 

did not influence the proliferation rate of dental cells. We identified the expression of Hsp 60 

in the developing tooth germ, which was present in high concentrations in the inner and outer 

enamel epithelia, enamel knot, stratum intermedium and odontoblasts. High concentration of 

exogenous Hsp 60 can cause abnormal morphology of the tooth germ, but it did not influence 

the proliferation rate of the dental cells. Our results suggest that increase level of Hsp 60 may 

cause abnormalities in the morphological development of the tooth germs and support the data 

on the significance of heat shock proteins during developmental processes. 
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Introduction 

Tooth development is carried out and regulated by sequential and reciprocal interactions 

between the epithelial and neural-crest derived ectomesenchymal tissues (1-2). These 

processes are required for the precise temporal and spatial control of the cell cycle and cell 

differentiation (3). Interactions of several conserved signal transduction pathways, including 

those mediated by BMP (bone morphogenetic protein), Notch, Wnt (Wingless-related 

integration site protein), TNF (tumour necrosis factor), FGF (fibroblast growth factor), and 

SHH (sonic hedgehog) proteins (4-8), play key roles in coordinating and mediating this 

epithelial-mesenchymal cross-talk. Based on its properties the tooth germ is a very suitable 

tool to investigate developmental processes. Tooth development has three principal stages 

consisting of the initial, morphogenesis and histodifferentation stages (9). The epithelial-

derived enamel organ is composed of the inner enamel epithelium, outer enamel epithelium, 

stratum intermedium, stellate reticulum, ameloblasts and enamel knot (10). The key structure 

of the cuspal morphogenesis is the enamel knot, which serves as a transient signalling centre 

during the morphogenetic stage of tooth development (11-12).  The enamel knot appears 

during the cap stage, and stimulates the morphogenesis of the tooth germ indirectly via SHH 

and TNF signalling (13-14). The newly formed enamel organ is bounded by 

ectomesenchymal tissue, which forms the dental papilla, odontoblasts and dental follicle (13). 

The epithelial-derived cells of the tooth germ contain TNF receptors, which can be activated 

by ectodysplasin (15). The main role of the ectodysplasin/TNF signalling pathway during 

tooth development is the regulation of cuspal morphogenesis (16).  TNF receptor activates 

IKK (inhibitor of κB kinase), which causes degradation of IκB (inhibitor of κB).  In resting 

cells, the NF-κB (nuclear factor-κB) transcriptional factor forms a complex with IκB, which 

inhibits the nuclear translocation of NF-κB (17). In the absence of IκB, NF-κB is able to enter 

the nucleus where it modifies the transcription of various target genes (18).  



This NF-κB pathway can be modified by many intra- and extracellular signalling 

molecules including heat shock protein 60 (Hsp 60) (19). Moreover, in a screen of the Hsp 60 

expression profiles using online database (Allen Institute for Brain Science, Allen Developing 

Mouse Brain Atlas, available at http://developingmouse.brain-map.org), we found that Hsp 60 

expression levels changed during different stages of tooth germs which was presumed a 

possible role of this molecule during development of the tooth. The family of Hsp (heat shock 

protein) includes several highly conserved proteins, which are expressed in every eukaryotic 

cell; and can be differentiated by their molecular weights and cellular localisation (20-21). 

Nearly 100 members of the Hsp family have been reported to be related to developmental 

processes (22). Despite the abundant research reports on Hsp 60 protein during embryonic 

development, data are scarce regarding the role of this molecule in the ontogeny of the tooth 

(22, 27). Hsp 60 is mainly localised to the mitochondrial membrane but is also present in the 

cytoplasm and which can be secreted into the extracellular matrix at low level under healthy 

conditions (23). Mitochondrial and cytoplasmic Hsp 60 has multiple functions. One of them 

includes protein refolding being translocated into the mitochondria. It also plays role in the 

modification of the NF-κB signal transduction pathway (24). Hsp 60 may also correlate with 

the cell cycle, whereby it can increase the proliferation rate of epithelial cells (25).  The 

expression of Hsp can be triggered to strongly increase within minutes by pathological 

conditions (hypoxia, heat shock and low pH), which could lead to Hsp proteins comprising 

