*Optimization*, 2014 http://dx.doi.org/10.1080/02331934.2014.919499



# A Robbins–Monro-type algorithm for computing global minimizer of generalized conic functions

Mátyás Barczy<sup>a</sup>\*, Ábris Nagy<sup>b</sup>, Csaba Noszály<sup>a</sup> and Csaba Vincze<sup>c</sup>

<sup>a</sup> Faculty of Informatics, Department of Applied Mathematics and Probability, University of Debrecen, Debrecen, Hungary; <sup>b</sup>MTA-DE Research Group 'Equations Functions and Curves', Institute of Mathematics, Hungarian Academy of Sciences and University of Debrecen, Debrecen, Hungary; <sup>c</sup>Institute of Mathematics, University of Debrecen, Debrecen, Hungary

(Received 20 February 2013; accepted 17 April 2014)

We generalize the notion and some properties of the conic function introduced by Vincze and Nagy (2012). We provide a stochastic algorithm for computing the global minimizer of generalized conic functions, we prove almost sure and  $L^q$ -convergence of this algorithm.

Keywords: global optimization; Markov process; conic function; stochastic algorithm; Robbins–Monro algorithm

AMS Subject Classifications: 90C25; 60D05

### 15 **1. Introduction**

Let K be a compact body in  $\mathbb{R}^2$  (a non-empty compact set coinciding with the closure of its interior) and consider the distance function induced by the taxicab norm. The socalled conic function  $F_K$  associated to K (introduced by Vincze and Nagy [1, Definition 6], see also Definition 2.1) measures the average taxicab distance of the points from K via integration with respect to the Lebesgue measure, or explaining in another way: the conic function  $F_K$  at some point  $(x, y) \in \mathbb{R}^2$  can be interpreted as the expectation of the random variable defined as the taxicab distance of (x, y) and  $(\xi, \eta)$ , where  $(\xi, \eta)$  is a uniformly distributed random variable on K, for more details see part (ii) of Remark 1. Conic functions are extensively used in geometric tomography since they contain a lot of information about unknown bodies, for a more detailed discussion see Gardner [2] and Vincze and Nagy [1]. We call the attention that in the literature one can find other definitions of 'conic functions' that are completely different from ours. For example, in optimization, a conic function is usually defined to be the ratio of a quadratic function and the square of a linear function on the open halfspace, where the linear function is positive, see, e.g. Luksan [3, formula (2.1)]. Wang et al. [4] introduced another definition of conic functions in metric spaces and obtained a new condition for metric spaces being compact in terms of conic functions.

We recall that one of the striking features of the conic function  $F_K$  is that a point in  $\mathbb{R}^2$  is a global minimizer of  $F_K$  if and only if it bisects the area of K, i.e. the vertical

AQ1

5 AQ2

**AQ3** 10

AQ4

25

30

<sup>\*</sup>Corresponding author. Email: barczy.matyas@inf.unideb.hu

| GOPT 919499 | Initial  | CE:YS QA:EK |
|-------------|----------|-------------|
| 8-5-2014    | IIIItiai |             |

# M. Barczy et al.

and horizontal lines through this point cut the compact body *K* into two parts with equal areas, see Vincze and Nagy [1, Corollary 1]. We call the attention that points with similar properties are important and well studied in geometry. For instance, we mention that if *S* is a convex set in  $\mathbb{R}^2$ , then there exist two perpendicular lines that divide *S* into four parts with equal areas, see Yaglom and Boltyanskii [5, Section 3].

5

10

15

In Section 2 of the present paper, we generalize the conic function  $F_K$  introduced by Vincze and Nagy [1] in a way that it measures the average taxicab distance of the points from K via integration with respect to some measure  $\mu$  on K with  $\mu(K) < \infty$ , see Definition 2.5. From geometric point of view, the body K associated with some measure  $\mu$  can be considered as a mathematical model of a non-homogeneous body and hence our generalization of conic functions may find applications in (geometric) tomography where typically non-homogeneous bodies occur. We generalize Theorems 3, 4, 5, Lemmas 6, 7 and Corollary 1 in Vincze and Nagy [1] for conic functions  $F_{K,\mu}$  associated with a compact body K and a measure  $\mu$  with  $\mu(K) < \infty$ . We only mention that it turns out that a point in  $\mathbb{R}^2$  is a global minimizer of  $F_{K,\mu}$  if and only if it bisects the  $\mu$ -area of K, see Corollary 2.9.

In Section 3, we give a stochastic algorithm for the global minimizer of the convex function  $F_{K,\mu}$ . In the heart of our algorithm, the well-known Robbins–Monro algorithm (see [6]) lies, and we prove almost sure and  $L^q$ -convergence of our algorithm. More precisely, we define recursively a sequence  $(X_k)_{k \in \mathbb{Z}_+}$  of random variables (see (3.1)) which forms an inhomogeneous Markov chain and we prove almost sure and  $L^q$ -convergence of this Markov chain via Robbins–Monro algorithm, see Theorem 3.3. We also prove almost sure and  $L^q$ -convergence of the sequence  $(F_{K,\mu}(X_k))_{k \in \mathbb{N}}$ , see Theorem 3.6. In general, stochastic algorithms for finding a minimum of a convex function have a vast literature, see, e.g. Robert and Casella [7] and Bouleau and Lépingle [8]. Without giving an introduction of the newest results in the field we only mention the paper [9] of Arnaudon et al., which in some sense motivated our study. They gave a stochastic algorithm which converges almost surely and in  $L^2$  to the so-called *p*-mean of a probability measure supported by a regular geodesic ball in a manifold.

## 2. Generalized conic functions

30 Let  $\mathbb{Z}_+$ ,  $\mathbb{N}$ ,  $\mathbb{R}$  and  $\mathbb{R}_+$  denote the set of non-negative integers, positive integers, real numbers and non-negative real numbers, respectively. For an  $x \in \mathbb{R}^2$ , we will denote its Euclidean norm by ||x||. Let  $K \subset \mathbb{R}^2$  be a non-empty compact set such that it coincides with the closure of its interior. In geometry, K is called a compact body. By  $\mathcal{B}(\mathbb{R}^d)$  and  $\mathcal{B}(K)$ , we denote the Borel  $\sigma$ -algebra on  $\mathbb{R}^d$  and on K, respectively, where  $d \in \mathbb{N}$ . For all  $x, y \in \mathbb{R}$ let us introduce the following notations

$$\begin{split} \{K <_1 x\} &:= \{(\alpha, \beta) \in K : \alpha < x\}, \\ \{K <_2 y\} &:= \{(\alpha, \beta) \in K : \beta < y\}, \\ \{K =_1 x\} &:= \{(\alpha, \beta) \in K : \alpha = x\}, \\ \end{split}$$

40 The notations  $\{K \leq_1 x\}, \{x \leq_1 K\}, \{K \leq_2 y\}$  and  $\{y \leq_2 K\}$  are defined in the same way. For a function  $f : \mathbb{R}^2 \to \mathbb{R}$ , we will denote by  $D_1 f$  and  $D_2 f$  the partial derivatives of f.

Next, we recall the notion of a generalized conic function associated with K due to Vincze and Nagy [1].

| GOPT 919499 | Initial | CE:YS | QA:EK |
|-------------|---------|-------|-------|
| 8-5-2014    | Initial |       |       |

3

*Definition 2.1* (Vincze and Nagy [1, Definition 6]) The generalized conic function  $F_K$ :  $\mathbb{R}^2 \to \mathbb{R}$  associated to *K* is defined by

$$F_K(x, y) := \frac{1}{A(K)} \int_K d_1((x, y), (\alpha, \beta)) \,\mathrm{d}\alpha \mathrm{d}\beta, \qquad (x, y) \in \mathbb{R}^2,$$

5 where A(K) is the two-dimensional Lebesgue measure (area) of K, and the distance function  $d_1$  is given by  $d_1((x, y), (\alpha, \beta)) := |x - \alpha| + |y - \beta|, (x, y), (\alpha, \beta) \in \mathbb{R}^2$  ( $d_1$  is known to be the metric induced by the taxicab norm).

The next result is about the global minimizer of  $F_K$ .

PROPOSITION 2.2 (Vincze and Nagy [1, Corollary 1]) A point in  $\mathbb{R}^2$  is a global minimizer of the generalized conic function  $F_K$  if and only if it bisects the area of K, i.e. the vertical and the horizontal lines through this point cut the compact body K into two parts with equal area.

We note that the global minimizer of the generalized conic function  $F_K$  is not unique in general. In Proposition 2.3, we give a sufficient condition for its uniqueness.

In what follows we will frequently use the following conditions

(C.1) K is connected,

(C.2)  $\mu(B(p,\varepsilon) \cap K) > 0$  for all  $p \in K, \varepsilon > 0$  and  $B(p,\varepsilon)$ ,

where  $\mu$  is a measure on the measurable space  $(K, \mathcal{B}(K))$  and  $B(p, \varepsilon)$  denotes the open ball around p with radius  $\varepsilon$ , and

(C.3)  $\mu(\{K = 1 \ x\}) = \mu(\{K = 2 \ y\}) = 0$  for all  $x, y \in \mathbb{R}$ . We call the attention that Condition (C.3) does not hold for a measure in general. For example, if  $\mu$  is the distribution of a discrete random variable having values in K, then Condition (C.3) does not hold. However, if  $\mu$  is the two-dimensional Lebesgue measure on K, then Conditions (C.2) and (C.3) hold automatically.

