A Robbins-Monro-type algorithm for computing global minimizer of generalized conic functions

Mátyás Barczy ${ }^{\text {a* }}$, Ábris Nagy ${ }^{\text {b }}$, Csaba Noszály ${ }^{\text {a }}$ and Csaba Vincze ${ }^{\text {c }}$
${ }^{a}$ Faculty of Informatics, Department of Applied Mathematics and Probability, University of Debrecen, Debrecen, Hungary; ${ }^{b}$ MTA-DE Research Group 'Equations Functions and Curves', Institute of Mathematics, Hungarian Academy of Sciences and University of Debrecen, Debrecen, Hungary; ${ }^{c}$ Institute of Mathematics, University of Debrecen, Debrecen, Hungary

(Received 20 February 2013; accepted 17 April 2014)

Abstract

We generalize the notion and some properties of the conic function introduced

 by Vincze and Nagy (2012). We provide a stochastic algorithm for computing the global minimizer of generalized conic functions, we prove almost sure and L^{q}-convergence of this algorithm.Keywords: global optimization; Markov process; conic function; stochastic algorithm; Robbins-Monro algorithm

AMS Subject Classifications: 90C25; 60D05

1. Introduction

Let K be a compact body in \mathbb{R}^{2} (a non-empty compact set coinciding with the closure of its interior) and consider the distance function induced by the taxicab norm. The socalled conic function F_{K} associated to K (introduced by Vincze and Nagy [1, Definition 6], see also Definition 2.1) measures the average taxicab distance of the points from K via integration with respect to the Lebesgue measure, or explaining in another way: the conic function F_{K} at some point $(x, y) \in \mathbb{R}^{2}$ can be interpreted as the expectation of the random variable defined as the taxicab distance of (x, y) and (ξ, η), where (ξ, η) is a uniformly distributed random variable on K, for more details see part (ii) of Remark 1. Conic functions are extensively used in geometric tomography since they contain a lot of information about unknown bodies, for a more detailed discussion see Gardner [2] and Vincze and Nagy [1]. We call the attention that in the literature one can find other definitions of 'conic functions' that are completely different from ours. For example, in optimization, a conic function is usually defined to be the ratio of a quadratic function and the square of a linear function on the open halfspace, where the linear function is positive, see, e.g. Luksan [3, formula (2.1)]. Wang et al. [4] introduced another definition of conic functions in metric spaces and obtained a new condition for metric spaces being compact in terms of conic functions.

We recall that one of the striking features of the conic function F_{K} is that a point in \mathbb{R}^{2} is a global minimizer of F_{K} if and only if it bisects the area of K, i.e. the vertical

[^0]and horizontal lines through this point cut the compact body K into two parts with equal areas, see Vincze and Nagy [1, Corollary 1]. We call the attention that points with similar properties are important and well studied in geometry. For instance, we mention that if S is a convex set in \mathbb{R}^{2}, then there exist two perpendicular lines that divide S into four parts with equal areas, see Yaglom and Boltyanskii [5, Section 3].

In Section 2 of the present paper, we generalize the conic function F_{K} introduced by Vincze and Nagy [1] in a way that it measures the average taxicab distance of the points from K via integration with respect to some measure μ on K with $\mu(K)<\infty$, see Definition 2.5. From geometric point of view, the body K associated with some measure μ can be considered as a mathematical model of a non-homogeneous body and hence our generalization of conic functions may find applications in (geometric) tomography where typically non-homogeneous bodies occur. We generalize Theorems 3, 4, 5, Lemmas 6, 7 and Corollary 1 in Vincze and Nagy [1] for conic functions $F_{K, \mu}$ associated with a compact body K and a measure μ with $\mu(K)<\infty$. We only mention that it turns out that a point in \mathbb{R}^{2} is a global minimizer of $F_{K, \mu}$ if and only if it bisects the μ-area of K, see Corollary 2.9.

In Section 3, we give a stochastic algorithm for the global minimizer of the convex function $F_{K, \mu}$. In the heart of our algorithm, the well-known Robbins-Monro algorithm (see [6]) lies, and we prove almost sure and L^{q}-convergence of our algorithm. More precisely, we define recursively a sequence $\left(X_{k}\right)_{k \in \mathbb{Z}_{+}}$of random variables (see (3.1)) which forms an inhomogeneous Markov chain and we prove almost sure and L^{q}-convergence of this Markov chain via Robbins-Monro algorithm, see Theorem 3.3. We also prove almost sure and L^{q}-convergence of the sequence $\left(F_{K, \mu}\left(X_{k}\right)\right)_{k \in \mathbb{N}}$, see Theorem 3.6. In general, stochastic algorithms for finding a minimum of a convex function have a vast literature, see, e.g. Robert and Casella [7] and Bouleau and Lépingle [8]. Without giving an introduction of the newest results in the field we only mention the paper [9] of Arnaudon et al., which in some sense motivated our study. They gave a stochastic algorithm which converges almost surely and in L^{2} to the so-called p-mean of a probability measure supported by a regular geodesic ball in a manifold.

2. Generalized conic functions

Let $\mathbb{Z}_{+}, \mathbb{N}, \mathbb{R}$ and \mathbb{R}_{+}denote the set of non-negative integers, positive integers, real numbers and non-negative real numbers, respectively. For an $x \in \mathbb{R}^{2}$, we will denote its Euclidean norm by $\|x\|$. Let $K \subset \mathbb{R}^{2}$ be a non-empty compact set such that it coincides with the closure of its interior. In geometry, K is called a compact body. By $\mathcal{B}\left(\mathbb{R}^{d}\right)$ and $\mathcal{B}(K)$, we denote the Borel σ-algebra on \mathbb{R}^{d} and on K, respectively, where $d \in \mathbb{N}$. For all $x, y \in \mathbb{R}$ let us introduce the following notations

$$
\begin{array}{ll}
\{K<1 x\}:=\{(\alpha, \beta) \in K: \alpha<x\}, & \{x<1 K\}:=\{(\alpha, \beta) \in K: x<\alpha\}, \\
\{K<2 y\}:=\{(\alpha, \beta) \in K: \beta<y\}, & \{y<2 K\}:=\{(\alpha, \beta) \in K: y<\beta\}, \\
\{K=1 x\}:=\{(\alpha, \beta) \in K: \alpha=x\}, & \{K=2 y\}:=\{(\alpha, \beta) \in K: \beta=y\} .
\end{array}
$$

The notations $\left\{K \leq_{1} x\right\},\left\{x \leq_{1} K\right\},\left\{K \leq_{2} y\right\}$ and $\left\{y \leq_{2} K\right\}$ are defined in the same way. For a function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$, we will denote by $D_{1} f$ and $D_{2} f$ the partial derivatives of f.

Next, we recall the notion of a generalized conic function associated with K due to Vincze and Nagy [1].

Definition 2.1 (Vincze and Nagy [1, Definition 6]) The generalized conic function F_{K} : $\mathbb{R}^{2} \rightarrow \mathbb{R}$ associated to K is defined by

$$
F_{K}(x, y):=\frac{1}{A(K)} \int_{K} d_{1}((x, y),(\alpha, \beta)) \mathrm{d} \alpha \mathrm{~d} \beta, \quad(x, y) \in \mathbb{R}^{2},
$$

where $A(K)$ is the two-dimensional Lebesgue measure (area) of K, and the distance function d_{1} is given by $d_{1}((x, y),(\alpha, \beta)):=|x-\alpha|+|y-\beta|,(x, y),(\alpha, \beta) \in \mathbb{R}^{2}\left(d_{1}\right.$ is known to be the metric induced by the taxicab norm).

The next result is about the global minimizer of F_{K}.
Proposition 2.2 (Vincze and Nagy [1, Corollary 1]) A point in \mathbb{R}^{2} is a global minimizer of the generalized conic function F_{K} if and only if it bisects the area of K, i.e. the vertical and the horizontal lines through this point cut the compact body K into two parts with equal area.

We note that the global minimizer of the generalized conic function F_{K} is not unique in general. In Proposition 2.3, we give a sufficient condition for its uniqueness.

In what follows we will frequently use the following conditions
(C.1) K is connected,
(C.2) $\mu(B(p, \varepsilon) \cap K)>0 \quad$ for all $p \in K, \varepsilon>0$ and $B(p, \varepsilon)$,
where μ is a measure on the measurable space $(K, \mathcal{B}(K))$ and $B(p, \varepsilon)$ denotes the open ball around p with radius ε, and
(C.3) $\mu(\{K=1 x\})=\mu(\{K=2 y\})=0 \quad$ for all $x, y \in \mathbb{R}$.

We call the attention that Condition (C.3) does not hold for a measure in general. For example, if μ is the distribution of a discrete random variable having values in K, then Condition (C.3) does not hold. However, if μ is the two-dimensional Lebesgue measure on K, then Conditions (C.2) and (C.3) hold automatically.

Proposition 2.3 If Condition (C.1) holds, then the convex function F_{K} has a unique global minimizer $\left(x^{*}, y^{*}\right) \in \mathbb{R}^{2}$, that is, $F_{K}(x, y)>F_{K}\left(x^{*}, y^{*}\right)$ for $(x, y) \neq\left(x^{*}, y^{*}\right)$, $(x, y) \in \mathbb{R}^{2}$.

Proof The existence of a global minimizer of F_{K} can be checked as follows. By Theorem 3 in Vincze and Nagy [1], F_{K} is a finite-valued convex function defined on \mathbb{R}^{2} and its level sets are compact subsets of \mathbb{R}^{2}. Hence, F_{K} is continuous and consequently it reaches its minimum on every compact set.