30-40% of the total intracellular protein content (26).  Under these pathological conditions 

Hsp 60 can be secreted as a danger signal into the extracellular space, which can modify the 

immune response as well as cell signalling pathways (28-29). Concerning these data, the Hsp 

60 can reach transiently high concentration in extracellular space and in blood, which can 

influence developmental processes.  Thus, Hsp 60 is not only a housekeeping protein, but also 

an early response element of cells against stress. 

http://developingmouse.brain-map.org/


Therefore in this study, first we examined the expression pattern of Hsp 60 during 

development of the tooth under healthy conditions and then we investigated the possible 

effects of the high Hsp 60 concentration during the early stage of tooth development. The 

applied exogenous Hsp 60 during our experiments could mimic the effect of pathological 

environment of the tooth during embryonic development, which can give valuable 

information to understand better several congenital tooth anomalies. 

 

Materials and methods 

 

Animal care 

All procedures were
 
approved by the Animal Care and Use Committee of the University of 

Debrecen, and the study followed the guidelines set by the committee (DE FSZ/2010/10).  

Sampling and tissue processing for histochemistry and immunohistochemistry  

Experiments were carried out on lower incisors of NMRI mice. The age of the embryos was 

estimated from the appearance of the vaginal plug (E0) and from their external features; 

during our experiments we used three different embryos from E10.5 to E 18.5. Samples were 

isolated and fixed immediately in Sainte Marie fixative (30), dehydrated in graded series of 

ethanol and embedded into paraffin at 54 °C. Serial sections of 5-7 µm thickness were made 

in the coronal plane (E10.5-E12.5) and the sagittal plane (E13.5-E18.5) and were processed 

for further histological analysis. The in vitro culture samples were processed in the same way.  

 



Western Blot   

We tested the quality of exogenous Hsp 60 protein (Abcam, Cambridge, UK) using a 

monoclonal anti-Hsp 60 antibody (Thermo Scientific, Rockford, IL, USA). To confirm the 

specificity of the Hsp 60 immunohistochemical reaction, WB experiments were carried out on 

isolated tooth germs from E13.5 to E18.5 stages. The tooth germs remained intact, and the 

surface of the tooth germs did not contain connective tissue. Isolated tooth germs were placed 

in 50 µL homogenisation buffer containing 50 mM Tris–HCl buffer (pH 7.0), 10 µg/mL 

Gordox, 10 µg/mL leupeptin, 1 mM phenylmethylsulphonyl-fluoride, 5 mM benzamidine, 

and 10 µg/mL trypsin inhibitor. Finally, tooth germs were sonicated by pulsing burst (Cole-

Parmer, East Bunker Court Vernon Hills, IL, USA). For WB, total cell lysates were used. 

Samples for SDS–PAGE were prepared by the addition of two-fold concentrated 

electrophoresis sample buffer to cell lysates to equalise the protein concentration in samples, 

followed by boiling for 10 minutes. 10-20 µg of protein was separated by 7.5% SDS-PAGE 

gel for detection of Hsp 60 and actin. Proteins were electrophoreticaly transferred to 

nitrocellulose membranes. After blocking with 5 % non-fat dry milk in PBS for 1 hour at 

room temperature, membranes were washed and exposed to the primary antibodies overnight 

at 4 °C. Monoclonal anti-Hsp 60 antibody (Thermo Scientific, Rockford, IL, USA) in 1:200 

and monoclonal anti-actin antibody (Sigma, St. Louis, MO, USA) in 1:10.000 were used. 

After washing for 3x10 minutes in PBST, membranes were incubated with anti-mouse IgG 

secondary antibody (Bio-Rad Laboratories, Hercules, CA, USA) in 1:1500 dilution for 1 hour 

at room temperature. Signals were detected by enhanced chemiluminescence (Millipore, 

Temecula, CA, USA) according to the manufacturer’s instructions. Signals were manually 

developed on X-ray films. 