25 PROPOSITION 2.3 If Condition (C.1) holds, then the convex function  $F_K$  has a unique global minimizer  $(x^*, y^*) \in \mathbb{R}^2$ , that is,  $F_K(x, y) > F_K(x^*, y^*)$  for  $(x, y) \neq (x^*, y^*)$ ,  $(x, y) \in \mathbb{R}^2$ .

**Proof** The existence of a global minimizer of  $F_K$  can be checked as follows. By Theorem 3 in Vincze and Nagy [1],  $F_K$  is a finite-valued convex function defined on  $\mathbb{R}^2$  and its level sets are compact subsets of  $\mathbb{R}^2$ . Hence,  $F_K$  is continuous and consequently it reaches its minimum on every compact set.

Now we turn to prove the uniqueness of  $(x^*, y^*)$ . Let us suppose that  $(x^*, y^*) \in \mathbb{R}^2$  and  $(\tilde{x^*}, \tilde{y^*}) \in \mathbb{R}^2$  are global minimizers of  $F_K$  such that  $(x^*, y^*) \neq (\tilde{x^*}, \tilde{y^*})$ . Then  $x^* \neq \tilde{x^*}$  or  $y^* \neq \tilde{y^*}$ . We may assume that  $\tilde{x^*} < x^*$ . Then both of the vertical lines  $\mathbb{R}^2 =_1 x^*$  and  $\mathbb{R}^2 =_1 \tilde{x^*}$  bisect the area of K. Note that since Condition (C.3) holds automatically for the two-dimensional Lebesgue measure, the bisection of the area of K is well defined. Let us consider the open half-planes

$$H^* := \mathbb{R}^2 <_1 x^* \quad \text{and} \quad \widetilde{H^*} := \mathbb{R}^2 >_1 \widetilde{x^*}.$$

15

20

35

| GOPT 919499 | Initial | CE:YS | QA:EK |
|-------------|---------|-------|-------|
| 8-5-2014    | mutai   |       |       |

M. Barczy et al.

Note that  $(\widetilde{x^*}, \widetilde{y^*}) \in H^*$  and  $(x^*, y^*) \in \widetilde{H^*}$ . We show that  $K \cap (H^* \cap \widetilde{H^*}) = \emptyset$ . On the contrary, let us suppose that there exists  $p \in \mathbb{R}^2$  such that  $p \in K \cap (H^* \cap \widetilde{H^*})$ . Since *K* is a non-empty compact body, there exist

$$0 < \varepsilon < \min\{d_2(p, \mathbb{R}^2 =_1 x^*), d_2(p, \mathbb{R}^2 =_1 \tilde{x^*})\}$$

and  $q \in B(p, \varepsilon)$  such that q is an interior point of K, where  $d_2$  denotes the standard Euclidean distance on  $\mathbb{R}^2$ . Hence, there exists

$$0 < \delta < \min\{d_2(p, \mathbb{R}^2 =_1 x^*), d_2(p, \mathbb{R}^2 =_1 \widetilde{x^*})\}$$

10 such that  $B(q, \delta) \subset K \cap (H^* \cap \widetilde{H^*})$ . Then

$$A(K <_1 \widetilde{x^*}) = A(\widetilde{x^*} <_1 K) \ge A(B(q, \delta)) + A(x^* <_1 K),$$
  

$$A(x^* <_1 K) = A(K <_1 x^*) \ge A(B(q, \delta)) + A(K <_1 \widetilde{x^*}),$$
(2.1)

and hence

$$A(K <_1 x^*) \ge 2A(B(q, \delta)) + A(K <_1 x^*),$$

i.e.  $0 \ge A(B(q, \delta))$ , which yields us to a contradiction. At this point, we implicitly used that Condition (C.2) holds automatically for the two-dimensional Lebesgue measure. Hence  $K \cap (H^* \cap \widetilde{H^*}) = \emptyset$ . Let  $0 < \eta < (x^* - \widetilde{x^*})/2$ , and let us consider the open half-planes

$$I^* := \mathbb{R}^2 >_1 x^* - \eta$$
 and  $\tilde{I^*} := \mathbb{R}^2 <_1 \tilde{x^*} + \eta$ .

Then  $I^*$  and  $\widetilde{I^*}$  are open sets of  $\mathbb{R}^2$ ,  $I^* \cap \widetilde{I^*} = \emptyset$ , and, since  $K \cap (H^* \cap \widetilde{H^*}) = \emptyset$ , we have  $K \subset I^* \cup \widetilde{I^*}$ . Further,  $I^* \cap K$  and  $\widetilde{I^*} \cap K$  are separated sets such that their union equals K. This is a contradiction due to the connectedness of K. Hence  $x^* = \widetilde{x^*}$ , and in a similar way we have  $y^* = \widetilde{y^*}$ .

We call the attention that Condition (C.1) is sufficient but not necessary in order that the generalized conic function  $F_K$  should have a uniquely determined global minimizer. Figure 1 shows three different cases where Condition (C.1) is not satisfied but  $F_K$  has a unique global minimizer.

On the subfigure (c) of Figure 1, the circles have centres  $(-1/\sqrt{12}, 0)$  and  $(1/2^n, 0)$  with radii  $1/\sqrt{12}$  and  $1/2^{n+2}$ , respectively, where  $n \in \mathbb{Z}_+$ .



Figure 1. Examples for K such that Condition (C.1) does not hold but  $F_K$  has a unique global minimizer.

4

5

25

30

20

| GOPT 919499 | Initial | CE:YS | QA:EK |
|-------------|---------|-------|-------|
| 8-5-2014    | mua     |       |       |

#### Example 2.4

(i) If K is the square with vertexes (0, 0), (0, 1), (1, 0), (1, 1), then

$$F_K(x, y) = \left(x - \frac{1}{2}\right)^2 + \left(y - \frac{1}{2}\right)^2 + \frac{1}{2}, \qquad (x, y) \in K,$$

5

see, e.g. Vincze and Nagy [1, Example 3]. Using that *K* is connected, by Propositions 2.2 and 2.3, the global minimizer of  $F_K$  is  $(x, y) = (\frac{1}{2}, \frac{1}{2})$ .

(ii) If K is the triangle with vertexes (0, 0), (0, 1), (1, 0), then

$$F_K(x, y) = -\frac{2}{3}(x^3 + y^3) + 2(x^2 + y^2) - (x + y) + \frac{2}{3}, \quad (x, y) \in K.$$

Indeed,  $F_K(x, y) = \mathbb{E}(|\xi - x|) + \mathbb{E}(|\eta - y|)$  for all  $(x, y) \in \mathbb{R}^2$ , where  $(\xi, \eta)$  is a uniformly distributed random variable on *K*. Then the joint density function of  $(\xi, \eta)$ , and the density functions of the marginals of  $(\xi, \eta)$  take the forms

$$f_{(\xi,\eta)}(\alpha,\beta) = \begin{cases} 2 & \text{if } (\alpha,\beta) \in K, \\ 0 & \text{if}(\alpha,\beta) \notin K, \end{cases}$$

and

5

10

15

$$f_{\xi}(\alpha) = \begin{cases} -2\alpha + 2 & \text{if } \alpha \in [0, 1], \\ 0 & \text{if } \alpha \notin [0, 1], \end{cases} \quad f_{\eta}(\beta) = \begin{cases} -2\beta + 2 & \text{if } \beta \in [0, 1], \\ 0 & \text{if } \beta \notin [0, 1], \end{cases}$$

respectively. Hence for all  $(x, y) \in K$ ,

$$\mathbb{E}(|\xi - x|) = \int_0^1 |\alpha - x|(-2\alpha + 2) \, \mathrm{d}\alpha$$
  
=  $\int_0^x (x - \alpha)(-2\alpha + 2) \, \mathrm{d}\alpha + \int_x^1 (\alpha - x)(-2\alpha + 2) \, \mathrm{d}\alpha$   
=  $-\frac{2}{3}x^3 + 2x^2 - x + \frac{1}{3}$ ,

and similarly  $\mathbb{E}(|\eta - y|) = -\frac{2}{3}y^3 + 2y^2 - y + \frac{1}{3}$  for all  $(x, y) \in K$ . Hence, the global minimizer of  $F_K$  is  $(1 - \sqrt{2}/2, 1 - \sqrt{2}/2)$ . Indeed, the solution in *K* of the system of equations

$$D_1F_K(x, y) = -2x^2 + 4x - 1 = 0$$
 and  $D_2F_K(x, y) = -2y^2 + 4y - 1 = 0$ ,

is  $(1 - \sqrt{2}/2, 1 - \sqrt{2}/2)$ . Using that *K* is connected, by Propositions 2.2 and 2.3, the global minimizer of  $F_K$  is  $(1 - \sqrt{2}/2, 1 - \sqrt{2}/2)$ .

In what follows, we generalize the notion of the conic function introduced by Vincze and Nagy [1, Definition 6], see also Definition 2.1.