Now we turn to prove the uniqueness of $\left(x^{*}, y^{*}\right)$. Let us suppose that $\left(x^{*}, y^{*}\right) \in \mathbb{R}^{2}$ and $\left(\tilde{x^{*}}, \tilde{y}^{*}\right) \in \mathbb{R}^{2}$ are global minimizers of F_{K} such that $\left(x^{*}, y^{*}\right) \neq\left(\tilde{x^{*}}, \tilde{y}^{*}\right)$. Then $x^{*} \neq \widetilde{x^{*}}$ or $y^{*} \neq \widetilde{y}^{*}$. We may assume that $\widetilde{x}^{*}<x^{*}$. Then both of the vertical lines $\mathbb{R}^{2}={ }_{1} x^{*}$ and $\mathbb{R}^{2}={ }_{1} \tilde{x}^{*}$ bisect the area of K. Note that since Condition (C.3) holds automatically for the two-dimensional Lebesgue measure, the bisection of the area of K is well defined. Let us consider the open half-planes

$$
H^{*}:=\mathbb{R}^{2}<_{1} x^{*} \quad \text { and } \quad \widetilde{H^{*}}:=\mathbb{R}^{2}>_{1} \widetilde{x}^{*}
$$

Note that $\left(\widetilde{x^{*}}, \widetilde{y^{*}}\right) \in H^{*}$ and $\left(x^{*}, y^{*}\right) \in \widetilde{H^{*}}$. We show that $K \cap\left(H^{*} \cap \widetilde{H^{*}}\right)=\emptyset$. On the contrary, let us suppose that there exists $p \in \mathbb{R}^{2}$ such that $p \in K \cap\left(H^{*} \cap \widetilde{H^{*}}\right)$. Since K is a non-empty compact body, there exist

$$
0<\varepsilon<\min \left\{d_{2}\left(p, \mathbb{R}^{2}={ }_{1} x^{*}\right), d_{2}\left(p, \mathbb{R}^{2}={ }_{1} \tilde{x^{*}}\right)\right\}
$$

and $q \in B(p, \varepsilon)$ such that q is an interior point of K, where d_{2} denotes the standard Euclidean distance on \mathbb{R}^{2}. Hence, there exists

$$
0<\delta<\min \left\{d_{2}\left(p, \mathbb{R}^{2}={ }_{1} x^{*}\right), d_{2}\left(p, \mathbb{R}^{2}=\tilde{x}^{*}\right)\right\}
$$

such that $B(q, \delta) \subset K \cap\left(H^{*} \cap \widetilde{H^{*}}\right)$. Then

$$
\begin{align*}
& A\left(K<1 \tilde{x^{*}}\right)=A\left(\tilde{x^{*}}<_{1} K\right) \geq A(B(q, \delta))+A\left(x^{*}<1 K\right), \\
& A\left(x^{*}<_{1} K\right)=A\left(K<1 x^{*}\right) \geq A(B(q, \delta))+A\left(K<1 \widetilde{x^{*}}\right), \tag{2.1}
\end{align*}
$$

and hence

$$
A\left(K<_{1} x^{*}\right) \geq 2 A(B(q, \delta))+A\left(K<_{1} x^{*}\right)
$$

i.e. $0 \geq A(B(q, \delta))$, which yields us to a contradiction. At this point, we implicitly used that Condition (C.2) holds automatically for the two-dimensional Lebesgue measure. Hence $K \cap\left(H^{*} \cap \widetilde{H^{*}}\right)=\emptyset$. Let $0<\eta<\left(x^{*}-\widetilde{x^{*}}\right) / 2$, and let us consider the open half-planes

$$
I^{*}:=\mathbb{R}^{2}>_{1} x^{*}-\eta \quad \text { and } \quad \tilde{I}^{*}:=\mathbb{R}^{2}<_{1} \tilde{x}^{*}+\eta .
$$

Then I^{*} and $\widetilde{I^{*}}$ are open sets of $\mathbb{R}^{2}, I^{*} \cap \widetilde{I^{*}}=\emptyset$, and, since $K \cap\left(H^{*} \cap \widetilde{H^{*}}\right)=\emptyset$, we have $K \subset I^{*} \cup \widetilde{I}^{*}$. Further, $I^{*} \cap K$ and $\widetilde{I}^{*} \cap K$ are separated sets such that their union equals K. This is a contradiction due to the connectedness of K. Hence $x^{*}=\widetilde{x^{*}}$, and in a similar way we have $y^{*}=\widetilde{y^{*}}$.

We call the attention that Condition (C.1) is sufficient but not necessary in order that the generalized conic function F_{K} should have a uniquely determined global minimizer. Figure 1 shows three different cases where Condition (C.1) is not satisfied but F_{K} has a unique global minimizer.

On the subfigure (c) of Figure 1 , the circles have centres $(-1 / \sqrt{12}, 0)$ and $\left(1 / 2^{n}, 0\right)$ with radii $1 / \sqrt{12}$ and $1 / 2^{n+2}$, respectively, where $n \in \mathbb{Z}_{+}$.

Figure 1. Examples for K such that Condition (C.1) does not hold but F_{K} has a unique global minimizer.

Example 2.4

(i) If K is the square with vertexes $(0,0),(0,1),(1,0),(1,1)$, then

$$
F_{K}(x, y)=\left(x-\frac{1}{2}\right)^{2}+\left(y-\frac{1}{2}\right)^{2}+\frac{1}{2}, \quad(x, y) \in K
$$

see, e.g. Vincze and Nagy [1, Example 3]. Using that K is connected, by Propositions 2.2 and 2.3, the global minimizer of F_{K} is $(x, y)=\left(\frac{1}{2}, \frac{1}{2}\right)$.
(ii) If K is the triangle with vertexes $(0,0),(0,1),(1,0)$, then

$$
F_{K}(x, y)=-\frac{2}{3}\left(x^{3}+y^{3}\right)+2\left(x^{2}+y^{2}\right)-(x+y)+\frac{2}{3}, \quad(x, y) \in K
$$

Indeed, $F_{K}(x, y)=\mathbb{E}(|\xi-x|)+\mathbb{E}(|\eta-y|)$ for all $(x, y) \in \mathbb{R}^{2}$, where (ξ, η) is a uniformly distributed random variable on K. Then the joint density function of (ξ, η), and the density functions of the marginals of (ξ, η) take the forms

$$
f_{(\xi, \eta)}(\alpha, \beta)= \begin{cases}2 & \text { if }(\alpha, \beta) \in K, \\ 0 & \text { if }(\alpha, \beta) \notin K,\end{cases}
$$

and

$$
f_{\xi}(\alpha)=\left\{\begin{array}{ll}
-2 \alpha+2 & \text { if } \alpha \in[0,1], \\
0 & \text { if } \alpha \notin[0,1],
\end{array} \quad f_{\eta}(\beta)= \begin{cases}-2 \beta+2 & \text { if } \beta \in[0,1], \\
0 & \text { if } \beta \notin[0,1]\end{cases}\right.
$$

respectively. Hence for all $(x, y) \in K$,

$$
\begin{aligned}
\mathbb{E}(|\xi-x|) & =\int_{0}^{1}|\alpha-x|(-2 \alpha+2) \mathrm{d} \alpha \\
& =\int_{0}^{x}(x-\alpha)(-2 \alpha+2) \mathrm{d} \alpha+\int_{x}^{1}(\alpha-x)(-2 \alpha+2) \mathrm{d} \alpha \\
& =-\frac{2}{3} x^{3}+2 x^{2}-x+\frac{1}{3}
\end{aligned}
$$

and similarly $\mathbb{E}(|\eta-y|)=-\frac{2}{3} y^{3}+2 y^{2}-y+\frac{1}{3}$ for all $(x, y) \in K$. Hence, the global minimizer of F_{K} is $(1-\sqrt{2} / 2,1-\sqrt{2} / 2)$. Indeed, the solution in K of the system of equations

$$
D_{1} F_{K}(x, y)=-2 x^{2}+4 x-1=0 \quad \text { and } \quad D_{2} F_{K}(x, y)=-2 y^{2}+4 y-1=0
$$

is $(1-\sqrt{2} / 2,1-\sqrt{2} / 2)$. Using that K is connected, by Propositions 2.2 and 2.3, the global minimizer of F_{K} is $(1-\sqrt{2} / 2,1-\sqrt{2} / 2)$.

In what follows, we generalize the notion of the conic function introduced by Vincze and Nagy [1, Definition 6], see also Definition 2.1.

Definition 2.5 Let μ be a measure on the measurable space ($K, \mathcal{B}(K)$) such that $\mu(K)$ $<\infty$. The generalized conic function $F_{K, \mu}: \mathbb{R}^{2} \rightarrow \mathbb{R}$ associated to K and μ is defined by

$$
F_{K, \mu}(x, y):=\int_{K} d_{1}((x, y),(\alpha, \beta)) \mu(\mathrm{d} \alpha, \mathrm{~d} \beta), \quad(x, y) \in \mathbb{R}^{2}
$$

Remark 1

(i) Note that under the conditions of Definition 2.5, we have $F_{K, \mu}(x, y)$ is well defined for all $(x, y) \in \mathbb{R}^{2}$, since for fixed $(x, y) \in \mathbb{R}^{2}$, the function $K \ni(\alpha, \beta) \mapsto$ $d_{1}((x, y),(\alpha, \beta))$ is bounded and $\mu(K)<\infty$.
(ii) If μ is a measure on K such that $\mu(K)<\infty$ and it is absolutely continuous with respect to the Lebesgue measure on K with Radon-Nikodym derivative h_{μ}, then

$$
F_{K, \mu}(x, y)=\int_{K} d_{1}((x, y),(\alpha, \beta)) h_{\mu}(\alpha, \beta) \mathrm{d} \alpha \mathrm{~d} \beta, \quad(x, y) \in \mathbb{R}^{2}
$$

With

$$
h_{\mu}(\alpha, \beta):= \begin{cases}\frac{1}{A(K)} & \text { if }(\alpha, \beta) \notin K, \\ 0 & \text { if }(\alpha, \beta) \notin K,\end{cases}
$$

we have $F_{K, \mu}$ coincides with F_{K} given in Definition 2.1. Note also that the conic function F_{K} can be interpreted as the expectation of an appropriate random variable. Namely, $F_{K}(x, y)=\mathbb{E}\left[d_{1}((x, y),(\xi, \eta))\right],(x, y) \in \mathbb{R}^{2}$, where (ξ, η) is a uniformly distributed random variable on K.

Next, we generalize Theorems 3, 4 and 5, Lemmas 6 and 7 and Corollary 1 in Vincze and Nagy [1] for the generalized conic function $F_{K, \mu}$.

Theorem 2.6 The generalized conic function $F_{K, \mu}: \mathbb{R}^{2} \rightarrow \mathbb{R}_{+}$is a convex function which satisfies the growth condition

$$
\liminf _{\|(x, y)\| \rightarrow \infty} \frac{F_{K, \mu}(x, y)}{\sqrt{x^{2}+y^{2}}} \geq \mu(K)>0
$$

Consequently, the level sets of the function $F_{K, \mu}$ are bounded and hence compact subsets of \mathbb{R}^{2}.