 



Immunohistochemistry and histochemistry 

Deparaffinised and rehydrated tissue sections were immunostained with anti-Hsp 60 antibody 

at 1:200 in PBS (Thermo Scientific, Rockford, IL, USA) and visualised with a Vectastain 

Elite ABC Kit (Vector Laboratories Ltd., Peterborough, UK) according to the manufacturer’s 

protocol. The slides were preincubated in 1% horse serum in PBS for 30 min at 24 °C to 

prevent the possibility of non-specific binding. As secondary antibody anti-mouse Ig-G 

(Vector Laboratories Ltd., Peterborough, UK) at 1:400 in PBS was applied, overnight, at 4 

°C. The control sections originate from the same incisor in each case, these sections were 

stained in the same way, but the primary antibody was omitted and replaced with PBS. No 

signal was recorded from control sections incubated with PBS instead of primary antibody. 

Sections were visualised with DAB (3, 3’-diaminobenzidine) for conventional light 

microscopy. Each individual case of DAB precipitation in Hsp 60 immunostained sections 

was independently evaluated by two researchers at 400x magnification. The histochemical 

sections from in vitro culturing were stained with picrosirius F3B as described in the literature 

(31). This staining labelled the collagen fibers and amplified the optical anisotropy of 

collagen (32). 

In situ hybridisation 

Mice were deeply anaesthetised with sodium-pentobarbital (50 mg/kg), and embryos were 

immediately processed. Non-radioactive probes were generated and used according to the 

Roche protocol (Roche, Mannheim, Germany) and the Dig-labelled probes were obtained by 

in vitro transcription using PCR templates (7, 33-34). PCR primers were chosen for regions 

containing exons from 7 to 12 and the 3’UTR regions using the mouse HSPD1 mRNA 

sequence (GenBank accession No: NM_010477.4) as a template. The sense primer was 



flanked by the T3 sequence, and the antisense primer contained the T7 primer sequence at the 

5’ ends. The sequences of the primers were as follows:  

- T3 flanked sense: 5’-ATTAACCCTCACTAAAGGTCCCTGCTCTTGAAATTGCT-3’, 

- T7 flanked antisense: 5’-AATACGACTCACTATAGGCTCCACAGAAAGGCTGCTTC-3’ 

 (Integrated DNA Technologies, Inc., Coralville, IO, USA). In situ hybridisation was carried 

out as described earlier (33-34).  

Organotypic tooth germ culture, morphological analysis 

 Following the literature, we performed a Trowel-type culture of the E16.5 lower incisors 

(35). The 16.5-day old stage was chosen because this is the latest time point of the 

morphological stage during tooth development and because at later stages, the maturing 

enamel may inhibit the uptake of exogenous Hsp 60. During separation, both lower incisors 

were separated from the mandibles under a Nikon SMZ 1000 stereomicroscope (Nikon, 

Tokyo, Japan). The whole tooth was carefully isolated and cultured in Trowel-type organ 

cultures. We placed the tissues on 0.1-μm pore-size nucleopore filters (Sigma, St. Louis, MO, 

USA) supported by metal grids in a humidified atmosphere of 5 % CO2 in air at 37 °C. From 

each jaw, one of the incisors was used as the treated explant and the other as its individual 

control. The culture medium consisted of DMEM (Dulbecco's modified Eagle's medium) 

(Gibco Brl, Gaithersburg, MD USA) supplemented with 15 % foetal bovine serum (Gibco 

Brl, Gaithersburg, MD, USA). Exogenous Hsp 60 was added into the medium in 1 µg/ml 

(Abcam, Cambridge, UK) on the first (onset of culturing) and on the third day of culturing. 