Definition 2.5 Let  $\mu$  be a measure on the measurable space  $(K, \mathcal{B}(K))$  such that  $\mu(K) < \infty$ . The generalized conic function  $F_{K,\mu} : \mathbb{R}^2 \to \mathbb{R}$  associated to K and  $\mu$  is defined by

$$F_{K,\mu}(x, y) := \int_{K} d_1((x, y), (\alpha, \beta)) \,\mu(\mathrm{d}\alpha, \mathrm{d}\beta), \qquad (x, y) \in \mathbb{R}^2.$$

25

20

35

| GOPT 919499 | Initial | CE:YS | QA:EK |
|-------------|---------|-------|-------|
| 8-5-2014    | Initial |       |       |

M. Barczy et al.

Remark 1

6

5

10

15

- (i) Note that under the conditions of Definition 2.5, we have  $F_{K,\mu}(x, y)$  is well defined for all  $(x, y) \in \mathbb{R}^2$ , since for fixed  $(x, y) \in \mathbb{R}^2$ , the function  $K \ni (\alpha, \beta) \mapsto d_1((x, y), (\alpha, \beta))$  is bounded and  $\mu(K) < \infty$ .
- (ii) If  $\mu$  is a measure on K such that  $\mu(K) < \infty$  and it is absolutely continuous with respect to the Lebesgue measure on K with Radon-Nikodym derivative  $h_{\mu}$ , then

$$F_{K,\mu}(x, y) = \int_{K} d_1((x, y), (\alpha, \beta)) h_{\mu}(\alpha, \beta) \, \mathrm{d}\alpha \mathrm{d}\beta, \qquad (x, y) \in \mathbb{R}^2.$$

With

$$h_{\mu}(\alpha,\beta) := \begin{cases} \frac{1}{A(K)} & \text{if } (\alpha,\beta) \in K, \\ 0 & \text{if } (\alpha,\beta) \notin K, \end{cases}$$

we have  $F_{K,\mu}$  coincides with  $F_K$  given in Definition 2.1. Note also that the conic function  $F_K$  can be interpreted as the expectation of an appropriate random variable. Namely,  $F_K(x, y) = \mathbb{E}[d_1((x, y), (\xi, \eta))], (x, y) \in \mathbb{R}^2$ , where  $(\xi, \eta)$  is a uniformly distributed random variable on K.

Next, we generalize Theorems 3, 4 and 5, Lemmas 6 and 7 and Corollary 1 in Vincze and Nagy [1] for the generalized conic function  $F_{K,\mu}$ .

THEOREM 2.6 The generalized conic function  $F_{K,\mu} : \mathbb{R}^2 \to \mathbb{R}_+$  is a convex function which satisfies the growth condition

$$\liminf_{\|(x,y)\| \to \infty} \frac{F_{K,\mu}(x,y)}{\sqrt{x^2 + y^2}} \ge \mu(K) > 0.$$

Consequently, the level sets of the function  $F_{K,\mu}$  are bounded and hence compact subsets of  $\mathbb{R}^2$ .

*Proof* Recall that

$$F_{K,\mu}(x, y) = \int_{K} d_1((x, y), (\alpha, \beta)) \,\mu(\mathrm{d}\alpha, \mathrm{d}\beta), \qquad (x, y) \in \mathbb{R}^2.$$

The convexity of  $F_{K,\mu}$  is clear, since the integrand is a convex function for any fixed element  $(\alpha, \beta) \in K$ , and the Lebesgue integral with respect to the measure  $\mu$  is monotone. Further, since  $d_2((x, y), (\alpha, \beta)) \leq d_1((x, y), (\alpha, \beta)), (x, y), (\alpha, \beta) \in \mathbb{R}^2$ , where  $d_2$  is the standard Euclidean distance on  $\mathbb{R}^2$ , we have

$$F_{K,\mu}(x, y) \ge \int_{K} d_2((x, y), (\alpha, \beta)) \, \mu(\mathrm{d}\alpha, \mathrm{d}\beta), \qquad (x, y) \in \mathbb{R}^2,$$

and then

$$\frac{F_{K,\mu}(x, y)}{\sqrt{x^2 + y^2}} \ge \int_{K} \left( \frac{d_2((x, y), (\alpha, \beta)) - \sqrt{x^2 + y^2}}{\sqrt{x^2 + y^2}} + 1 \right) \,\mu(\mathrm{d}\alpha, \mathrm{d}\beta)$$

20

25

30

7

for  $(x, y) \in \mathbb{R}^2$ ,  $(x, y) \neq (0, 0)$ . The triangle inequality shows that

$$\sqrt{x^2 + y^2} = d_2((x, y), (0, 0)) \le d_2((x, y), (\alpha, \beta)) + d_2((\alpha, \beta), (0, 0))$$
$$= d_2((x, y), (\alpha, \beta)) + \sqrt{\alpha^2 + \beta^2},$$

5 and then

$$\frac{F_{K,\mu}(x,y)}{\sqrt{x^2+y^2}} \ge \int_K \left(1 - \frac{\sqrt{\alpha^2 + \beta^2}}{\sqrt{x^2+y^2}}\right) \mu(\mathrm{d}\alpha,\mathrm{d}\beta), \qquad (x,y) \in \mathbb{R}^2, \ (x,y) \neq (0,0).$$

By Fatou's lemma,

$$\lim_{\|(x,y)\|\to\infty} \inf_{\sqrt{x^2+y^2}} \geq \liminf_{\|(x,y)\|\to\infty} \int_K \left(1 - \frac{\sqrt{\alpha^2 + \beta^2}}{\sqrt{x^2+y^2}}\right) \mu(\mathrm{d}\alpha, \mathrm{d}\beta)$$
$$\geq \int_K \liminf_{\|(x,y)\|\to\infty} \left(1 - \frac{\sqrt{\alpha^2 + \beta^2}}{\sqrt{x^2+y^2}}\right) \mu(\mathrm{d}\alpha, \mathrm{d}\beta) = \mu(K) > 0.$$

Here for completeness, we note that one can use Fatou's lemma, since for all c > 0,

$$\int_{K} \inf \left\{ 1 - \frac{\sqrt{\alpha^{2} + \beta^{2}}}{\sqrt{x^{2} + y^{2}}} : \|(x, y)\| \ge c \right\} \mu(\mathrm{d}\alpha, \mathrm{d}\beta)$$
$$= \int_{K} \left( 1 - \frac{\sqrt{\alpha^{2} + \beta^{2}}}{c} \right) \mu(\mathrm{d}\alpha, \mathrm{d}\beta) > -\infty,$$

15

10

where the last inequality follows by that *K* is compact (hence bounded) and  $\mu(K) < \infty$ .

Let  $d \in \mathbb{R}_+$  and let us suppose that the level set  $\{(x, y) \in \mathbb{R}^2 : F_{K,\mu}(x, y) \leq d\}$  is unbounded. Then one can choose a sequence  $(x_n, y_n), n \in \mathbb{N}$ , such that  $F_{K,\mu}(x_n, y_n) \leq d$ ,  $n \in \mathbb{N}$ , and  $\lim_{n\to\infty} ||(x_n, y_n)|| = \infty$ . This would imply that

$$\lim_{n \to \infty} \frac{F_{K,\mu}(x_n, y_n)}{\sqrt{x_n^2 + y_n^2}} = 0$$

which contradicts to the growth condition.

LEMMA 2.7 Let us suppose that Condition (C.3) holds. For the generalized conic function  $F_{K,\mu}$ , we have

25 
$$F_{K,\mu}(x, y) = x \left( \mu(\{K <_1 x\}) - \mu(\{x <_1 K\}) \right) - \int_K \alpha(\mathbf{1}_{\{\alpha < x\}} - \mathbf{1}_{\{x < \alpha\}}) \, \mu(d\alpha, d\beta) + y \left( \mu(\{K <_2 y\}) - \mu(\{y <_2 K\}) \right) - \int_K \beta(\mathbf{1}_{\{\beta < y\}} - \mathbf{1}_{\{y < \beta\}}) \, \mu(d\alpha, d\beta)$$

for all  $(x, y) \in \mathbb{R}^2$ .

*Proof* By definition,

$$F_{K,\mu}(x, y) = \int_{K} (|x - \alpha| + |y - \beta|) \,\mu(\mathrm{d}\alpha, \mathrm{d}\beta), \qquad (x, y) \in \mathbb{R}^{2}.$$

20

M. Barczy et al.

Here,

$$\begin{split} \int_{K} |x - \alpha| \, \mu(\mathrm{d}\alpha, \mathrm{d}\beta) &= \int_{K <_{1}x} |x - \alpha| \, \mu(\mathrm{d}\alpha, \mathrm{d}\beta) + \int_{x \leq_{1}K} |x - \alpha| \, \mu(\mathrm{d}\alpha, \mathrm{d}\beta) \\ &= \int_{K <_{1}x} (x - \alpha) \, \mu(\mathrm{d}\alpha, \mathrm{d}\beta) + \int_{x \leq_{1}K} (\alpha - x) \, \mu(\mathrm{d}\alpha, \mathrm{d}\beta) \\ &= x \big( \mu(\{K <_{1}x\}) - \mu(\{x \leq_{1}K\}) \big) - \int_{K <_{1}x} \alpha \, \mu(\mathrm{d}\alpha, \mathrm{d}\beta) \\ &+ \int_{x \leq_{1}K} \alpha \, \mu(\mathrm{d}\alpha, \mathrm{d}\beta), \end{split}$$

5

and the integral  $\int_K |y - \beta| \mu(d\alpha, d\beta)$  can be handled similarly. The assertion follows by taking into account Condition (C.3).