Proof Recall that

$$
F_{K, \mu}(x, y)=\int_{K} d_{1}((x, y),(\alpha, \beta)) \mu(\mathrm{d} \alpha, \mathrm{~d} \beta), \quad(x, y) \in \mathbb{R}^{2}
$$

The convexity of $F_{K, \mu}$ is clear, since the integrand is a convex function for any fixed element $(\alpha, \beta) \in K$, and the Lebesgue integral with respect to the measure μ is monotone. Further, since $d_{2}((x, y),(\alpha, \beta)) \leq d_{1}((x, y),(\alpha, \beta)),(x, y),(\alpha, \beta) \in \mathbb{R}^{2}$, where d_{2} is the standard Euclidean distance on \mathbb{R}^{2}, we have

$$
F_{K, \mu}(x, y) \geq \int_{K} d_{2}((x, y),(\alpha, \beta)) \mu(\mathrm{d} \alpha, \mathrm{~d} \beta), \quad(x, y) \in \mathbb{R}^{2}
$$

and then

$$
\frac{F_{K, \mu}(x, y)}{\sqrt{x^{2}+y^{2}}} \geq \int_{K}\left(\frac{d_{2}((x, y),(\alpha, \beta))-\sqrt{x^{2}+y^{2}}}{\sqrt{x^{2}+y^{2}}}+1\right) \mu(\mathrm{d} \alpha, \mathrm{~d} \beta)
$$

for $(x, y) \in \mathbb{R}^{2},(x, y) \neq(0,0)$. The triangle inequality shows that

$$
\begin{aligned}
\sqrt{x^{2}+y^{2}}=d_{2}((x, y),(0,0)) & \leq d_{2}((x, y),(\alpha, \beta))+d_{2}((\alpha, \beta),(0,0)) \\
& =d_{2}((x, y),(\alpha, \beta))+\sqrt{\alpha^{2}+\beta^{2}}
\end{aligned}
$$

and then

$$
\frac{F_{K, \mu}(x, y)}{\sqrt{x^{2}+y^{2}}} \geq \int_{K}\left(1-\frac{\sqrt{\alpha^{2}+\beta^{2}}}{\sqrt{x^{2}+y^{2}}}\right) \mu(\mathrm{d} \alpha, \mathrm{~d} \beta), \quad(x, y) \in \mathbb{R}^{2},(x, y) \neq(0,0)
$$

By Fatou's lemma,

$$
\begin{aligned}
\liminf _{\|(x, y)\| \rightarrow \infty} \frac{F_{K, \mu}(x, y)}{\sqrt{x^{2}+y^{2}}} & \geq \liminf _{\|(x, y)\| \rightarrow \infty} \int_{K}\left(1-\frac{\sqrt{\alpha^{2}+\beta^{2}}}{\sqrt{x^{2}+y^{2}}}\right) \mu(\mathrm{d} \alpha, \mathrm{~d} \beta) \\
& \geq \int_{K} \liminf _{\|(x, y)\| \rightarrow \infty}\left(1-\frac{\sqrt{\alpha^{2}+\beta^{2}}}{\sqrt{x^{2}+y^{2}}}\right) \mu(\mathrm{d} \alpha, \mathrm{~d} \beta)=\mu(K)>0
\end{aligned}
$$

Here for completeness, we note that one can use Fatou's lemma, since for all $c>0$,

$$
\begin{aligned}
& \int_{K} \inf \left\{1-\frac{\sqrt{\alpha^{2}+\beta^{2}}}{\sqrt{x^{2}+y^{2}}}:\|(x, y)\| \geq c\right\} \mu(\mathrm{d} \alpha, \mathrm{~d} \beta) \\
& \quad=\int_{K}\left(1-\frac{\sqrt{\alpha^{2}+\beta^{2}}}{c}\right) \mu(\mathrm{d} \alpha, \mathrm{~d} \beta)>-\infty
\end{aligned}
$$

where the last inequality follows by that K is compact (hence bounded) and $\mu(K)<\infty$.
Let $d \in \mathbb{R}_{+}$and let us suppose that the level set $\left\{(x, y) \in \mathbb{R}^{2}: F_{K, \mu}(x, y) \leq d\right\}$ is unbounded. Then one can choose a sequence $\left(x_{n}, y_{n}\right), n \in \mathbb{N}$, such that $F_{K, \mu}\left(x_{n}, y_{n}\right) \leq d$, $n \in \mathbb{N}$, and $\lim _{n \rightarrow \infty}\left\|\left(x_{n}, y_{n}\right)\right\|=\infty$. This would imply that

$$
\lim _{n \rightarrow \infty} \frac{F_{K, \mu}\left(x_{n}, y_{n}\right)}{\sqrt{x_{n}^{2}+y_{n}^{2}}}=0
$$

which contradicts to the growth condition.
Lemma 2.7 Let us suppose that Condition (C.3) holds. For the generalized conic function $F_{K, \mu}$, we have

$$
\begin{aligned}
F_{K, \mu}(x, y)= & x(\mu(\{K<1 x\})-\mu(\{x<1 K\}))-\int_{K} \alpha\left(\mathbf{1}_{\{\alpha<x\}}-\mathbf{1}_{\{x<\alpha\}}\right) \mu(\mathrm{d} \alpha, \mathrm{~d} \beta) \\
& +y\left(\mu(\{K<2 y\})-\mu\left(\left\{y<_{2} K\right\}\right)\right)-\int_{K} \beta\left(\mathbf{1}_{\{\beta<y\}}-\mathbf{1}_{\{y<\beta\}}\right) \mu(\mathrm{d} \alpha, \mathrm{~d} \beta)
\end{aligned}
$$

for all $(x, y) \in \mathbb{R}^{2}$.
Proof By definition,

$$
F_{K, \mu}(x, y)=\int_{K}(|x-\alpha|+|y-\beta|) \mu(\mathrm{d} \alpha, \mathrm{~d} \beta), \quad(x, y) \in \mathbb{R}^{2}
$$

Here,

$$
\begin{aligned}
\int_{K}|x-\alpha| \mu(\mathrm{d} \alpha, \mathrm{~d} \beta)= & \int_{K<1_{1} x}|x-\alpha| \mu(\mathrm{d} \alpha, \mathrm{~d} \beta)+\int_{x \leq 1 K}|x-\alpha| \mu(\mathrm{d} \alpha, \mathrm{~d} \beta) \\
= & \int_{K<1 x}(x-\alpha) \mu(\mathrm{d} \alpha, \mathrm{~d} \beta)+\int_{x \leq 1 K}(\alpha-x) \mu(\mathrm{d} \alpha, \mathrm{~d} \beta) \\
= & x\left(\mu\left(\left\{K<_{1} x\right\}\right)-\mu\left(\left\{x \leq_{1} K\right\}\right)\right)-\int_{K<1_{1} x} \alpha \mu(\mathrm{~d} \alpha, \mathrm{~d} \beta) \\
& +\int_{x \leq 1} \alpha \mu(\mathrm{~d} \alpha, \mathrm{~d} \beta)
\end{aligned}
$$

and the integral $\int_{K}|y-\beta| \mu(\mathrm{d} \alpha, \mathrm{d} \beta)$ can be handled similarly. The assertion follows by taking into account Condition (C.3).

Lemma 2.8 Let us suppose that Condition (C.3) holds. For the generalized conic function $F_{K, \mu}$, we have

$$
\begin{array}{ll}
D_{1} F_{K, \mu}(x, y)=\mu(\{K<1 x\})-\mu(\{x<1 K\}), & (x, y) \in \mathbb{R}^{2}, \\
D_{2} F_{K, \mu}(x, y)=\mu(\{K<2 y\})-\mu\left(\left\{y<_{2} K\right\}\right), & (x, y) \in \mathbb{R}^{2}
\end{array}
$$

Proof Let $h>0$. Then for all $(x, y) \in \mathbb{R}^{2}$,

$$
\frac{F_{K, \mu}(x+h, y)-F_{K, \mu}(x, y)}{h}
$$

$$
=\int_{K} \frac{|x+h-\alpha|-|x-\alpha|}{h} \mu(\mathrm{~d} \alpha, \mathrm{~d} \beta)
$$

$$
=\int_{K<1 x} \frac{|x+h-\alpha|-|x-\alpha|}{h} \mu(\mathrm{~d} \alpha, \mathrm{~d} \beta)
$$

$$
+\int_{x \leq 1} K \leq_{1} x+h, \frac{|x+h-\alpha|-|x-\alpha|}{h} \mu(\mathrm{~d} \alpha, \mathrm{~d} \beta)
$$

$$
+\int_{x+h<1_{1} K} \frac{|x+h-\alpha|-|x-\alpha|}{h} \mu(\mathrm{~d} \alpha, \mathrm{~d} \beta)
$$

$$
=\int_{K<1} \frac{x+h-\alpha-(x-\alpha)}{h} \mu(\mathrm{~d} \alpha, \mathrm{~d} \beta)
$$

$$
+\int_{x \leq 1} K \leq 1_{1} x+h ~ \frac{x+h-\alpha-(\alpha-x)}{h} \mu(\mathrm{~d} \alpha, \mathrm{~d} \beta)
$$

$$
+\int_{x+h<{ }_{1} K} \frac{\alpha-x-h-(\alpha-x)}{h} \mu(\mathrm{~d} \alpha, \mathrm{~d} \beta)
$$

$$
=\mu\left(\left\{K<_{1} x\right\}\right)-\mu\left(\left\{x+h<_{1} K\right\}\right)
$$

$$
+\int_{x \leq 1 K \leq 1 x+h} \frac{|x+h-\alpha|-|x-\alpha|}{h} \mu(\mathrm{~d} \alpha, \mathrm{~d} \beta)
$$

Using that $||a|-|b|| \leq|a-b|, a, b \in \mathbb{R}$, for the integrand, we have

$$
\left|\frac{|x+h-\alpha|-|x-\alpha|}{h}\right| \leq \frac{1}{h}|x+h-\alpha-(x-\alpha)|=\frac{|h|}{h}=1, \quad x, \alpha \in \mathbb{R}, h>0
$$

and hence, by dominated convergence theorem,

$$
\begin{aligned}
& \mid \int_{x \leq 1} K \leq 1 x+h
\end{aligned} \frac{|x+h-\alpha|-|x-\alpha|}{h} \mu(\mathrm{~d} \alpha, \mathrm{~d} \beta)|\quad| \quad\left|\frac{|x+h-\alpha|-|x-\alpha|}{h}\right| \mu(\mathrm{d} \alpha, \mathrm{~d} \beta) \quad .
$$

Similarly, if $h<0$, then

$$
\begin{aligned}
\frac{F_{K, \mu}(x+h, y)-F_{K, \mu}(x, y)}{h}= & \mu(\{K<1 x+h\})-\mu\left(\left\{x<_{1} K\right\}\right) \\
& +\int_{x+h \leq 1} K \leq_{1} x
\end{aligned} \frac{|x+h-\alpha|-|x-\alpha|}{h} \mu(\mathrm{~d} \alpha, \mathrm{~d} \beta)
$$

for all $(x, y) \in \mathbb{R}^{2}$, and hence, using again Condition (C.3),

$$
\begin{align*}
\lim _{h \uparrow 0} \frac{F_{K, \mu}(x+h, y)-F_{K, \mu}(x, y)}{h} & =\mu\left(\left\{K \leq_{1} x\right\}\right)-\mu\left(\left\{x<_{1} K\right\}\right) \\
& =\mu\left(\left\{K<_{1} x\right\}\right)-\mu\left(\left\{x<_{1} K\right\}\right) \tag{2.3}
\end{align*}
$$

for all $(x, y) \in \mathbb{R}^{2}$. Then (2.2) and (2.3) yield that $D_{1} F_{K, \mu}(x, y)=\mu\left(\left\{\begin{array}{lll}K & <_{1} & x\end{array}\right\}\right)$ $-\mu(\{x<1 K\}),(x, y) \in \mathbb{R}^{2}$.