The half-time of Hsp 60 is 3.2-10 minutes under healthy conditions (19, 36), the applied time 

period was important to follow the possible morphological changes of tooth germs. The 

culture medium was changed on the third day of culturing, the medium of treated explants 

was supplied with Hsp 60 (1 µg/ml). The experiment was concluded on the fifth day. The data 



of in vitro culturings based on four individual experiments. To determine morphological 

alternation of tooth germs, the angle between the labial and lingual root of the tooth germs at 

the level of the enamel knot has been measured in 5 days old tissue cultured samples in 

treated and in control groups (n=7-7). We used in vitro samples to avoid the unwanted side 

effects of dehydration during histology staining. 

Cell cycle analysis 

10 µl/mL BrdU (5-bromo-2-deoxyuridine) labelling reagent (Life Technologies, Carlsbad, 

CA, USA) was added to the culture medium for 2 hours prior to fixation. The in vitro culture 

samples were fixed immediately in Sainte-Marie’s fixative, dehydrated in graded series of 

ethanol and embedded in paraffin. Serial sections were cut in the sagittal plane at 5-7 µm and 

processed for further histological analysis. The BrdU was immunodetected using the BrdU 

Detection Kit according to the manufacturer’s protocol (Zymed, Carlsbad, CA, USA).   

 

Data analysis and image capturing 

Histological samples were examined by transmitted light microscopy (Nikon Eclipse E 800, 

Tokyo, Japan), and representative images were captured with an Olympus DP 70 digital 

camera (Olympus, Tokyo, Japan). Images were edited with Adobe Photoshop CS4 Software 

(Adobe Systems Inc., San Jose, CA, USA). Data of morphological analysis was measured 

with ImageJ 1.46 (National Institutes of Health, Maryland, USA). Statistical analysis was 

based on 7 of each control and treated samples from 4 independent experiments. Significance 

of numerical data was verified by Mann-Whitney U-test.  

 



Results 

Hsp 60 protein and mRNA are present in high levels in the structures of the enamel 

organ and in the odontoblasts 

We used western blot to detect Hsp 60 protein in the tooth germs from E13.5 to E18.5 (Figure 

1). A single band at approximately 60 kDa was observed for each stage, confirming the 

ubiquitous expression of this protein. The distribution pattern of Hsp 60 protein was studied 

by immunohistochemistry in tooth germ slides ranging from E11.5 to 18.5. The results 

showed continuous expression of Hsp 60 during the early stages of enamel organ 

development (Figure 2, 3). The first appearance of Hsp 60 was detected by a weak DAB 

signal in the epithelial band (EB) during the initial stage (E11.5) of the tooth development 

(Figures 2, B). During the bud and cap stage (E13.5-E15.5; Figures 2, C-F), the inner enamel 

epithelium (IEE) and outer enamel epithelium (OEE) and enamel knot (EK) of the enamel 

organ showed intense Hsp 60 immunoreactive signals. In contrast, the dental papilla (DP) and 

dental follicle (DF) were weakly labelled (Figures 2, C-F), which we considered to be the 

baseline expression of the Hsp 60 protein. During the bell stage, the Hsp 60 signal was also 

strong in the derivatives of the enamel organ, including the inner enamel epithelium (IEE), 

outer enamel epithelium (OEE), preameloblasts (PreA), ameloblasts (A), and stratum 

intermedium (SI) (E16.5-E18.5; Figure 3). Moreover, homogenous DAB precipitations were 

found in the stratum intermedium, which may indicate extracellular Hsp 60. The 

immunoreactivity was increased in the cytoplasm of the preodontoblast (PreO) and 

odontoblast (O) cells at E16.5. A weak signal could be detected in the dental follicle (DP) as 

well as in the surrounding mesenchymal tissue.  

To enhance the result of IHC and to investigate the cellular origin of the extracellular Hsp 60 

present in the SI at E16.5, we performed in situ hybridisation. The majority of the Hsp 60 

mRNA was localised to the labial side of the tooth germs, confirming the 



immunohistochemical results (Figure 4). A strong signal was observed in the cells of the outer 

enamel epithelium (OEE), inner enamel epithelium (IEE), preameloblasts (PreA), ameloblasts 

(A), stratum intermedium (SI), preodontoblasts (PreO) and odontoblasts (O) while the lingual 

side of the tooth germ showed weak mRNA expression (Figure 4). 