LEMMA 2.8 Let us suppose that Condition (C.3) holds. For the generalized conic function  $F_{K,\mu}$ , we have

$$D_1 F_{K,\mu}(x, y) = \mu(\{K <_1 x\}) - \mu(\{x <_1 K\}), \quad (x, y) \in \mathbb{R}^2,$$
  
$$D_2 F_{K,\mu}(x, y) = \mu(\{K <_2 y\}) - \mu(\{y <_2 K\}), \quad (x, y) \in \mathbb{R}^2.$$

*Proof* Let h > 0. Then for all  $(x, y) \in \mathbb{R}^2$ ,

15
$$\frac{F_{K,\mu}(x+h,y) - F_{K,\mu}(x,y)}{h} = \int_{K} \frac{|x+h-\alpha| - |x-\alpha|}{h} \mu(d\alpha, d\beta)$$
$$= \int_{K<_{1}x} \frac{|x+h-\alpha| - |x-\alpha|}{h} \mu(d\alpha, d\beta)$$
$$+ \int_{x\leq_{1}K\leq_{1}x+h} \frac{|x+h-\alpha| - |x-\alpha|}{h} \mu(d\alpha, d\beta)$$
$$+ \int_{x+h<_{1}K} \frac{|x+h-\alpha| - |x-\alpha|}{h} \mu(d\alpha, d\beta)$$
$$= \int_{K<_{1}x} \frac{x+h-\alpha - (x-\alpha)}{h} \mu(d\alpha, d\beta)$$
$$+ \int_{x\leq_{1}K\leq_{1}x+h} \frac{x+h-\alpha - (\alpha-x)}{h} \mu(d\alpha, d\beta)$$
$$+ \int_{x+h<_{1}K} \frac{\alpha - x - h - (\alpha - x)}{h} \mu(d\alpha, d\beta)$$
$$= \mu(\{K <_{1}x\}) - \mu(\{x+h<_{1}K\})$$
$$+ \int_{x\leq_{1}K\leq_{1}x+h} \frac{|x+h-\alpha| - |x-\alpha|}{h} \mu(d\alpha, d\beta).$$

Using that  $||a| - |b|| \le |a - b|, a, b \in \mathbb{R}$ , for the integrand, we have

$$\left|\frac{|x+h-\alpha|-|x-\alpha|}{h}\right| \le \frac{1}{h}|x+h-\alpha-(x-\alpha)| = \frac{|h|}{h} = 1, \qquad x, \alpha \in \mathbb{R}, \ h > 0,$$

and hence, by dominated convergence theorem,

$$\left| \int_{x \le 1K \le 1x+h} \frac{|x+h-\alpha| - |x-\alpha|}{h} \mu(\mathrm{d}\alpha, \mathrm{d}\beta) \right|$$
  
$$\leq \int_{x \le 1K \le 1x+h} \left| \frac{|x+h-\alpha| - |x-\alpha|}{h} \right| \mu(\mathrm{d}\alpha, \mathrm{d}\beta)$$
  
$$\leq \mu(\{x \le 1K \le 1x+h\}) \to \mu(\{K=1x\}) = 0$$

5

as  $h \downarrow 0$ . Then, for all  $(x, y) \in \mathbb{R}^2$ ,

$$\lim_{h \downarrow 0} \frac{F_{K,\mu}(x+h, y) - F_{K,\mu}(x, y)}{h} = \mu(\{K <_1 x\}) - \mu(\{x \le_1 K\})$$
$$= \mu(\{K <_1 x\}) - \mu(\{x <_1 K\}).$$
(2.2)

Similarly, if h < 0, then

$$\frac{F_{K,\mu}(x+h, y) - F_{K,\mu}(x, y)}{h} = \mu(\{K <_1 x + h\}) - \mu(\{x <_1 K\}) + \int_{x+h \le 1K \le 1x} \frac{|x+h-\alpha| - |x-\alpha|}{h} \mu(d\alpha, d\beta)$$

for all  $(x, y) \in \mathbb{R}^2$ , and hence, using again Condition (C.3),

$$\lim_{h \uparrow 0} \frac{F_{K,\mu}(x+h, y) - F_{K,\mu}(x, y)}{h} = \mu(\{K \le_1 x\}) - \mu(\{x <_1 K\})$$
$$= \mu(\{K <_1 x\}) - \mu(\{x <_1 K\})$$
(2.3)

for all  $(x, y) \in \mathbb{R}^2$ . Then (2.2) and (2.3) yield that  $D_1 F_{K,\mu}(x, y) = \mu(\{K <_1 x\}) - \mu(\{x <_1 K\}), (x, y) \in \mathbb{R}^2$ .

In a similar way, we have  $D_2 F_{K,\mu}(x, y) = \mu(\{K < 2 \ y\}) - \mu(\{y < 2 \ K\}), (x, y) \in \mathbb{R}^2.$ 

If  $\mu$  is a measure on  $(\mathbb{R}^d, \mathcal{B}(\mathbb{R}^d))$ , then by the  $\mu$ -area of a Borel measurable set  $S \in \mathcal{B}(\mathbb{R}^d)$ , we mean  $\mu(S)$ .

COROLLARY 2.9 Let us suppose that Condition (C.3) holds. A point in  $\mathbb{R}^2$  is a global minimizer of the generalized conic function  $F_{K,\mu}$  if and only if it bisects the  $\mu$ -area of K, i.e. the vertical and the horizontal lines through this point cut the body K into two parts with equal  $\mu$ -areas. Moreover, if Conditions (C.1) and (C.2) hold too, then the convex function  $F_{K,\mu}$  has a unique global minimizer  $(x^*, y^*) \in \mathbb{R}^2$ , that is,  $F_{K,\mu}(x, y) > F_{K,\mu}(x^*, y^*)$  for  $(x, y) \neq (x^*, y^*)$ ,  $(x, y) \in \mathbb{R}^2$ .

30 *Proof* First note that under Condition (C.3), the concept of bisection of the μ-area of K is well defined. The first part of the corollary is a consequence of Lemma 2.8 using that a local minimum of a convex function defined on R<sup>2</sup> is a global minimum, too. Under Conditions (C.1), (C.2) and (C.3), the existence of a global minimizer (x\*, y\*) of F<sub>K,μ</sub> follows by that F<sub>K,μ</sub> is a convex function defined on R<sup>2</sup> and its level sets are compact subsets of R<sup>2</sup>
35 (see Theorem 2.6). Indeed, a finite-valued convex function defined on R<sup>2</sup> is continuous and it reaches its minimum on every compact set. Now, we turn to prove the uniqueness of

9

20

25

| GOPT 919499<br>8-5-2014 Initial | CE:YS | QA:EK |
|---------------------------------|-------|-------|
|---------------------------------|-------|-------|

*M. Barczy* et al.

 $(x^*, y^*)$ . The proof goes along the very same lines as in the proof of Proposition 2.3. Indeed, the area A (two-dimensional Lebesgue measure) has to be replaced by the measure  $\mu$ .  $\Box$ 

Before we generalize Theorem 4 in Vincze and Nagy [1], we need to introduce some notations and to recall the Cavalieri principle for product measures.

5 Definition 2.10 Let  $\mu_1$  and  $\mu_2$  be  $\sigma$ -finite measures on  $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$  and let  $\mu := \mu_1 \times \mu_2$  be their product measure on  $(\mathbb{R}^2, \mathcal{B}(\mathbb{R}^2))$ . Given a measurable set  $S \in \mathcal{B}(\mathbb{R}^2)$ , the generalized X-ray functions of S with respect to  $\mu$  into the coordinate directions are defined by

 $X_{S,\mu}(y) := \mu_1(S_y), \quad y \in \mathbb{R}, \text{ and } Y_{S,\mu}(x) := \mu_2(S_x), \quad x \in \mathbb{R},$ 

10 where  $S_x := \{y \in \mathbb{R} : (x, y) \in S\}$  and  $S_y := \{x \in \mathbb{R} : (x, y) \in S\}$ . (Note that  $S_x, S_y \in \mathcal{B}(\mathbb{R})$  for all  $x, y \in \mathbb{R}$ , see, e.g. Lemma 5.1.1 in Cohn [10].)

For the product measure  $\mu$  defined in Definition 2.10, we have  $\mu(K) < \infty$ .

THEOREM 2.11 (The Cavalieri principle, see, e.g. Cohn [10, Theorem 5.1.3]) Let  $\mu_1$  and  $\mu_2$  be  $\sigma$ -finite measures on  $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$  and let  $\mu := \mu_1 \times \mu_2$  be their product measure on  $(\mathbb{R}^2, \mathcal{B}(\mathbb{R}^2))$ . If  $S \in \mathcal{B}(\mathbb{R}^2)$ , then the functions  $X_{S,\mu}, Y_{S,\mu} : \mathbb{R} \to \mathbb{R}_+$  are Borel measurable, and

$$\mu(S) = (\mu_1 \times \mu_2)(S) = \int_{\mathbb{R}} Y_{S,\mu}(x)\mu_1(\mathrm{d}x) = \int_{\mathbb{R}} X_{S,\mu}(y)\mu_2(\mathrm{d}y).$$

THEOREM 2.12 Let  $K, K^* \subset \mathbb{R}^2$  be compact bodies, let  $\mu_i, \mu_i^*, i = 1, 2$ , be  $\sigma$ -finite measures on  $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$  that are absolutely continuous with respect to the Lebesgue measure on  $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$  with Radon-Nikodym derivatives  $f_i, f_i^*, i = 1, 2$ . Let  $\mu := \mu_1 \times \mu_2$  and  $\mu^* := \mu_1^* \times \mu_2^*$  be their product measures on  $(\mathbb{R}^2, \mathcal{B}(\mathbb{R}^2))$  and we assume that  $\mu$  and  $\mu^*$ are supported by K and  $K^*$ , respectively. Let us suppose that Condition (C.3) holds for Kand  $\mu$ , and  $K^*$  and  $\mu^*$ , respectively. Then  $F_{K,\mu} = F_{K^*,\mu^*}$  if and only if  $f_2(y)X_{K,\mu}(y) =$  $f_2^*(y)X_{K^*,\mu^*}(y)$  for (Lebesgue) almost every  $y \in \mathbb{R}$ , and  $f_1(x)Y_{K,\mu}(x) = f_1^*(x)Y_{K^*,\mu^*}(x)$ for (Lebesgue) almost every  $x \in \mathbb{R}$ .