In a similar way, we have $D_{2} F_{K, \mu}(x, y)=\mu\left(\left\{\begin{array}{lll}K & <_{2} & y\end{array}\right\}\right)-\mu\left(\left\{\begin{array}{lll}y & <_{2} & K\end{array}\right\}\right)$, $(x, y) \in \mathbb{R}^{2}$.

If μ is a measure on $\left(\mathbb{R}^{d}, \mathcal{B}\left(\mathbb{R}^{d}\right)\right)$, then by the μ-area of a Borel measurable set $S \in$ $\mathcal{B}\left(\mathbb{R}^{d}\right)$, we mean $\mu(S)$.

Corollary 2.9 Let us suppose that Condition (C.3) holds. A point in \mathbb{R}^{2} is a global minimizer of the generalized conic function $F_{K, \mu}$ if and only if it bisects the μ-area of K, i.e. the vertical and the horizontal lines through this point cut the body K into two parts with equal μ-areas. Moreover, if Conditions (C.1) and (C.2) hold too, then the convex function $F_{K, \mu}$ has a unique global minimizer $\left(x^{*}, y^{*}\right) \in \mathbb{R}^{2}$, that is, $F_{K, \mu}(x, y)>F_{K, \mu}\left(x^{*}, y^{*}\right)$ for $(x, y) \neq\left(x^{*}, y^{*}\right),(x, y) \in \mathbb{R}^{2}$.

Proof First note that under Condition (C.3), the concept of bisection of the μ-area of K is well defined. The first part of the corollary is a consequence of Lemma 2.8 using that a local minimum of a convex function defined on \mathbb{R}^{2} is a global minimum, too. Under Conditions (C.1), (C.2) and (C.3), the existence of a global minimizer (x^{*}, y^{*}) of $F_{K, \mu}$ follows by that $F_{K, \mu}$ is a convex function defined on \mathbb{R}^{2} and its level sets are compact subsets of \mathbb{R}^{2} (see Theorem 2.6). Indeed, a finite-valued convex function defined on \mathbb{R}^{2} is continuous and it reaches its minimum on every compact set. Now, we turn to prove the uniqueness of
$\left(x^{*}, y^{*}\right)$. The proof goes along the very same lines as in the proof of Proposition 2.3. Indeed, the area A (two-dimensional Lebesgue measure) has to be replaced by the measure μ.

Before we generalize Theorem 4 in Vincze and Nagy [1], we need to introduce some notations and to recall the Cavalieri principle for product measures.

Definition 2.10 Let μ_{1} and μ_{2} be σ-finite measures on $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ and let $\mu:=\mu_{1} \times \mu_{2}$ be their product measure on $\left(\mathbb{R}^{2}, \mathcal{B}\left(\mathbb{R}^{2}\right)\right)$. Given a measurable set $S \in \mathcal{B}\left(\mathbb{R}^{2}\right)$, the generalized X-ray functions of S with respect to μ into the coordinate directions are defined by

$$
X_{S, \mu}(y):=\mu_{1}\left(S_{y}\right), \quad y \in \mathbb{R}, \quad \text { and } \quad Y_{S, \mu}(x):=\mu_{2}\left(S_{x}\right), \quad x \in \mathbb{R},
$$

where $S_{x}:=\{y \in \mathbb{R}:(x, y) \in S\}$ and $S_{y}:=\{x \in \mathbb{R}:(x, y) \in S\}$. (Note that $S_{x}, S_{y} \in$ $\mathcal{B}(\mathbb{R})$ for all $x, y \in \mathbb{R}$, see, e.g. Lemma 5.1.1 in Cohn [10].)

For the product measure μ defined in Definition 2.10, we have $\mu(K)<\infty$.
Theorem 2.11 (The Cavalieri principle, see, e.g. Cohn [10, Theorem 5.1.3]) Let μ_{1} and μ_{2} be σ-finite measures on $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ and let $\mu:=\mu_{1} \times \mu_{2}$ be their product measure on $\left(\mathbb{R}^{2}, \mathcal{B}\left(\mathbb{R}^{2}\right)\right.$). If $S \in \mathcal{B}\left(\mathbb{R}^{2}\right)$, then the functions $X_{S, \mu}, Y_{S, \mu}: \mathbb{R} \rightarrow \mathbb{R}_{+}$are Borel measurable, and

$$
\mu(S)=\left(\mu_{1} \times \mu_{2}\right)(S)=\int_{\mathbb{R}} Y_{S, \mu}(x) \mu_{1}(\mathrm{~d} x)=\int_{\mathbb{R}} X_{S, \mu}(y) \mu_{2}(\mathrm{~d} y)
$$

Theorem 2.12 Let $K, K^{*} \subset \mathbb{R}^{2}$ be compact bodies, let $\mu_{i}, \mu_{i}^{*}, i=1$, 2, be σ-finite measures on $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ that are absolutely continuous with respect to the Lebesgue measure on $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ with Radon-Nikodym derivatives $f_{i}, f_{i}^{*}, i=1$, 2. Let $\mu:=\mu_{1} \times \mu_{2}$ and $\mu^{*}:=\mu_{1}^{*} \times \mu_{2}^{*}$ be their product measures on $\left(\mathbb{R}^{2}, \mathcal{B}\left(\mathbb{R}^{2}\right)\right)$ and we assume that μ and μ^{*} are supported by K and K^{*}, respectively. Let us suppose that Condition (C.3) holds for K and μ, and K^{*} and μ^{*}, respectively. Then $F_{K, \mu}=F_{K^{*}, \mu^{*}}$ if and only if $f_{2}(y) X_{K, \mu}(y)=$ $f_{2}^{*}(y) X_{K^{*}, \mu^{*}}(y)$ for (Lebesgue) almost every $y \in \mathbb{R}$, and $f_{1}(x) Y_{K, \mu}(x)=f_{1}^{*}(x) Y_{K^{*}, \mu^{*}}(x)$ for (Lebesgue) almost every $x \in \mathbb{R}$.

Proof By Theorem 2.11 (the Cavalieri principle), for all $x, y \in \mathbb{R}$,

$$
\begin{align*}
& \mu\left(K<_{1} x\right)=\int_{\mathbb{R}} Y_{K<1} x, \mu(s) \mu_{1}(\mathrm{~d} s)=\int_{-\infty}^{x} Y_{K, \mu}(s) \mu_{1}(\mathrm{~d} s)=\int_{-\infty}^{x} Y_{K, \mu}(s) f_{1}(s) \mathrm{d} s, \\
& \mu\left(x<_{1} K\right)=\int_{\mathbb{R}} Y_{x<1} K, \mu(s) \mu_{1}(\mathrm{~d} s)=\int_{x}^{\infty} Y_{K, \mu}(s) \mu_{1}(\mathrm{~d} s)=\int_{x}^{\infty} Y_{K, \mu}(s) f_{1}(s) \mathrm{d} s, \\
& \mu(K<2 y)=\int_{\mathbb{R}} X_{K<2} y, \mu(t) \mu_{2}(\mathrm{~d} t)=\int_{-\infty}^{y} X_{K, \mu}(t) \mu_{2}(\mathrm{~d} t)=\int_{-\infty}^{y} X_{K, \mu}(t) f_{2}(t) \mathrm{d} t, \\
& \mu\left(y<_{2} K\right)=\int_{\mathbb{R}} X_{y<2 K, \mu}(t) \mu_{2}(\mathrm{~d} t)=\int_{y}^{\infty} X_{K, \mu}(t) \mu_{2}(\mathrm{~d} t)=\int_{y}^{\infty} X_{K, \mu}(t) f_{2}(t) \mathrm{d} t, \tag{2.4}
\end{align*}
$$

and, by Fubini's theorem, for all $x, y \in \mathbb{R}$,

$$
\begin{align*}
& \int_{K} \alpha \mathbf{1}_{\{\alpha<x\}} \mu(\mathrm{d} \alpha, \mathrm{~d} \beta)=\int_{-\infty}^{x} s Y_{K, \mu}(s) \mu_{1}(\mathrm{~d} s)=\int_{-\infty}^{x} s Y_{K, \mu}(s) f_{1}(s) \mathrm{d} s, \\
& \int_{K} \alpha \mathbf{1}_{\{x<\alpha\}} \mu(\mathrm{d} \alpha, \mathrm{~d} \beta)=\int_{x}^{\infty} s Y_{K, \mu}(s) \mu_{1}(\mathrm{~d} s)=\int_{x}^{\infty} s Y_{K, \mu}(s) f_{1}(s) \mathrm{d} s, \\
& \int_{K} \beta \mathbf{1}_{\{\beta<y\}} \mu(\mathrm{d} \alpha, \mathrm{~d} \beta)=\int_{-\infty}^{y} t X_{K, \mu}(t) \mu_{2}(\mathrm{~d} t)=\int_{-\infty}^{y} t X_{K, \mu}(t) f_{2}(t) \mathrm{d} t, \\
& \int_{K} \beta \mathbf{1}_{\{y<\beta\}} \mu(\mathrm{d} \alpha, \mathrm{~d} \beta)=\int_{y}^{\infty} t X_{K, \mu}(t) \mu_{2}(\mathrm{~d} t)=\int_{y}^{\infty} t X_{K, \mu}(t) f_{2}(t) \mathrm{d} t . \tag{2.5}
\end{align*}
$$

Indeed, for example, the first statement of (2.5) holds since, by Fubini's theorem for nonrectangular regions,

$$
\begin{aligned}
\int_{K} \alpha \mathbf{1}_{\{\alpha<x\}} \mu(\mathrm{d} \alpha, \mathrm{~d} \beta) & =\int_{\alpha_{b}}^{\alpha_{u}}\left(\int_{K_{\alpha}} \alpha \mathbf{1}_{\{\alpha<x\}} \mu_{2}(\mathrm{~d} \beta)\right) \mu_{1}(\mathrm{~d} \alpha) \\
& =\int_{\alpha_{b}}^{\alpha_{u}} \alpha \mathbf{1}_{\{\alpha<x\}} \mu_{2}\left(K_{\alpha}\right) \mu_{1}(\mathrm{~d} \alpha) \\
& =\int_{\alpha_{b}}^{\alpha_{u}} \alpha \mathbf{1}_{\{\alpha<x\}} Y_{K, \mu}(\alpha) \mu_{1}(\mathrm{~d} \alpha) \\
& =\int_{-\infty}^{x} s Y_{K, \mu}(s) \mu_{1}(\mathrm{~d} s),
\end{aligned}
$$

where $K_{\alpha}=\{\beta \in \mathbb{R} \mid(\alpha, \beta) \in K\}$ and

$$
\alpha_{b}:=\inf \{\alpha \mid \exists \beta \in \mathbb{R}:(\alpha, \beta) \in K\}, \quad \alpha_{u}:=\sup \{\alpha \mid \exists \beta \in \mathbb{R}:(\alpha, \beta) \in K\}
$$