 

Exogenous Hsp 60 alters the morphology of the tooth germs 

To further investigate the possible effects of extracellular Hsp 60 on tooth development, ex 

vivo organotypic tooth germs were cultured in the presence of Hsp 60 administered to the 

culture medium. There were no detectable morphological differences during the first day of in 

vitro culturing between the Hsp 60 treated and non-treated tooth germs (Figure 5, A-B). 

Altered morphology in treated cultures was first observed at the 3rd DIV. The apical part of 

the treated tooth germs became blunted in shape with a clearly visible enamel knot whereas 

the proximal part of the tooth germ did not show any visual difference (Figures 5, C-D). More 

profound morphological changes between the treated and control cultures were observed at 

the 5
th

 day of culturing. The distal parts were sharp in the control explants and blunt in the 

treated explants.  Similarly to the earlier time points, the proximal part of the tooth germ 

showed no visual differences (Figure 5, E-F). We performed picrosirius histochemical 

staining to identify the morphology of the explants. Sections were oriented parallel to the 

longitudinal axis of the tooth germs. Distal parts of the treated tooth germs were blunt in 

comparison to the control samples (Figures 5, G-H), confirming the observed macroscopic 

morphology described above with one important note: the altered side had a clear border and 

living cells, which was in contrast to our expectations based on macroscopic observations. 

According to morphological analysis significant alteration was detected between the treated 

and control groups (Mann-Whitney test, p>0.05). The lingual and labial loops (Figure 5, E-F) 

closed significantly higher degree in treated samples (21,01°; SD:3,77; SEM:1,68), than 



control samples (11,88°; SD:2,94; SEM:1,31).  This result correlates with the morphology of 

the histology observation (Figures 5, G-H). 

 

Cell cycle analysis 

We used the BrdU incorporation test to detect the dividing cells of the tooth germs. The apical 

parts of the samples did not contain any dividing cells in either the treated or control groups 

(Figure 6). Several BrdU positive cells were found in the labial roots and in the proximal part 

of the enamel organ in both groups. Although the distribution of BrdU positive cells seemed 

slightly different in the two experimental groups, we did not find any significant differences 

between the numbers and distribution of these proliferating cells (Mann-Whitney test, p>0.84). 

According to our results, Hsp 60 does not influence the cell cycle in the labial root of the 16.5 

day-old tooth germ. 

 

Discussion  

To the best of our knowledge, this is the first study describing the expression pattern and 

possible effect of Hsp 60 during tooth development. It is important to note, that all of the heat 

shock proteins are essential components of the organisms, although they had diverse function 

and various expression patterns during the tooth development. During odontogenesis the 

expression patterns and possible roles of Hsp 25, Hsp 27, Hsp 86, Hsc73, Hsj2 were already 

described (37-41). Among these, the Hsp 25 has been studied the most in rat and mice 

incisors (37-38). The dental pulp, preodontoblasts and ameloblasts were transiently positive 

for Hsp 25, while the odontoblasts were showed continuous Hsp 25 expression (38). The Hsp 

27 was detected in the dental epithelium of bell stage and it might be related to the 

morphological development of the tooth (41). The distribution pattern of Hsp 86, Hsj2 and 

Hsc73 were similar to each other in the enamel organ: the inner enamel epithelium and 



primary enamel knots showed strong signals during the bell stage (40). According to our 

findings in Hsp 60, we found similar expression pattern with the Hsp 25 and Hsp 27: more 

intense immunoreaction were in the structures of the enamel epithelium and the odontoblasts 

than in the neighbouring structures. This observation was also confirmed by a more sensitive 

method, whole mount in situ hybridization against mRNA of Hsp 60.  