*Proof* By Theorem 2.11 (the Cavalieri principle), for all  $x, y \in \mathbb{R}$ ,

$$\mu(K <_1 x) = \int_{\mathbb{R}} Y_{K <_1 x, \mu}(s) \,\mu_1(ds) = \int_{-\infty}^x Y_{K, \mu}(s) \,\mu_1(ds) = \int_{-\infty}^x Y_{K, \mu}(s) f_1(s) \,ds,$$
  

$$\mu(x <_1 K) = \int_{\mathbb{R}} Y_{x <_1 K, \mu}(s) \,\mu_1(ds) = \int_x^{\infty} Y_{K, \mu}(s) \,\mu_1(ds) = \int_x^{\infty} Y_{K, \mu}(s) f_1(s) \,ds,$$
  

$$\mu(K <_2 y) = \int_{\mathbb{R}} X_{K <_2 y, \mu}(t) \,\mu_2(dt) = \int_{-\infty}^y X_{K, \mu}(t) \,\mu_2(dt) = \int_{-\infty}^y X_{K, \mu}(t) f_2(t) \,dt,$$
  

$$\mu(y <_2 K) = \int_{\mathbb{R}} X_{y <_2 K, \mu}(t) \,\mu_2(dt) = \int_y^{\infty} X_{K, \mu}(t) \,\mu_2(dt) = \int_y^{\infty} X_{K, \mu}(t) f_2(t) \,dt,$$
  
(2.4)

15

20

25

| GOPT 919499 | Initial | CE:YS QA: | ΕK |
|-------------|---------|-----------|----|
| 8-5-2014    | mitiai  |           |    |

11

and, by Fubini's theorem, for all  $x, y \in \mathbb{R}$ ,

$$\int_{K} \alpha \mathbf{1}_{\{\alpha < x\}} \,\mu(\mathrm{d}\alpha, \mathrm{d}\beta) = \int_{-\infty}^{x} sY_{K,\mu}(s) \,\mu_{1}(\mathrm{d}s) = \int_{-\infty}^{x} sY_{K,\mu}(s) \,f_{1}(s) \,\mathrm{d}s,$$

$$\int_{K} \alpha \mathbf{1}_{\{x < \alpha\}} \,\mu(\mathrm{d}\alpha, \mathrm{d}\beta) = \int_{x}^{\infty} sY_{K,\mu}(s) \,\mu_{1}(\mathrm{d}s) = \int_{x}^{\infty} sY_{K,\mu}(s) \,f_{1}(s) \,\mathrm{d}s,$$

$$\int_{K} \beta \mathbf{1}_{\{\beta < y\}} \,\mu(\mathrm{d}\alpha, \mathrm{d}\beta) = \int_{-\infty}^{y} tX_{K,\mu}(t) \,\mu_{2}(\mathrm{d}t) = \int_{-\infty}^{y} tX_{K,\mu}(t) \,f_{2}(t) \,\mathrm{d}t,$$

$$\int_{K} \beta \mathbf{1}_{\{y < \beta\}} \,\mu(\mathrm{d}\alpha, \mathrm{d}\beta) = \int_{y}^{\infty} tX_{K,\mu}(t) \,\mu_{2}(\mathrm{d}t) = \int_{y}^{\infty} tX_{K,\mu}(t) \,f_{2}(t) \,\mathrm{d}t.$$
(2.5)

5

Indeed, for example, the first statement of (2.5) holds since, by Fubini's theorem for non-rectangular regions,

$$\int_{K} \alpha \mathbf{1}_{\{\alpha < x\}} \mu(d\alpha, d\beta) = \int_{\alpha_{b}}^{\alpha_{u}} \left( \int_{K_{\alpha}} \alpha \mathbf{1}_{\{\alpha < x\}} \mu_{2}(d\beta) \right) \mu_{1}(d\alpha)$$
$$= \int_{\alpha_{b}}^{\alpha_{u}} \alpha \mathbf{1}_{\{\alpha < x\}} \mu_{2}(K_{\alpha}) \mu_{1}(d\alpha)$$
$$= \int_{\alpha_{b}}^{\alpha_{u}} \alpha \mathbf{1}_{\{\alpha < x\}} Y_{K,\mu}(\alpha) \mu_{1}(d\alpha)$$
$$= \int_{-\infty}^{x} s Y_{K,\mu}(s) \mu_{1}(ds),$$

10

where  $K_{\alpha} = \{\beta \in \mathbb{R} \mid (\alpha, \beta) \in K\}$  and

$$\alpha_b := \inf \left\{ \alpha \mid \exists \beta \in \mathbb{R} : (\alpha, \beta) \in K \right\}, \quad \alpha_u := \sup \left\{ \alpha \mid \exists \beta \in \mathbb{R} : (\alpha, \beta) \in K \right\}.$$

Further, by (2.4), Lemma 2.8 and Lebesgue differentiation theorem,

$$D_1 D_1 F_{K,\mu}(x, y) = D_1 \left( \mu(\{K <_1 x\}) - \mu(\{x <_1 K\}) \right)$$
  
=  $D_1 \left( \int_{-\infty}^x Y_{K,\mu}(s) f_1(s) \, \mathrm{d}s - \int_x^\infty Y_{K,\mu}(s) f_1(s) \, \mathrm{d}s \right)$   
=  $2Y_{K,\mu}(x) f_1(x)$  for all  $y \in \mathbb{R}$  and almost every  $x \in \mathbb{R}$ , (2.6)

and similarly,

$$D_1 D_2 F_{K,\mu}(x, y) = D_2 D_1 F_{K,\mu}(x, y) = 0 \quad \text{for all } (x, y) \in \mathbb{R}^2,$$
  
$$D_2 D_2 F_{K,\mu}(x, y) = 2X_{K,\mu}(y) f_2(y) \quad \text{for all } x \in \mathbb{R} \text{ and almost every } y \in \mathbb{R}.$$
(2.7)

Let us suppose that  $F_{K,\mu} = F_{K^*,\mu^*}$ . By (2.6) and (2.7), we have  $f_1(x)Y_{K,\mu}(x) = f_1^*(x)Y_{K^*,\mu^*}(x)$  for almost every  $x \in \mathbb{R}$ , and  $f_2(y)X_{K,\mu}(y) = f_2^*(y)X_{K^*,\mu^*}(y)$  for almost every  $y \in \mathbb{R}$ , as desired.

Conversely, let us suppose that  $f_2(y)X_{K,\mu}(y) = f_2^*(y)X_{K^*,\mu^*}(y)$  for almost every  $y \in \mathbb{R}$ , and  $f_1(x)Y_{K,\mu}(x) = f_1^*(x)Y_{K^*,\mu^*}(x)$  for almost every  $x \in \mathbb{R}$ . Then, by Lemma 2.7, (2.4) and (2.5), we get  $F_{K,\mu} = F_{K^*,\mu^*}$ .

25

30

| GOPT 919499 | Initial | CE:YS | QA:EK |
|-------------|---------|-------|-------|
| 8-5-2014    | IIIttal |       |       |

M. Barczy et al.

*Remark 2* Note that, under the conditions of Theorem 2.12, for almost every  $(x, y) \in \mathbb{R}^2$ , the matrix consisting of the second-order partial derivatives of  $F_{K,\mu}$  takes the form

$$\begin{bmatrix} 2f_1(x)Y_{K,\mu}(x) & 0\\ 0 & 2f_2(y)X_{K,\mu}(y) \end{bmatrix},$$

5 which is a positive semidefinite matrix, since the Radon-Nikodym derivatives  $f_i$  and  $f_i^*$ , i = 1, 2 are non-negative almost everywhere. Note also that this is in accordance with the fact that  $F_{K,\mu}$  is a convex function due to Theorem 2.6.

Before we generalize Theorem 5 in Vincze and Nagy [1], we need to recall some notions.

*Definition 2.13* Let *K* be a compact body in  $\mathbb{R}^2$ . For all  $\varepsilon > 0$ , the outer parallel body  $K^{\varepsilon}$  is the union of closed Euclidean balls centred at the points of *K* with radius  $\varepsilon > 0$ .

Definition 2.14 The Hausdorff distance between two compact bodies K and L is given by

 $H(K, L) := \inf \{ \varepsilon > 0 : K \subset L^{\varepsilon} \text{ and } L \subset K^{\varepsilon} \}.$ 

The collection of compact bodies in  $\mathbb{R}^2$  furnished with the Hausdorff distance *H* is a metric space, see, e.g. Beer [11].