Further, by (2.4), Lemma 2.8 and Lebesgue differentiation theorem,

$$
\begin{align*}
D_{1} D_{1} F_{K, \mu}(x, y) & =D_{1}\left(\mu(\{K<1 x\})-\mu\left(\left\{x<_{1} K\right\}\right)\right) \\
& =D_{1}\left(\int_{-\infty}^{x} Y_{K, \mu}(s) f_{1}(s) \mathrm{d} s-\int_{x}^{\infty} Y_{K, \mu}(s) f_{1}(s) \mathrm{d} s\right) \\
& =2 Y_{K, \mu}(x) f_{1}(x) \quad \text { for all } y \in \mathbb{R} \text { and almost every } x \in \mathbb{R}, \tag{2.6}
\end{align*}
$$

and similarly,

$$
\begin{align*}
& D_{1} D_{2} F_{K, \mu}(x, y)=D_{2} D_{1} F_{K, \mu}(x, y)=0 \quad \text { for all }(x, y) \in \mathbb{R}^{2} \\
& D_{2} D_{2} F_{K, \mu}(x, y)=2 X_{K, \mu}(y) f_{2}(y) \quad \text { for all } x \in \mathbb{R} \text { and almost every } y \in \mathbb{R} . \tag{2.7}
\end{align*}
$$

Let us suppose that $F_{K, \mu}=F_{K^{*}, \mu^{*}}$. By (2.6) and (2.7), we have $f_{1}(x) Y_{K, \mu}(x)=$ $f_{1}^{*}(x) Y_{K^{*}, \mu^{*}}(x)$ for almost every $x \in \mathbb{R}$, and $f_{2}(y) X_{K, \mu}(y)=f_{2}^{*}(y) X_{K^{*}, \mu^{*}}(y)$ for almost every $y \in \mathbb{R}$, as desired.

Conversely, let us suppose that $f_{2}(y) X_{K, \mu}(y)=f_{2}^{*}(y) X_{K^{*}, \mu^{*}}(y)$ for almost every $y \in \mathbb{R}$, and $f_{1}(x) Y_{K, \mu}(x)=f_{1}^{*}(x) Y_{K^{*}, \mu^{*}}(x)$ for almost every $x \in \mathbb{R}$. Then, by Lemma 2.7, (2.4) and (2.5), we get $F_{K, \mu}=F_{K^{*}, \mu^{*}}$.

Remark 2 Note that, under the conditions of Theorem 2.12, for almost every $(x, y) \in \mathbb{R}^{2}$, the matrix consisting of the second-order partial derivatives of $F_{K, \mu}$ takes the form

$$
\left[\begin{array}{cc}
2 f_{1}(x) Y_{K, \mu}(x) & 0 \\
0 & 2 f_{2}(y) X_{K, \mu}(y)
\end{array}\right]
$$

which is a positive semidefinite matrix, since the Radon-Nikodym derivatives f_{i} and f_{i}^{*}, $i=1,2$ are non-negative almost everywhere. Note also that this is in accordance with the fact that $F_{K, \mu}$ is a convex function due to Theorem 2.6.

Before we generalize Theorem 5 in Vincze and Nagy [1], we need to recall some notions.
Definition 2.13 Let K be a compact body in \mathbb{R}^{2}. For all $\varepsilon>0$, the outer parallel body K^{ε} is the union of closed Euclidean balls centred at the points of K with radius $\varepsilon>0$.

Definition 2.14 The Hausdorff distance between two compact bodies K and L is given by

$$
H(K, L):=\inf \left\{\varepsilon>0: K \subset L^{\varepsilon} \text { and } L \subset K^{\varepsilon}\right\}
$$

The collection of compact bodies in \mathbb{R}^{2} furnished with the Hausdorff distance H is a metric space, see, e.g. Beer [11].

Lemma 2.15 Let $K_{n}, n \in \mathbb{N}, K$ be compact bodies, and let μ be a Radon measure on $\left(\mathbb{R}^{2}, \mathcal{B}\left(\mathbb{R}^{2}\right)\right.$).
(i) We have $\lim _{\varepsilon \downarrow 0} \mu\left(K^{\varepsilon}\right)=\mu(K)$.
(ii) If $K_{n} \rightarrow K$ as $n \rightarrow \infty$ with respect to the Hausdorff metric H, then the following regularity properties are equivalent:
(a) $\lim _{n \rightarrow \infty} \mu\left(\left(K \backslash K_{n}\right) \cup\left(K_{n} \backslash K\right)\right)=0$,
(b) $\lim _{n \rightarrow \infty} \mu\left(K_{n}\right)=\mu(K)$.

Proof The proofs go along the very same lines as those of Lemmas 1 and 2 in Vincze and Nagy [1] by replacing the area A (two-dimensional Lebesgue measure) by the measure μ in the proofs and referring to that $\mu(L)<\infty$ for all compact sets $L \subset \mathbb{R}^{2}$ (due to that μ is a Radon measure).

Definition 2.16 Let $K_{n}, n \in \mathbb{N}$, and K be compact bodies, and let μ be a Radon measure on $\left(\mathbb{R}^{2}, \mathcal{B}\left(\mathbb{R}^{2}\right)\right.$). The convergence $K_{n} \rightarrow K$ as $n \rightarrow \infty$ with respect to the Hausdorff metric is called regular if one of the conditions (a) and (b) of part (ii) of Lemma 2.15 holds.

Theorem 2.17 Let $K_{n}, n \in \mathbb{N}$, and K be compact bodies, and let μ be a Radon measure on $\left(\mathbb{R}^{2}, \mathcal{B}\left(\mathbb{R}^{2}\right)\right)$ supported by K^{ε} for some $\varepsilon>0$. Let us suppose that the convergence $K_{n} \rightarrow K$ as $n \rightarrow \infty$ with respect to the Hausdorff metric is regular. Then

$$
\lim _{n \rightarrow \infty} F_{K_{n}, \mu}(x, y)=F_{K, \mu}(x, y), \quad(x, y) \in \mathbb{R}^{2}
$$

Proof The proof goes along the very same lines as that of Theorem 5 in Vincze and Nagy [1], but replacing the integration with respect to the two-dimensional Lebesgue measure by the integration with respect to the measure μ.

For the remaining sections of the paper, we will need some further properties of the convex function $F_{K, \mu}$. Next, we recall some general facts from the theory of convex functions, see, e.g. Polyak [12, Lemma 3, Section 1.1.4].

Lemma 2.18 Let $F: \mathbb{R}^{d} \rightarrow \mathbb{R}$ be a differentiable and convex function such that its gradient is Lipschitz continuous with constant $L>0$, i.e.

$$
\begin{equation*}
\|\operatorname{grad} F(p)-\operatorname{grad} F(q)\| \leq L\|p-q\|, \quad p, q \in \mathbb{R}^{d} \tag{2.8}
\end{equation*}
$$

where $\operatorname{grad} F(p):=\left(D_{1} F(p), D_{2} F(p)\right)^{\top}, p \in \mathbb{R}^{d}$. Then we have an affine lower bound

$$
F(q) \geq F(p)+\langle\operatorname{grad} F(p), q-p\rangle, \quad p, q \in \mathbb{R}^{d}
$$

Lemma 2.19 Let μ_{1} and μ_{2} be σ-finite measures on $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ that are absolutely continuous with respect to the Lebesgue measure on $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ with bounded RadonNikodym derivatives. Let $\mu:=\mu_{1} \times \mu_{2}$ be their product measure on $\left(\mathbb{R}^{2}, \mathcal{B}\left(\mathbb{R}^{2}\right)\right)$ and we assume that μ is supported by K. Further, let us suppose that Condition (C.3) holds. Then the generalized conic function $F_{K, \mu}: \mathbb{R}^{2} \rightarrow \mathbb{R}$ associated with K and μ satisfies the conditions of Lemma 2.18, and consequently, we have an affine lower bound for $F_{K, \mu}$.

Proof By Theorem 2.6, $F_{K, \mu}$ is convex. Under Condition (C.3), by Lemma 2.8 and (2.4),

$$
\begin{aligned}
D_{1} F_{K, \mu}(x, y) & =\int_{-\infty}^{x} Y_{K, \mu}(s) \mu_{1}(\mathrm{~d} s)-\int_{x}^{\infty} Y_{K, \mu}(s) \mu_{1}(\mathrm{~d} s) \\
& =\int_{-\infty}^{x} Y_{K, \mu}(s) f_{1}(s) \mu_{1}(\mathrm{~d} s)-\int_{x}^{\infty} Y_{K, \mu}(s) f_{1}(s) \mu_{1}(\mathrm{~d} s)
\end{aligned}
$$

for $(x, y) \in \mathbb{R}^{2}$, where f_{1} denotes the (bounded) Radon-Nikodym derivative of μ_{1} with respect to the Lebesgue measure on \mathbb{R}. Using that the integral as a function of the upper limit of the integration is continuous, we have $D_{1} F_{K, \mu}$ is continuous on \mathbb{R}^{2}. Similarly, one can check that $D_{2} F_{K, \mu}$ is also continuous on \mathbb{R}^{2}. This implies that $F_{K, \mu}$ is differentiable on \mathbb{R}^{2}.

Condition (2.8) for $F_{K, \mu}$ can be checked as follows. Let us start with the difference of the partial derivatives with respect to the first variable

$$
\begin{aligned}
& D_{1} F_{K, \mu}(q)-D_{1} F_{K, \mu}(p) \\
& \quad=\mu\left(K<_{1} q^{(1)}\right)-\mu\left(q^{(1)}<_{1} K\right)-\left(\mu\left(K<_{1} p^{(1)}\right)-\mu\left(p^{(1)}<_{1} K\right)\right)
\end{aligned}
$$

for all $p=\left(p^{(1)}, p^{(2)}\right), q=\left(q^{(1)}, q^{(2)}\right) \in \mathbb{R}^{2}$, where the equality follows by Lemma 2.8. We have

$$
\mu\left(K<_{1} q^{(1)}\right)=\mu\left(K<_{1} \min \left\{p^{(1)}, q^{(1)}\right\}\right)+\mu\left(\min \left\{p^{(1)}, q^{(1)}\right\}<_{1} K<_{1} q^{(1)}\right)
$$

and

$$
\mu\left(q^{(1)}<_{1} K\right)=\mu\left(\max \left\{p^{(1)}, q^{(1)}\right\}<_{1} K\right)+\mu\left(q^{(1)}<_{1} K<_{1} \max \left\{p^{(1)}, q^{(1)}\right\}\right) .
$$