The Hsp 60 has several intracellular functions under healthy conditions (23-26). In 

contrast less is known about the possible role of extracellular Hsp 60. In our culturing 

experiments extracellular Hsp 60 caused abnormal morphology, one of the possible 

candidates for the effectors mechanism is the TLR4 receptor signalling. Exogenous Hsp 60 

can be taken up by TLR4 receptor, which can activate the NF-κB signalling pathway (42-43).  

In our study, excess Hsp 60 caused an abnormal morphology (Figure 5) of the distal part of 

the tooth germ. In these experiments, the applied high level of Hsp 60 during the in vitro 

culturing model we were aimed to mimic the increased levels of Hsp 60 which may originate 

from tissues of the tooth germ under pathological conditions, such as hypoxia, placental 

insufficiency, or chronic fever during pregnancy. Moreover, our preliminary experiments 

showed the present of TLR4 receptor in the tooth germs used by Western blot, which can 

strengthen our hypothesis for downstream acting of Hsp 60 though TLR4. Nevertheless, 

despite the large number of studies about the TLR4 signalling pathway on odontoblasts, we 

did not find any study related to the regulation of tooth development (44-45).  

Another opportunity the ectodysplasin/TNF signalling pathway may also take part on 

the effect of the Hsp 60. This pathway has major role in the morphological development of 

ectodermal appendices, and the downstream portion of the signalling pathway includes the 

IKK complex (46). IKK consists of three subunits: IKKα, IKKβ and IKKγ (46) and plays an 

NF-κB-independent role during the early stage of embryonic development by influencing the 

invagination of the ectoderm-derived tooth germ and whiskers into the underlying 



mesenchyme (48-49). Recent in vitro culture experiments support earlier findings in which 

free cytosolic Hsp 60 can attach to the IKK complex and the absence of IKKα can cause 

abnormal tooth phenotypes (19, 50-51). Similar morphology was observed between the 

treated incisor tooth germs and the lower incisors of IKKα KO mice (48). However, IKK 

modifies the degradation of IκB, resulting in normal tooth morphology in the IκB KO mice. 

This indicates that the blunted distal part of the treated tooth germs in our experiments 

probably is not the result of altered expression of NF- B target genes (48). This background 

supports that the Hsp 60 may attach to IKKα and that this connection may inhibit the function 

of IKKα in developmental processes (19).  

 During the BrdU incorporation test, we investigated the labial root and the distal part 

of the tooth germ based on the expression pattern of Hsp 60 in the enamel organ. The labial 

root contains pluripotent stem cells, which give rise to the epithelial cells of the inner enamel 

epithelium (52-53). According to the literature, Hsp 60 may increase the proliferation rate of 

the epithelium-derived cells (54). However, this mitogenic effect of Hsp 60 could not be 

confirmed in dental cells. We also investigated the apical part of the tooth germs, which is 

responsible for forming the shape of the tooth (55). The enamel knot is a transient structure 

that is responsible for the final morphology of the tooth and does not contain proliferating 

cells in the bell stage (56). This was not altered by exogenous Hsp 60. Our results suggested 

that Hsp 60 does not modify the proliferation activity of the dental cells in the enamel organ 

and in the labial root. 



Conclusion: 

Here we presented a description on the expression pattern of Hsp 60 mRNA and 

protein during tooth development.  According to our results this protein can play role in the 

morphological developmental of the tooth germ. Although the exact mechanism by which 

Hsp 60 influenced morphogenesis of tooth germs has not been clarified yet, but our results 

suggested the involvement of the IKK complex. This study supported the roles of heat shock 

proteins during developmental processes, concerning, that the elevated amount of Hsp 60 may 

be the result of pathological processes. 
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Figure legends 

 

Figure 1   

Results of Western blot analysis.  

 A table shows the presence of Hsp 60 in the tooth germs from E13.5 to E18.5. B table shows 

the loading control (actin). 

 

Figure 2 

The expression pattern of Hsp 60 in early stages of lower incisor development in mice. 