LEMMA 2.15 Let  $K_n$ ,  $n \in \mathbb{N}$ , K be compact bodies, and let  $\mu$  be a Radon measure on  $(\mathbb{R}^2, \mathcal{B}(\mathbb{R}^2))$ .

- (i) We have  $\lim_{\varepsilon \downarrow 0} \mu(K^{\varepsilon}) = \mu(K)$ .
- (ii) If  $K_n \to K$  as  $n \to \infty$  with respect to the Hausdorff metric H, then the following regularity properties are equivalent:
  - (a)  $\lim_{n\to\infty} \mu((K \setminus K_n) \cup (K_n \setminus K)) = 0$ ,
  - (b)  $\lim_{n\to\infty} \mu(K_n) = \mu(K).$

**Proof** The proofs go along the very same lines as those of Lemmas 1 and 2 in Vincze and Nagy [1] by replacing the area A (two-dimensional Lebesgue measure) by the measure  $\mu$  in the proofs and referring to that  $\mu(L) < \infty$  for all compact sets  $L \subset \mathbb{R}^2$  (due to that  $\mu$  is a Radon measure).

*Definition* 2.16 Let  $K_n$ ,  $n \in \mathbb{N}$ , and K be compact bodies, and let  $\mu$  be a Radon measure on  $(\mathbb{R}^2, \mathcal{B}(\mathbb{R}^2))$ . The convergence  $K_n \to K$  as  $n \to \infty$  with respect to the Hausdorff metric is called regular if one of the conditions (a) and (b) of part (ii) of Lemma 2.15 holds.

30 THEOREM 2.17 Let  $K_n$ ,  $n \in \mathbb{N}$ , and K be compact bodies, and let  $\mu$  be a Radon measure on  $(\mathbb{R}^2, \mathcal{B}(\mathbb{R}^2))$  supported by  $K^{\varepsilon}$  for some  $\varepsilon > 0$ . Let us suppose that the convergence  $K_n \to K$  as  $n \to \infty$  with respect to the Hausdorff metric is regular. Then

$$\lim_{n \to \infty} F_{K_n,\mu}(x, y) = F_{K,\mu}(x, y), \qquad (x, y) \in \mathbb{R}^2.$$

20

25

| GOPT 919499 | Initial  | CE:YS | QA:EK |
|-------------|----------|-------|-------|
| 8-5-2014    | IIIItiai |       |       |

**Proof** The proof goes along the very same lines as that of Theorem 5 in Vincze and Nagy [1], but replacing the integration with respect to the two-dimensional Lebesgue measure by the integration with respect to the measure  $\mu$ .

For the remaining sections of the paper, we will need some further properties of the convex function  $F_{K,\mu}$ . Next, we recall some general facts from the theory of convex functions, see, e.g. Polyak [12, Lemma 3, Section 1.1.4].

LEMMA 2.18 Let  $F : \mathbb{R}^d \to \mathbb{R}$  be a differentiable and convex function such that its gradient is Lipschitz continuous with constant L > 0, i.e.

$$\|\text{grad } F(p) - \text{grad } F(q)\| \le L \|p - q\|, \qquad p, q \in \mathbb{R}^d,$$
 (2.8)

13

where grad  $F(p) := (D_1 F(p), D_2 F(p))^\top$ ,  $p \in \mathbb{R}^d$ . Then we have an affine lower bound

$$F(q) \ge F(p) + \langle \text{grad } F(p), q - p \rangle, \quad p, q \in \mathbb{R}^d.$$

LEMMA 2.19 Let  $\mu_1$  and  $\mu_2$  be  $\sigma$ -finite measures on  $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$  that are absolutely continuous with respect to the Lebesgue measure on  $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$  with bounded Radon-Nikodym derivatives. Let  $\mu := \mu_1 \times \mu_2$  be their product measure on  $(\mathbb{R}^2, \mathcal{B}(\mathbb{R}^2))$  and we assume that  $\mu$  is supported by K. Further, let us suppose that Condition (C.3) holds. Then the generalized conic function  $F_{K,\mu} : \mathbb{R}^2 \to \mathbb{R}$  associated with K and  $\mu$  satisfies the conditions of Lemma 2.18, and consequently, we have an affine lower bound for  $F_{K,\mu}$ .

20 Proof By Theorem 2.6,  $F_{K,\mu}$  is convex. Under Condition (C.3), by Lemma 2.8 and (2.4),

$$D_1 F_{K,\mu}(x, y) = \int_{-\infty}^x Y_{K,\mu}(s) \,\mu_1(ds) - \int_x^\infty Y_{K,\mu}(s) \,\mu_1(ds)$$
  
=  $\int_{-\infty}^x Y_{K,\mu}(s) f_1(s) \,\mu_1(ds) - \int_x^\infty Y_{K,\mu}(s) f_1(s) \,\mu_1(ds)$ 

for  $(x, y) \in \mathbb{R}^2$ , where  $f_1$  denotes the (bounded) Radon-Nikodym derivative of  $\mu_1$  with respect to the Lebesgue measure on  $\mathbb{R}$ . Using that the integral as a function of the upper limit of the integration is continuous, we have  $D_1 F_{K,\mu}$  is continuous on  $\mathbb{R}^2$ . Similarly, one can check that  $D_2 F_{K,\mu}$  is also continuous on  $\mathbb{R}^2$ . This implies that  $F_{K,\mu}$  is differentiable on  $\mathbb{R}^2$ .

Condition (2.8) for  $F_{K,\mu}$  can be checked as follows. Let us start with the difference of the partial derivatives with respect to the first variable

$$D_1 F_{K,\mu}(q) - D_1 F_{K,\mu}(p)$$
  
=  $\mu(K <_1 q^{(1)}) - \mu(q^{(1)} <_1 K) - (\mu(K <_1 p^{(1)}) - \mu(p^{(1)} <_1 K))$ 

for all  $p = (p^{(1)}, p^{(2)}), q = (q^{(1)}, q^{(2)}) \in \mathbb{R}^2$ , where the equality follows by Lemma 2.8. We have

$$\mu(K <_1 q^{(1)}) = \mu(K <_1 \min\{p^{(1)}, q^{(1)}\}) + \mu(\min\{p^{(1)}, q^{(1)}\} <_1 K <_1 q^{(1)})$$

and

$$\mu(q^{(1)} <_1 K) = \mu(\max\{p^{(1)}, q^{(1)}\} <_1 K) + \mu(q^{(1)} <_1 K <_1 \max\{p^{(1)}, q^{(1)}\}).$$

25

30

10

15

| GOPT 919499 | Initial | CE:YS | QA:EK |
|-------------|---------|-------|-------|
| 8-5-2014    | mua     |       |       |

#### M. Barczy et al.

Of course we can change the role of q and p to express  $\mu(K <_1 p^{(1)})$  and  $\mu(p^{(1)} <_1 K)$  in a similar way. Then

10

15

$$\begin{split} D_1 F_{K,\mu}(q) &- D_1 F_{K,\mu}(p) \\ &= \mu(\min\{p^{(1)}, q^{(1)}\} <_1 K <_1 q^{(1)}) - \mu(q^{(1)} <_1 K <_1 \max\{p^{(1)}, q^{(1)}\}) \\ &- \mu(\min\{p^{(1)}, q^{(1)}\} <_1 K <_1 p^{(1)}) + \mu(p^{(1)} <_1 K <_1 \max\{p^{(1)}, q^{(1)}\}). \end{split}$$

Hence, we can see that if  $p^{(1)} = \min\{p^{(1)}, q^{(1)}\}$  and consequently,  $q^{(1)} = \max\{p^{(1)}, q^{(1)}\}$ , then

$$D_1 F_{K,\mu}(q) - D_1 F_{K,\mu}(p) = 2\mu(p^{(1)} <_1 K <_1 q^{(1)}).$$

If  $q^{(1)} = \min\{p^{(1)}, q^{(1)}\}$  and  $p^{(1)} = \max\{p^{(1)}, q^{(1)}\}$ , then

$$D_1 F_{K,\mu}(q) - D_1 F_{K,\mu}(p) = -2\mu(q^{(1)} <_1 K <_1 p^{(1)}).$$

In general,

$$|D_1 F_{K,\mu}(q) - D_1 F_{K,\mu}(p)| = 2\mu(\min\{p^{(1)}, q^{(1)}\} < K < \max\{p^{(1)}, q^{(1)}\}).$$