Of course we can change the role of q and p to express $\mu\left(K<1 p^{(1)}\right)$ and $\mu\left(p^{(1)}<_{1} K\right)$ in a similar way. Then

$$
\begin{aligned}
& D_{1} F_{K, \mu}(q)-D_{1} F_{K, \mu}(p) \\
& \quad=\mu\left(\min \left\{p^{(1)}, q^{(1)}\right\}<_{1} K<_{1} q^{(1)}\right)-\mu\left(q^{(1)}<_{1} K<_{1} \max \left\{p^{(1)}, q^{(1)}\right\}\right)
\end{aligned}
$$

$$
D_{1} F_{K, \mu}(q)-D_{1} F_{K, \mu}(p)=2 \mu\left(p^{(1)}<_{1} K<_{1} q^{(1)}\right)
$$

If $q^{(1)}=\min \left\{p^{(1)}, q^{(1)}\right\}$ and $p^{(1)}=\max \left\{p^{(1)}, q^{(1)}\right\}$, then

$$
D_{1} F_{K, \mu}(q)-D_{1} F_{K, \mu}(p)=-2 \mu\left(q^{(1)}<_{1} K<1 p^{(1)}\right)
$$

In general,

$$
\left|D_{1} F_{K, \mu}(q)-D_{1} F_{K, \mu}(p)\right|=2 \mu\left(\min \left\{p^{(1)}, q^{(1)}\right\}<_{1} K<_{1} \max \left\{p^{(1)}, q^{(1)}\right\}\right)
$$

Therefore, using Theorem 2.11 (the Cavalieri principle), we can estimate the difference of the absolute value of the first-order partial derivatives of $F_{K, \mu}$ as follows:

$$
\begin{aligned}
\left|D_{1} F_{K, \mu}(q)-D_{1} F_{K, \mu}(p)\right| & \leq 2 \int_{\min \left\{p^{(1)}, q^{(1)}\right\}}^{\max \left\{p^{(1)}, q^{(1)}\right\}} Y_{K, \mu}(s) \mu_{1}(\mathrm{~d} s) \\
& \leq 2\left(\sup _{s \in \mathbb{R}} Y_{K, \mu}(s)\right) \mu_{1}\left(\left(\min \left\{p^{(1)}, q^{(1)}\right\}, \max \left\{p^{(1)}, q^{(1)}\right\}\right)\right) \\
& =2\left(\sup _{s \in \mathbb{R}} Y_{K, \mu}(s)\right) \int_{\min \left\{p^{(1)}, q^{(1)}\right\}}^{\max \left\{p^{(1)}, q^{(1)}\right\}} f_{1}(s) \mathrm{d} s \\
& \leq 2 C_{1}\left(\sup _{s \in \mathbb{R}} Y_{K, \mu}(s)\right)\left|p^{(1)}-q^{(1)}\right|
\end{aligned}
$$

with some constant $C_{1}>0$, where $\sup _{s \in \mathbb{R}} Y_{K, \mu}(s)<\infty($ since $\mu(K)<\infty)$, and f_{1} denotes the bounded Radon-Nikodym derivative of μ_{1} with respect to the Lebesgue measure on \mathbb{R}. Similarly,

$$
\left|D_{2} F_{K, \mu}(q)-D_{2} F_{K, \mu}(p)\right| \leq 2 C_{2}\left(\sup _{t \in \mathbb{R}} X_{K, \mu}(t)\right)\left|p^{(2)}-q^{(2)}\right|
$$

with some constant $C_{2}>0$. Therefore,

$$
\begin{aligned}
& \| \operatorname{grad} F_{K, \mu}(p)-\operatorname{grad} F_{K, \mu}(q) \| \\
&=\sqrt{\left(D_{1} F_{K, \mu}(p)-D_{1} F_{K, \mu}(q)\right)^{2}+\left(D_{2} F_{K, \mu}(p)-D_{2} F_{K, \mu}(q)\right)^{2}} \\
& \quad \leq L\|p-q\|, \quad p, q \in \mathbb{R}^{2},
\end{aligned}
$$

where

$$
L:=2 \max \left\{C_{1} \sup _{s \in \mathbb{R}} Y_{K, \mu}(s), C_{2} \sup _{t \in \mathbb{R}} X_{K, \mu}(t)\right\}
$$

i.e. condition (2.8) for $F_{K, \mu}$ is satisfied with $d=2$ and with the Lipschitz constant L given above.

3. A stochastic algorithm for the global minimizer of $\boldsymbol{F}_{K, \mu}$

We provide a stochastic algorithm for computing the global minimizer of generalized conic function $F_{K, \mu}$ introduced in Definition 2.5, and we prove almost sure and L^{q}-convergence of this algorithm.

In this section, we assume that
(C.4) $\quad \mu$ is a probability measure on K.

Let $\left(t_{k}\right)_{k \in \mathbb{N}}$ be a decreasing sequence of positive numbers such that $\sum_{k=1}^{\infty} t_{k}=\infty$ and $\sum_{k=1}^{\infty} t_{k}^{2}<\infty$.

Let $\left(P_{k}\right)_{k \in \mathbb{N}}$ be a sequence of independent identically distributed (two-dimensional) random variables such that their common distribution on $\left(\mathbb{R}^{2}, \mathcal{B}\left(\mathbb{R}^{2}\right)\right.$) is given by μ. Let $x_{0} \in K$ be arbitrarily chosen. We define recursively a Markov chain $\left(X_{k}\right)_{k \in \mathbb{Z}_{+}}$by

$$
\begin{equation*}
X_{0}:=x_{0}, \quad \text { and } \quad X_{k+1}:=X_{k}-t_{k+1} Q_{k+1}, \quad k \in \mathbb{Z}_{+} \tag{3.1}
\end{equation*}
$$

where

$$
Q_{k+1}:= \begin{cases}\binom{1}{1} & \text { if } X_{k}^{(1)} \geq P_{k+1}^{(1)} \text { and } X_{k}^{(2)} \geq P_{k+1}^{(2)} \\ \binom{1}{-1} & \text { if } X_{k}^{(1)} \geq P_{k+1}^{(1)} \text { and } X_{k}^{(2)}<P_{k+1}^{(2)} \\ \binom{-1}{1} & \text { if } X_{k}^{(1)}<P_{k+1}^{(1)} \text { and } X_{k}^{(2)} \geq P_{k+1}^{(2)} \\ \binom{-1}{-1} & \text { if } X_{k}^{(1)}<P_{k+1}^{(1)} \text { and } X_{k}^{(2)}<P_{k+1}^{(2)}\end{cases}
$$

with the notations $X_{k}:=\left(X_{k}^{(1)}, X_{k}^{(2)}\right), P_{k}:=\left(P_{k}^{(1)}, P_{k}^{(2)}\right), k \in \mathbb{N}$.
Remark 1 Note that if μ is a probability measure on K such that it is absolutely continuous with respect to the Lebesgue measure on K with Radon-Nikodym derivative (density function) h_{μ} given by

$$
h_{\mu}(x, y)= \begin{cases}\frac{1}{A(K)} & \text { if }(x, y) \in K, \\ 0 & \text { if }(x, y) \notin K,\end{cases}
$$

i.e. μ is the uniform distribution on K, then $\left(P_{k}\right)_{k \in \mathbb{N}}$ is a sequence of independent identically distributed (two-dimensional) random variables such that their common distribution is the uniform distribution on K.

3.1. Almost sure and L^{q}-convergence of $\left(X_{k}\right)_{k \in \mathbb{Z}_{+}}$

First, we recall the so-called Robbins-Monro algorithm based on Bouleau and Lépingle [8, Theorem B.5.1, Chapter 2]. This algorithm (in dimension 1) was originally invented by Robbins and Monro [6].

Let $d \in \mathbb{N}$ and $\left(t_{n}\right)_{n \in \mathbb{Z}_{+}}$be a decreasing sequence of positive real numbers. Let us suppose that all the random variables introduced below are defined on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$. The Robbins-Monro algorithm generates a sequence of \mathbb{R}^{d}-valued random variables $\left(\theta_{n}\right)_{n \in \mathbb{Z}_{+}}$given by the recursion

$$
\theta_{n+1}:=\theta_{n}+t_{n+1}\left(\beta-\xi_{n+1}\right), \quad n \in \mathbb{Z}_{+},
$$

where $\beta \in \mathbb{R}^{d}, \theta_{0}$ is a given \mathbb{R}^{d}-valued random variable and $\left(\xi_{n}\right)_{n \in \mathbb{Z}_{+}}$is a sequence of d-dimensional random variables such that there exists a Borel measurable function M : $\mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ satisfying

$$
\mathbb{E}\left(\xi_{n+1} \mid \mathcal{F}_{n}\right)=M\left(\theta_{n}\right) \quad \mathbb{P} \text {-almost surely for all } n \in \mathbb{N}
$$

where the filtration $\left(\mathcal{F}_{n}\right)_{n \in \mathbb{Z}_{+}}$is defined by $\mathcal{F}_{0}:=\sigma\left(\theta_{0}\right)$ (the sigma-algebra generated by θ_{0}) and $\mathcal{F}_{n}:=\sigma\left(\theta_{0}, \theta_{1}, \ldots, \theta_{n}, \xi_{1}, \ldots, \xi_{n}\right), n \in \mathbb{N}$ (the sigma-algebra generated by $\left.\theta_{0}, \theta_{1}, \ldots, \theta_{n}, \xi_{1}, \ldots, \xi_{n}\right)$.

The following assumptions will be used.
Assumption (A.1) The \mathbb{R}^{d}-valued random variable θ_{0} belongs to $L^{q}(\Omega, \mathcal{F}, \mathbb{P})$, where $q \in \mathbb{N}$.
Assumption (A.2) There exists some $B>0$ such that $\left\|\xi_{n}\right\| \leq B$ for all $n \in \mathbb{N}$.
Assumption (A.3) There exists some $\theta^{*} \in \mathbb{R}^{d}$ such that for each $\varepsilon \in(0,1)$,

$$
\inf _{\varepsilon \leq\left\|\theta-\theta^{*}\right\| \leq 1 / \varepsilon}\left\langle\theta-\theta^{*}, M(\theta)-\beta\right\rangle>0,
$$

where $\langle\cdot, \cdot\rangle$ denotes the usual inner product in \mathbb{R}^{d}. Here, Assumption (A.3) could be interpreted as a 'half-space' assumption: roughly speaking, given the value of θ_{n}, the expected value of θ_{n+1} will be on that side of the hyperplane through θ_{n} having normal vector $\theta^{*}-\theta_{n}$ which contains θ^{*}.