 

Hsp 60 is present in the oral epithelium and epithelial band (EB) in the initial stage of the 

tooth development (A-B insert). From E12.5 to E15.5 (C-F pictures), Hsp 60 protein is 

present in the structures of the developing enamel organ (EO). From E14.5 (D), the inner 

enamel epithelium (IEE), outer enamel epithelium (OEE) and enamel knot (EK) of the enamel 

organ were positive for Hsp 60. The cells of dental papilla (DP) show weak Hsp 60 

expression. Scale bar: A-D: 50 µm, E-F: 100 µm 

 



Figure 3  

The expression pattern of Hsp 60 during the bell stage of lower incisor development.  

 Histology slide was stained by Picrosirius to help to recognize the position of inserts of A, B 

and C columns from different stages (E16.5-E18.5). Column A shows the apical part of the 

enamel organ, B shows the proximal part of the enamel organ, and column C shows the labial 

root sheet. Preameloblasts (PreA), ameloblasts (A), stratum intermedium (SI), inner enamel 

epithelium (IEE) and outer enamel epithelium (OEE) abundantly contain Hsp 60 signals. 

Preodontoblasts (PreO) and odontoblasts (O) also show intensive immunoreaction. From 

E17.5, the stratum intermedium shows intensive Hsp 60 immunolabelling. Scale bar: A: 500 

µm; B-F, H,I: 20 µm; G,J:100 µm.  

 



Figure 4  

Results of in situ hybridisation on 16.5 day-old tooth germ.  

 

To verify the results of the immunohistochemistry, we performed in situ hybridisation, which 

confirmed the enhanced expression of Hsp 60 in the enamel organ and in odontoblasts. Insert 

A shows the apical part of the enamel organ a higher magnification, the insert B shows the 

proximal part, insert C shows the labial root from the whole mount sample. The probe 

positively label the preameloblasts (PreA), ameloblasts (A), preodontoblasts (PreO), 

odontoblasts (O), stratum intermedium (SI), outer enamel epithelium (OEE) of the tooth germ. 

The inner enamel epithelium (IEE) also shows signal that is not very intense. Scale bar: 100 

µm, A-C inserts: 20 µm. 



Figure 5 

Exogenous Hsp 60 causes abnormal morphology of the in vivo cultured E16.5 incisor. 

 

At the end of the first day in culture, no visual difference can observe between the treated (A) 

and control (B) tooth germs. The first morphological sign appears on the third day of in vitro 



culture. The distal part of the treated samples (C) start to show blunted apical parts while the 

apical part of the control sample shows normal morphology (D). On the fifth culture day, 

clear morphological differences develop between our samples. The treated tooth germs (E) 

have blunted distal parts while the control samples have sharp distal parts (F). Red point 

indicates the centre of lingual loop, blue point indicates centre of labial loop and yellow point 

indicates the enamel knot (E-F inserts). The enclose degree between these points at the case of 

treated samples is significantly higher (p>0.05). After the histochemical staining, more 

obvious differences develop between the two groups. The treated tooth germs have abnormal 

blunted distal parts (G) while the control samples have normal morphology (H). The intense 

red colour indicates collagen in the predentin. (Scale bar: A-F: 100 µm, G-H: 50 µm.) 



Figure 6  

Effect of Hsp 60 on the proliferation of dental cells. 

 

Proliferating cells incorporated BrdU are visible in brown colour. Hsp 60 does not modify the 

number of proliferating cells in the labial root (investigated territory bounded by black dashed 

lines on A-B inserts; A table) and in the enamel organ (investigated territory bounded by red 

dashed lines on A-B inserts; B table). The cell cycle analysis shows no difference between the 

viability of the dental cells in the treated and control groups, and the apical part of the tooth 

germs contains no proliferating cells. Though we detect several dividing cells in the territory 

of the enamel organ and labial root, the statistical analysis shows no significant difference 

between the numbers of BrdU-positive cells (p>0.84). (Scale bar: 100 µm.) 