Therefore, using Theorem 2.11 (the Cavalieri principle), we can estimate the difference of the absolute value of the first-order partial derivatives of  $F_{K,\mu}$  as follows:

$$|D_{1}F_{K,\mu}(q) - D_{1}F_{K,\mu}(p)| \leq 2 \int_{\min\{p^{(1)},q^{(1)}\}}^{\max\{p^{(1)},q^{(1)}\}} Y_{K,\mu}(s) \mu_{1}(ds)$$

$$\geq 2 \left( \sup_{s \in \mathbb{R}} Y_{K,\mu}(s) \right) \mu_{1}(\left( \min\{p^{(1)},q^{(1)}\}, \max\{p^{(1)},q^{(1)}\}\right))$$

$$= 2 \left( \sup_{s \in \mathbb{R}} Y_{K,\mu}(s) \right) \int_{\min\{p^{(1)},q^{(1)}\}}^{\max\{p^{(1)},q^{(1)}\}} f_{1}(s) ds$$

$$\leq 2C_{1} \left( \sup_{s \in \mathbb{R}} Y_{K,\mu}(s) \right) |p^{(1)} - q^{(1)}|$$

with some constant  $C_1 > 0$ , where  $\sup_{s \in \mathbb{R}} Y_{K,\mu}(s) < \infty$  (since  $\mu(K) < \infty$ ), and  $f_1$  denotes the bounded Radon-Nikodym derivative of  $\mu_1$  with respect to the Lebesgue measure on  $\mathbb{R}$ . Similarly,

$$|D_2 F_{K,\mu}(q) - D_2 F_{K,\mu}(p)| \le 2C_2 \left( \sup_{t \in \mathbb{R}} X_{K,\mu}(t) \right) |p^{(2)} - q^{(2)}|$$

with some constant  $C_2 > 0$ . Therefore,

30

25

$$\|\text{grad } F_{K,\mu}(p) - \text{grad } F_{K,\mu}(q)\|$$
  
=  $\sqrt{(D_1 F_{K,\mu}(p) - D_1 F_{K,\mu}(q))^2 + (D_2 F_{K,\mu}(p) - D_2 F_{K,\mu}(q))^2}$   
 $\leq L \|p - q\|, \quad p, q \in \mathbb{R}^2,$ 

where

$$L := 2 \max \left\{ C_1 \sup_{s \in \mathbb{R}} Y_{K,\mu}(s), C_2 \sup_{t \in \mathbb{R}} X_{K,\mu}(t) \right\}$$

| GOPT 919499 | Initial | CE:YS | QA:EK |
|-------------|---------|-------|-------|
| 8-5-2014    | mitiai  |       |       |

15

i.e. condition (2.8) for  $F_{K,\mu}$  is satisfied with d = 2 and with the Lipschitz constant L given above.

# **3.** A stochastic algorithm for the global minimizer of $F_{K,\mu}$

We provide a stochastic algorithm for computing the global minimizer of generalized conic function  $F_{K,\mu}$  introduced in Definition 2.5, and we prove almost sure and  $L^q$ -convergence of this algorithm.

In this section, we assume that

# (C.4) $\mu$ is a probability measure on K.

Let  $(t_k)_{k \in \mathbb{N}}$  be a decreasing sequence of positive numbers such that  $\sum_{k=1}^{\infty} t_k = \infty$  and  $\sum_{k=1}^{\infty} t_k^2 < \infty$ .

Let  $(P_k)_{k \in \mathbb{N}}$  be a sequence of independent identically distributed (two-dimensional) random variables such that their common distribution on  $(\mathbb{R}^2, \mathcal{B}(\mathbb{R}^2))$  is given by  $\mu$ . Let  $x_0 \in K$  be arbitrarily chosen. We define recursively a Markov chain  $(X_k)_{k \in \mathbb{Z}_+}$  by

5

10

$$X_0 := x_0, \quad \text{and} \quad X_{k+1} := X_k - t_{k+1}Q_{k+1}, \quad k \in \mathbb{Z}_+,$$
 (3.1)

where

$$Q_{k+1} := \begin{cases} \begin{pmatrix} 1\\1 \end{pmatrix} & \text{if } X_k^{(1)} \ge P_{k+1}^{(1)} \text{ and } X_k^{(2)} \ge P_{k+1}^{(2)}, \\ \begin{pmatrix} 1\\-1 \end{pmatrix} & \text{if } X_k^{(1)} \ge P_{k+1}^{(1)} \text{ and } X_k^{(2)} < P_{k+1}^{(2)}, \\ \begin{pmatrix} -1\\1 \end{pmatrix} & \text{if } X_k^{(1)} < P_{k+1}^{(1)} \text{ and } X_k^{(2)} \ge P_{k+1}^{(2)}, \\ \begin{pmatrix} -1\\-1 \end{pmatrix} & \text{if } X_k^{(1)} < P_{k+1}^{(1)} \text{ and } X_k^{(2)} < P_{k+1}^{(2)}, \end{cases}$$

with the notations  $X_k := (X_k^{(1)}, X_k^{(2)}), P_k := (P_k^{(1)}, P_k^{(2)}), k \in \mathbb{N}.$ 

20 Remark 1 Note that if  $\mu$  is a probability measure on K such that it is absolutely continuous with respect to the Lebesgue measure on K with Radon-Nikodym derivative (density function)  $h_{\mu}$  given by

$$h_{\mu}(x, y) = \begin{cases} \frac{1}{A(K)} & \text{if } (x, y) \in K, \\ 0 & \text{if } (x, y) \notin K, \end{cases}$$

i.e.  $\mu$  is the uniform distribution on K, then  $(P_k)_{k \in \mathbb{N}}$  is a sequence of independent identically distributed (two-dimensional) random variables such that their common distribution is the uniform distribution on K.

# **3.1.** Almost sure and $L^q$ -convergence of $(X_k)_{k \in \mathbb{Z}_+}$

First, we recall the so-called Robbins–Monro algorithm based on Bouleau and Lépingle [8, Theorem B.5.1, Chapter 2]. This algorithm (in dimension 1) was originally invented by Robbins and Monro [6].

| GOPT 919499 | Initial | CE:YS | QA:EK |
|-------------|---------|-------|-------|
| 8-5-2014    | mua     |       |       |

M. Barczy et al.

Let  $d \in \mathbb{N}$  and  $(t_n)_{n \in \mathbb{Z}_+}$  be a decreasing sequence of positive real numbers. Let us suppose that all the random variables introduced below are defined on a probability space  $(\Omega, \mathcal{F}, \mathbb{P})$ . The Robbins–Monro algorithm generates a sequence of  $\mathbb{R}^d$ -valued random variables  $(\theta_n)_{n \in \mathbb{Z}_+}$  given by the recursion

$$\theta_{n+1} := \theta_n + t_{n+1}(\beta - \xi_{n+1}), \quad n \in \mathbb{Z}_+.$$

where  $\beta \in \mathbb{R}^d$ ,  $\theta_0$  is a given  $\mathbb{R}^d$ -valued random variable and  $(\xi_n)_{n \in \mathbb{Z}_+}$  is a sequence of *d*-dimensional random variables such that there exists a Borel measurable function M:  $\mathbb{R}^d \to \mathbb{R}^d$  satisfying

$$\mathbb{E}(\xi_{n+1} \mid \mathcal{F}_n) = M(\theta_n) \qquad \mathbb{P}\text{-almost surely for all } n \in \mathbb{N},$$

where the filtration  $(\mathcal{F}_n)_{n \in \mathbb{Z}_+}$  is defined by  $\mathcal{F}_0 := \sigma(\theta_0)$  (the sigma-algebra generated by  $\theta_0$ ) and  $\mathcal{F}_n := \sigma(\theta_0, \theta_1, \dots, \theta_n, \xi_1, \dots, \xi_n), n \in \mathbb{N}$  (the sigma-algebra generated by  $\theta_0, \theta_1, \dots, \theta_n, \xi_1, \dots, \xi_n$ ).

The following assumptions will be used.

Assumption (A.1) The  $\mathbb{R}^d$ -valued random variable  $\theta_0$  belongs to  $L^q(\Omega, \mathcal{F}, \mathbb{P})$ , where  $q \in \mathbb{N}$ .

Assumption (A.2) There exists some B > 0 such that  $||\xi_n|| \le B$  for all  $n \in \mathbb{N}$ .

Assumption (A.3) There exists some  $\theta^* \in \mathbb{R}^d$  such that for each  $\varepsilon \in (0, 1)$ ,

$$\inf_{\varepsilon \le \|\theta - \theta^*\| \le 1/\varepsilon} \langle \theta - \theta^*, M(\theta) - \beta \rangle > 0$$

where  $\langle \cdot, \cdot \rangle$  denotes the usual inner product in  $\mathbb{R}^d$ . Here, Assumption (A.3) could be interpreted as a 'half-space' assumption: roughly speaking, given the value of  $\theta_n$ , the expected value of  $\theta_{n+1}$  will be on that side of the hyperplane through  $\theta_n$  having normal vector  $\theta^* - \theta_n$  which contains  $\theta^*$ .

THEOREM 3.1 [Almost sure and  $L^q$ -convergence of Robbins–Monro algorithm] Let us suppose that Assumptions (A.1), (A.2) and (A.3) hold and that the decreasing sequence  $(t_n)_{n \in \mathbb{Z}_+}$  of positive numbers satisfies

$$\sum_{n=0}^{\infty} t_n = \infty \quad and \quad \sum_{n=0}^{\infty} t_n^2 < \infty.$$

Then  $\mathbb{P}(\lim_{n\to\infty} \theta_n = \theta^*) = 1$  and  $\lim_{n\to\infty} \mathbb{E} \|\theta_n - \theta^*\|^q = 0$  for all  $q \in \mathbb{N}$ .

35

Note that under the conditions of Theorem 3.1, the point  $\theta^* \in \mathbb{R}^d$  exists uniquely due to that, by Theorem 3.1,  $\mathbb{P}(\lim_{n\to\infty} \theta_n = \theta^*) = 1$  and the limit of an almost surely convergent sequence of random variables is unique (up to probability one). We also mention that, from a technical point of view, Assumption (A.3) is used for defining an appropriate non-negative supermartingale in order to prove the almost sure convergence of the sequence  $(\theta_n)_{n\in\mathbb{Z}_+}$ , see, e.g. Bouleau and Lépingle [8, proof of Theorem B.5.1, Chapter 2].