Theorem 3.1 [Almost sure and L^{q}-convergence of Robbins-Monro algorithm] Let us suppose that Assumptions (A.1), (A.2) and (A.3) hold and that the decreasing sequence $\left(t_{n}\right)_{n \in \mathbb{Z}_{+}}$of positive numbers satisfies

$$
\sum_{n=0}^{\infty} t_{n}=\infty \quad \text { and } \quad \sum_{n=0}^{\infty} t_{n}^{2}<\infty
$$

Then $\mathbb{P}\left(\lim _{n \rightarrow \infty} \theta_{n}=\theta^{*}\right)=1$ and $\lim _{n \rightarrow \infty} \mathbb{E}\left\|\theta_{n}-\theta^{*}\right\|^{q}=0$ for all $q \in \mathbb{N}$.
Note that under the conditions of Theorem 3.1, the point $\theta^{*} \in \mathbb{R}^{d}$ exists uniquely due to that, by Theorem 3.1, $\mathbb{P}\left(\lim _{n \rightarrow \infty} \theta_{n}=\theta^{*}\right)=1$ and the limit of an almost surely convergent sequence of random variables is unique (up to probability one). We also mention that, from a technical point of view, Assumption (A.3) is used for defining an appropriate non-negative supermartingale in order to prove the almost sure convergence of the sequence $\left(\theta_{n}\right)_{n \in \mathbb{Z}_{+}}$, see, e.g. Bouleau and Lépingle [8, proof of Theorem B.5.1, Chapter 2].

We will prove almost sure and L^{q}-convergence of the recursion given in (3.1). But, first we present an auxiliary lemma.

Lemma 3.2 Let us consider the sequence $\left(X_{k}\right)_{k \in \mathbb{Z}_{+}}$defined by (3.1). Let us suppose that Conditions (C.3) and (C.4) hold. Then

$$
\begin{equation*}
\mathbb{E}\left(Q_{i} \mid X_{i-1}\right)=\operatorname{grad} F_{K, \mu}\left(X_{i-1}\right), \quad i \in \mathbb{N}, \tag{3.2}
\end{equation*}
$$

and

$$
\mathbb{E}\left(X_{k}\right)=x_{0}-\sum_{i=1}^{k} t_{i} \mathbb{E}\left(\operatorname{grad} F_{K, \mu}\left(X_{i-1}\right)\right), \quad k \in \mathbb{N}
$$

Proof First note that $X_{k}=x_{0}-\sum_{i=1}^{k} t_{i} Q_{i}, k \in \mathbb{N}$, where the sequence $\left(Q_{i}\right)_{i \in \mathbb{N}}$ is such that the conditional distribution of Q_{i} with respect to X_{i-1} is given by

$$
Q_{i}= \begin{cases}\binom{1}{1} & \text { with probability } \mu\left(\left\{(x, y) \in K: X_{i-1}^{(1)} \geq x, X_{i-1}^{(2)} \geq y\right\}\right) \tag{3.3}\\ \binom{1}{-1} & \text { with probability } \mu\left(\left\{(x, y) \in K: X_{i-1}^{(1)} \geq x, X_{i-1}^{(2)}<y\right\}\right) \\ \binom{-1}{1} & \text { with probability } \mu\left(\left\{(x, y) \in K: X_{i-1}^{(1)}<x, X_{i-1}^{(2)} \geq y\right\}\right) \\ \binom{-1}{-1} & \text { with probability } \mu\left(\left\{(x, y) \in K: X_{i-1}^{(1)}<x, X_{i-1}^{(2)}<y\right\}\right)\end{cases}
$$

Then

$$
\begin{aligned}
\mathbb{E}\left(Q_{i} \mid X_{i-1}\right)= & \binom{1}{1} \mu\left(\left\{(x, y) \in K: X_{i-1}^{(1)} \geq x, X_{i-1}^{(2)} \geq y\right\}\right) \\
& +\binom{1}{-1} \mu\left(\left\{(x, y) \in K: X_{i-1}^{(1)} \geq x, X_{i-1}^{(2)}<y\right\}\right) \\
& +\binom{-1}{1} \mu\left(\left\{(x, y) \in K: X_{i-1}^{(1)}<x, X_{i-1}^{(2)} \geq y\right\}\right) \\
& +\binom{-1}{-1} \mu\left(\left\{(x, y) \in K: X_{i-1}^{(1)}<x, X_{i-1}^{(2)}<y\right\}\right) \\
= & \binom{\mu\left(\left\{(x, y) \in K: X_{i-1}^{(1)} \geq x\right\}\right)-\mu\left(\left\{(x, y) \in K: X_{i-1}^{(1)}<x\right\}\right)}{\mu\left(\left\{(x, y) \in K: X_{i-1}^{(2)} \geq y\right\}\right)-\mu\left(\left\{(x, y) \in K: X_{i-1}^{(2)}<y\right\}\right)}
\end{aligned}
$$

for $i \in \mathbb{N}$. Note that by Condition (C.3) and Lemma 2.8, we also have

$$
\mathbb{E}\left(Q_{i} \mid X_{i-1}\right)=\binom{D_{1} F_{K, \mu}\left(X_{i-1}^{(1)}, X_{i-1}^{(2)}\right)}{D_{2} F_{K, \mu}\left(X_{i-1}^{(1)}, X_{i-1}^{(2)}\right)}=\operatorname{grad} F_{K, \mu}\left(X_{i-1}\right), \quad i \in \mathbb{N} .
$$

Hence, by the tower rule, the expectation of X_{k} takes the form

$$
\begin{aligned}
\mathbb{E}\left(X_{k}\right) & =x_{0}-\sum_{i=1}^{k} t_{i} \mathbb{E}\left(Q_{i}\right)=x_{0}-\sum_{i=1}^{k} t_{i} \mathbb{E}\left(\mathbb{E}\left(Q_{i} \mid X_{i-1}\right)\right) \\
& =x_{0}-\sum_{i=1}^{k} t_{i} \mathbb{E}\left(\operatorname{grad} F_{K, \mu}\left(X_{i-1}\right)\right), \quad k \in \mathbb{N}
\end{aligned}
$$

Theorem 3.3 Let us suppose that Conditions (C.1)-(C.4) hold. Then the sequence of 2-dimensional random variables defined in (3.1) converges almost surely and in $L^{q}(q \in \mathbb{N})$ to the unique global minimizer X^{*} of the generalized conic function $F_{K, \mu}$, i.e. $\mathbb{P}\left(\lim _{n \rightarrow \infty} X_{n}\right.$ $\left.=X^{*}\right)=1$ and $\lim _{n \rightarrow \infty} \mathbb{E}\left\|X_{n}-X^{*}\right\|^{q}=0$.

Proof First note that under Conditions (C.1)-(C.3), there exists a unique global minimizer θ^{*} of $F_{K, \mu}$, that is $F_{K, \mu}(\theta)>F_{K, \mu}\left(\theta^{*}\right)$ for all $\theta \neq \theta^{*}, \theta \in \mathbb{R}^{2}$, see, Corollary 2.9. Let us apply Theorem 3.1 with the following choices:

- $d:=2, \beta:=0 \in \mathbb{R}^{2}$ and $\xi_{n+1}:=Q_{n+1}, n \in \mathbb{Z}_{+}$.
- $\theta^{*} \in \mathbb{R}^{2}$ is such that $\operatorname{grad} F_{K, \mu}\left(\theta^{*}\right)=0 \in \mathbb{R}^{2}$. Note that under the Conditions (C.1)-(C.3), by Corollary 2.9, θ^{*} is unique, and it is nothing else but the unique global minimizer of $F_{K, \mu}$.

In what follows we check that Assumptions (A.1)-(A.3) hold. Assumption (A.1) holds trivially. Assumption (A.2) holds with $B:=\sqrt{2}$, since

$$
\left\|\binom{1}{1}\right\|=\left\|\binom{1}{-1}\right\|=\left\|\binom{-1}{1}\right\|=\left\|\binom{-1}{-1}\right\|=\sqrt{2}
$$

Since $\mathbb{E}\left(Q_{i} \mid X_{0}, X_{1}, \ldots, X_{i-1}, Q_{1}, \ldots, Q_{i-1}\right)=\mathbb{E}\left(Q_{i} \mid X_{i-1}\right)$, by (3.2), we have $M: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}, M(\theta)=\operatorname{grad} F_{K, \mu}(\theta), \theta \in \mathbb{R}^{2}$, and by Corollary 2.9,

$$
M\left(\theta^{*}\right)=\operatorname{grad} F_{K, \mu}\left(\theta^{*}\right)=0 \in \mathbb{R}^{2}
$$

Finally, for Assumption (A.3), we have to check that for all $\varepsilon \in(0,1)$,

$$
\inf _{\varepsilon \leq\left\|\theta-\theta^{*}\right\| \leq 1 / \varepsilon}\left\langle\theta-\theta^{*}, \operatorname{grad} F_{K, \mu}(\theta)\right\rangle>0 .
$$

Since $F_{K, \mu}$ is a convex and differentiable function defined on \mathbb{R}^{2} (see, Theorem 2.6 and the proof of Lemma 2.19), we have

$$
\begin{equation*}
\left\langle\operatorname{grad} F_{K, \mu}(\theta), \theta^{*}-\theta\right\rangle \leq F_{K, \mu}\left(\theta^{*}\right)-F_{K, \mu}(\theta) \leq 0, \quad \forall \theta \in \mathbb{R}^{2} \tag{3.4}
\end{equation*}
$$

where the last inequality follows by that θ^{*} is the global minimizer of $F_{K, \mu}$, see also Lemma 2.18. Since θ^{*} is strict global minimizer of $F_{K, \mu}$, i.e. $F_{K, \mu}(\theta)>F_{K, \mu}\left(\theta^{*}\right)$ for all $\theta \neq \theta^{*}$, $\theta \in \mathbb{R}^{2}$ (see Corollary 2.9) and $\left\{\theta \in \mathbb{R}^{2}: \varepsilon \leq\left\|\theta-\theta^{*}\right\| \leq 1 / \varepsilon\right\}$ is a compact set, by (3.4), we get Assumption (A.3) holds in our case.

Example 3.4 Let K be the square with vertexes $(0,0),(0,1),(1,0),(1,1)$ as in part (i) of Example 2.4. Let us assume that μ is the probability measure on K with Radon-Nikodym derivative with respect to the Lebesgue measure given by

$$
h_{\mu}(x, y)= \begin{cases}1 & \text { if }(x, y) \in K, \\ 0 & \text { if }(x, y) \notin K\end{cases}
$$

Further, let $x_{0}:=(0,0)^{\top}$ and $t_{k}:=\frac{1}{k}, k \in \mathbb{N}$. Then

$$
X_{0}=\binom{0}{0}, \quad X_{k}=-\sum_{i=1}^{k} t_{i} Q_{i}=-\sum_{i=1}^{k} \frac{1}{i} Q_{i}, \quad k \in \mathbb{N},
$$

where the sequence $\left(Q_{i}\right)_{i \in \mathbb{N}}$ is such that the conditional distribution of Q_{i} with respect to X_{i-1} is given by (3.3). By Theorem 3.3 and part (i) of Example 2.4, we have $\mathbb{P}\left(\lim _{k \rightarrow \infty} X_{k}=\right.$ $\left.X^{*}\right)=1$ and $\lim _{k \rightarrow \infty} \mathbb{E}\left\|X_{k}-X^{*}\right\|^{q}=0$ for all $q \in \mathbb{N}$, where $X^{*}=(1 / 2,1 / 2)^{\top}$. Note also that if $X_{i-1} \in K$, then the conditional distribution of Q_{i} with respect to X_{i-1} takes the form

$$
Q_{i}= \begin{cases}\binom{1}{1} & \text { with probability } X_{i-1}^{(1)} X_{i-1}^{(2)}, \\ \binom{1}{-1} & \text { with probability } X_{i-1}^{(1)}\left(1-X_{i-1}^{(2)}\right) \\ \binom{-1}{1} & \text { with probability }\left(1-X_{i-1}^{(1)}\right) X_{i-1}^{(2)}, \\ \binom{-1}{-1} & \text { with probability }\left(1-X_{i-1}^{(1)}\right)\left(1-X_{i-1}^{(2)}\right)\end{cases}
$$

Finally, we remark that $X_{1}=(1,1)^{\top}$ and $X_{2}=(1 / 2,1 / 2)^{\top}$.

3.2. Almost sure and L^{q}-convergence of $\left(F_{K, \mu}\left(X_{k}\right)\right)_{k \in \mathbb{Z}_{+}}$

First we recall an equivalent reformulation of L^{q}-convergence, where $q \in \mathbb{N}$, see, e.g. Chow and Teicher [13, Theorem 4.2.3].

Lemma 3.5 Let $d, q \in \mathbb{N}, \xi: \Omega \rightarrow \mathbb{R}^{d}$ and $\xi_{n}: \Omega \rightarrow \mathbb{R}^{d}, n \in \mathbb{N}$, be \mathbb{R}^{d}-valued random variables such that $\mathbb{E}\left(\|\xi\|^{q}\right)<\infty$ and $\mathbb{E}\left(\left\|\xi_{n}\right\|^{q}\right)<\infty, n \in \mathbb{N}$. Then ξ_{n} converges to ξ in L^{q} as $n \rightarrow \infty\left(\right.$ i.e. $\left.\lim _{n \rightarrow \infty} \mathbb{E}\left(\left\|\xi_{n}-\xi\right\|^{q}\right)=0\right)$ if and only if ξ_{n} converges in probability to ξ as $n \rightarrow \infty$ and the set of random variables $\left\{\left\|\xi_{n}\right\|^{q}: n \in \mathbb{N}\right\}$ is uniformly integrable, i.e.

$$
\lim _{m \rightarrow \infty} \sup _{n \in \mathbb{N}} \mathbb{E}\left(\left\|\xi_{n}\right\|^{q} \mathbf{1}_{\left\{\left\|\xi_{n}\right\|^{q}>m\right\}}\right)=0
$$

Theorem 3.6 Let us suppose that Conditions (C.1)-(C.4) hold. Then the sequence of onedimensional random variables $\left(F_{K, \mu}\left(X_{k}\right)\right)_{k \in \mathbb{N}}$ converges almost surely and in $L^{q}(q \in \mathbb{N})$ to $F_{K, \mu}\left(X^{*}\right)$ as $k \rightarrow \infty$, where X^{*} denotes the unique global minimizer of $F_{K, \mu}$.

Proof By Theorem 3.3, $\mathbb{P}\left(\lim _{k \rightarrow \infty} X_{k}=X^{*}\right)=1$, and hence to prove that $\mathbb{P}\left(\lim _{k \rightarrow \infty}\right.$ $\left.F_{K, \mu}\left(X_{k}\right)=F_{K, \mu}\left(X^{*}\right)\right)=1$, it is enough to check that $F_{K, \mu}$ is continuous. This follows by that $F_{K, \mu}$ is a convex function defined on \mathbb{R}^{2} (see Theorem 2.6). We give an alternative argument, too. Let $\left(x_{n}, y_{n}\right)^{\top} \in \mathbb{R}^{2}, n \in \mathbb{N}$, be such that $\lim _{n \rightarrow \infty}\left(x_{n}, y_{n}\right)=$ (x, y), where $(x, y)^{\top} \in \mathbb{R}^{2}$. Then for all $(\alpha, \beta)^{\top} \in \mathbb{R}^{2}, \lim _{n \rightarrow \infty} d_{1}\left(\left(x_{n}, y_{n}\right),(\alpha, \beta)\right)=$ $d_{1}((x, y),(\alpha, \beta))$, and using that K is bounded,

$$
\sup _{n \in \mathbb{N}} \sup _{(\alpha, \beta) \in K} d_{1}\left(\left(x_{n}, y_{n}\right),(\alpha, \beta)\right)<\infty
$$

M. Barczy et al.

By Lebesgue dominated convergence theorem (which can be used since $\mu(K)<\infty$)

$$
\begin{aligned}
\lim _{n \rightarrow \infty} F_{K, \mu}\left(x_{n}, y_{n}\right) & =\int_{K} \lim _{n \rightarrow \infty} d_{1}\left(\left(x_{n}, y_{n}\right),(\alpha, \beta)\right) \mu(\mathrm{d} \alpha, \mathrm{~d} \beta) \\
& =\int_{K} d_{1}((x, y),(\alpha, \beta)) \mu(\mathrm{d} \alpha, \mathrm{~d} \beta)=F_{K, \mu}(x, y)
\end{aligned}
$$

yielding that $F_{K, \mu}$ is continuous.
Further, using Lemma 3.5 and that almost sure convergence yields convergence in probability, in order to prove L^{q}-convergence of $\left(F_{K, \mu}\left(X_{k}\right)\right)_{k \in \mathbb{N}}$, it is enough (and actually necessary) to check that

$$
\begin{equation*}
\lim _{m \rightarrow \infty} \sup _{k \in \mathbb{N}} \mathbb{E}\left(\left\|X_{k}\right\|^{q} \mathbf{1}_{\left\{\left\|X_{k}\right\|^{q}>m\right\}}\right)=0 . \tag{3.5}
\end{equation*}
$$

We show that the sequence $\left(\left\|X_{k}\right\|^{q}\right)_{k \in \mathbb{N}}$ is bounded, and then (3.5) readily follows. Let $D:=\sup _{k \in \mathbb{N}}\left\{t_{k}\right\}=t_{1}>0$ (indeed, $\left(t_{k}\right)_{k \in \mathbb{N}}$ is a decreasing sequence of positive numbers). Let us consider the rectangle R with vertexes

$$
\begin{aligned}
& (\inf \{x:(x, y) \in K\}-D \sqrt{2}, \inf \{y:(x, y) \in K\}-D \sqrt{2}), \\
& (\inf \{x:(x, y) \in K\}-D \sqrt{2}, \sup \{y:(x, y) \in K\}+D \sqrt{2}), \\
& (\sup \{x:(x, y) \in K\}+D \sqrt{2}, \inf \{y:(x, y) \in K\}-D \sqrt{2}), \\
& (\sup \{x:(x, y) \in K\}+D \sqrt{2}, \sup \{y:(x, y) \in K\}+D \sqrt{2}) .
\end{aligned}
$$

Since $\left\|Q_{k}\right\|=\sqrt{2}, k \in \mathbb{N}$, if $X_{n} \in K$ with some $n \in \mathbb{N}$, then $X_{n+1} \in R$, i.e. the recursion (3.1) cannot leave the rectangle R starting from K by one step. Next we check that if $X_{n} \in R$ with some $n \in \mathbb{N}$, then $X_{n+1} \in R$, which yields that the recursion (3.1) cannot leave the rectangle R. We distinguish eight cases according to the Figure 2.

If X_{n} is in the rectangle numbered 1, then $Q_{n+1}=(-1,1)^{\top}$ and hence, by the choice of D,

$$
X_{n+1}=X_{n}+t_{n+1}\binom{1}{-1} \in R
$$

Figure 2. The eight cases.

If X_{n} is in the rectangle numbered 2 , then $Q_{n+1}=(1,1)^{\top}$ or $Q_{n+1}=(-1,1)^{\top}$ according to the cases $X_{n}^{(1)} \geq P_{n+1}^{(1)}$ and $X_{n}^{(1)}<P_{n+1}^{(1)}$, and hence

$$
X_{n+1}=X_{n}+t_{n+1}\binom{-1}{-1} \in R \quad \text { or } \quad X_{n+1}=X_{n}+t_{n+1}\binom{1}{-1} \in R
$$

If X_{n} is in the rectangle numbered 3, then $Q_{n+1}=(1,1)^{\top}$ and hence

$$
X_{n+1}=X_{n}+t_{n+1}\binom{-1}{-1} \in R
$$

The other cases can be handled similarly.

Acknowledgements

We are grateful for the referee for his/her several valuable comments that have led to an improvement of the manuscript. The research of Mátyás Barczy was realized in the frames of TÁMOP 4.2.4. A/2-11-1-2012-0001 'National Excellence Program - Elaborating and operating an inland student and researcher personal support system'.

Funding

The project was subsidized by the European Union and co-financed by the European Social Fund. Ábris Nagy has been supported, in part, by the Hungarian Academy of Sciences, the European Union and the State of Hungary, co-financed by the European Social Fund in the framework of TÁMOP 4.2.4. A/2-11-1-2012-0001 'National Excellence Program’. Csaba Vincze was partially supported by the European Union and the European Social Fund through the project Supercomputer, the national virtual lab [grant number TÁMOP-4.2.2.C-11/1/KONV-2012-0010]. Csaba Vincze is supported by the University of Debrecen's internal research project RH/885/2013.

References

[1] Vincze Cs, Nagy Á. On the theory of generalized conics with applications in geometric tomography. J. Approx. Theory. 2012;164:371-390.
[2] Gardner RJ. Geometric tomography. 2nd ed. New York (NY): Cambridge University Press; 2006.
[3] Lukšan L. Conjugate gradient algorithms for conic functions. Aplikace Matematiky. 1986;31:427-440.
[4] Wang G-J, Wang W, Ren F. Conic functions on metric spaces and their application. Appl. Math. Lett. 2005;18:451-454.
[5] Yaglom IM, Boltyanskii VG. Convex figures. Holt, Rinehart and Winston; 1961.
[6] Robbins H, Monro S. A stochastic approximation method. Ann. Math. Stat. 1951;22:400-407.
[7] Robert C, Casella G. Monte Carlo statistical methods. 2nd ed. Springer Verlag; 2004.
[8] Bouleau N, Lépingle D. Numerical methods for stochastic processes. Wiley; 1994.
[9] Arnaudon M, Dombry C, Phan A, Yang L. Stochastic algorithms for computing means of probability measures. Stoch. Process. Appl. 2012;122:1437-1455.
[10] Cohn DL. Measure theory. Boston: Birkhäuser; 1980.
[11] Beer GA. The Hausdorff metric and convergence in measure. Mich. Math. J. 1974;21:63-64.
[12] Polyak BT. Introduction to optimization. New York (NY): Optimization Software Inc., Publications Division; 1987.
[13] Chow YS, Teicher H. Probability theory. 3rd ed. New York (NY): Springer-Verlag; 1997.

[^0]: *Corresponding author. Email: barczy.matyas@inf.unideb.hu