We will prove almost sure and  $L^q$ -convergence of the recursion given in (3.1). But, first we present an auxiliary lemma.

30

16

5

10

15

20

|          | GOPT 919499 | Initial | CE:YS | QA:EK |
|----------|-------------|---------|-------|-------|
| 8-5-2014 | 8-5-2014    |         |       |       |

17

LEMMA 3.2 Let us consider the sequence  $(X_k)_{k \in \mathbb{Z}_+}$  defined by (3.1). Let us suppose that Conditions (C.3) and (C.4) hold. Then

$$\mathbb{E}(Q_i \mid X_{i-1}) = \text{grad } F_{K,\mu}(X_{i-1}), \qquad i \in \mathbb{N},$$
(3.2)

5

and

$$\mathbb{E}(X_k) = x_0 - \sum_{i=1}^k t_i \mathbb{E}(\text{grad } F_{K,\mu}(X_{i-1})), \quad k \in \mathbb{N}.$$

*Proof* First note that  $X_k = x_0 - \sum_{i=1}^k t_i Q_i, k \in \mathbb{N}$ , where the sequence  $(Q_i)_{i \in \mathbb{N}}$  is such that the conditional distribution of  $Q_i$  with respect to  $X_{i-1}$  is given by

10 
$$Q_{i} = \begin{cases} \begin{pmatrix} 1\\1 \end{pmatrix} & \text{with probability } \mu\left(\left\{(x, y) \in K : X_{i-1}^{(1)} \ge x, X_{i-1}^{(2)} \ge y\right\}\right), \\ \begin{pmatrix} 1\\-1 \end{pmatrix} & \text{with probability } \mu\left(\left\{(x, y) \in K : X_{i-1}^{(1)} \ge x, X_{i-1}^{(2)} < y\right\}\right), \\ \begin{pmatrix} -1\\1 \end{pmatrix} & \text{with probability } \mu\left(\left\{(x, y) \in K : X_{i-1}^{(1)} < x, X_{i-1}^{(2)} \ge y\right\}\right), \\ \begin{pmatrix} -1\\-1 \end{pmatrix} & \text{with probability } \mu\left(\left\{(x, y) \in K : X_{i-1}^{(1)} < x, X_{i-1}^{(2)} \le y\right\}\right). \end{cases}$$
(3.3)

Then

$$\mathbb{E}(Q_{i} \mid X_{i-1}) = \begin{pmatrix} 1\\1 \end{pmatrix} \mu \left( \left\{ (x, y) \in K : X_{i-1}^{(1)} \ge x, X_{i-1}^{(2)} \ge y \right\} \right) \\ + \begin{pmatrix} 1\\-1 \end{pmatrix} \mu \left( \left\{ (x, y) \in K : X_{i-1}^{(1)} \ge x, X_{i-1}^{(2)} < y \right\} \right) \\ + \begin{pmatrix} -1\\1 \end{pmatrix} \mu \left( \left\{ (x, y) \in K : X_{i-1}^{(1)} < x, X_{i-1}^{(2)} \ge y \right\} \right) \\ + \begin{pmatrix} -1\\-1 \end{pmatrix} \mu \left( \left\{ (x, y) \in K : X_{i-1}^{(1)} < x, X_{i-1}^{(2)} < y \right\} \right) \\ = \begin{pmatrix} \mu(\{(x, y) \in K : X_{i-1}^{(1)} \ge x\}) - \mu(\{(x, y) \in K : X_{i-1}^{(1)} < x\}) \\ \mu(\{(x, y) \in K : X_{i-1}^{(2)} \ge y\}) - \mu(\{(x, y) \in K : X_{i-1}^{(2)} < y\}) \end{pmatrix}$$

for  $i \in \mathbb{N}$ . Note that by Condition (C.3) and Lemma 2.8, we also have

$$\mathbb{E}(Q_i \mid X_{i-1}) = \begin{pmatrix} D_1 F_{K,\mu}(X_{i-1}^{(1)}, X_{i-1}^{(2)}) \\ D_2 F_{K,\mu}(X_{i-1}^{(1)}, X_{i-1}^{(2)}) \end{pmatrix} = \operatorname{grad} F_{K,\mu}(X_{i-1}), \qquad i \in \mathbb{N}.$$

Hence, by the tower rule, the expectation of  $X_k$  takes the form

$$\mathbb{E}(X_k) = x_0 - \sum_{i=1}^k t_i \mathbb{E}(Q_i) = x_0 - \sum_{i=1}^k t_i \mathbb{E}(\mathbb{E}(Q_i \mid X_{i-1}))$$
  
=  $x_0 - \sum_{i=1}^k t_i \mathbb{E}(\text{grad } F_{K,\mu}(X_{i-1})), \quad k \in \mathbb{N}.$ 

25

15

| GOPT 919499 | Initial | CE:YS | QA:EK |
|-------------|---------|-------|-------|
| 8-5-2014    | mitia   |       |       |

M. Barczy et al.

THEOREM 3.3 Let us suppose that Conditions (C.1)–(C.4) hold. Then the sequence of 2-dimensional random variables defined in (3.1) converges almost surely and in  $L^q$  ( $q \in \mathbb{N}$ ) to the unique global minimizer  $X^*$  of the generalized conic function  $F_{K,\mu}$ , i.e.  $\mathbb{P}(\lim_{n\to\infty} X_n = X^*) = 1$  and  $\lim_{n\to\infty} \mathbb{E} ||X_n - X^*||^q = 0$ .

5 *Proof* First note that under Conditions (C.1)–(C.3), there exists a unique global minimizer  $\theta^*$  of  $F_{K,\mu}$ , that is  $F_{K,\mu}(\theta) > F_{K,\mu}(\theta^*)$  for all  $\theta \neq \theta^*$ ,  $\theta \in \mathbb{R}^2$ , see, Corollary 2.9. Let us apply Theorem 3.1 with the following choices:

- $d := 2, \beta := 0 \in \mathbb{R}^2$  and  $\xi_{n+1} := Q_{n+1}, n \in \mathbb{Z}_+$ .
- $\theta^* \in \mathbb{R}^2$  is such that grad  $F_{K,\mu}(\theta^*) = 0 \in \mathbb{R}^2$ . Note that under the Conditions (C.1)–(C.3), by Corollary 2.9,  $\theta^*$  is unique, and it is nothing else but the unique global minimizer of  $F_{K,\mu}$ .

In what follows we check that Assumptions (A.1)–(A.3) hold. Assumption (A.1) holds trivially. Assumption (A.2) holds with  $B := \sqrt{2}$ , since

$$\left\| \begin{pmatrix} 1\\1 \end{pmatrix} \right\| = \left\| \begin{pmatrix} 1\\-1 \end{pmatrix} \right\| = \left\| \begin{pmatrix} -1\\1 \end{pmatrix} \right\| = \left\| \begin{pmatrix} -1\\-1 \end{pmatrix} \right\| = \sqrt{2}.$$

Since  $\mathbb{E}(Q_i \mid X_0, X_1, \dots, X_{i-1}, Q_1, \dots, Q_{i-1}) = \mathbb{E}(Q_i \mid X_{i-1})$ , by (3.2), we have  $M : \mathbb{R}^2 \to \mathbb{R}^2$ ,  $M(\theta) = \text{grad } F_{K,\mu}(\theta), \theta \in \mathbb{R}^2$ , and by Corollary 2.9,

$$M(\theta^*) = \text{grad } F_{K,\mu}(\theta^*) = 0 \in \mathbb{R}^2$$

Finally, for Assumption (A.3), we have to check that for all  $\varepsilon \in (0, 1)$ ,

$$\inf_{\varepsilon \le \|\theta - \theta^*\| \le 1/\varepsilon} \langle \theta - \theta^*, \operatorname{grad} F_{K,\mu}(\theta) \rangle > 0.$$

Since  $F_{K,\mu}$  is a convex and differentiable function defined on  $\mathbb{R}^2$  (see, Theorem 2.6 and the proof of Lemma 2.19), we have

$$\langle \text{grad } F_{K,\mu}(\theta), \theta^* - \theta \rangle \le F_{K,\mu}(\theta^*) - F_{K,\mu}(\theta) \le 0, \qquad \forall \ \theta \in \mathbb{R}^2, \tag{3.4}$$

where the last inequality follows by that  $\theta^*$  is the global minimizer of  $F_{K,\mu}$ , see also Lemma 2.18. Since  $\theta^*$  is strict global minimizer of  $F_{K,\mu}$ , i.e.  $F_{K,\mu}(\theta) > F_{K,\mu}(\theta^*)$  for all  $\theta \neq \theta^*$ ,  $\theta \in \mathbb{R}^2$  (see Corollary 2.9) and  $\{\theta \in \mathbb{R}^2 : \varepsilon \leq ||\theta - \theta^*|| \leq 1/\varepsilon\}$  is a compact set, by (3.4), we get Assumption (A.3) holds in our case.

*Example 3.4* Let *K* be the square with vertexes (0, 0), (0, 1), (1, 0), (1, 1) as in part (i) of Example 2.4. Let us assume that  $\mu$  is the probability measure on *K* with Radon-Nikodym derivative with respect to the Lebesgue measure given by

$$h_{\mu}(x, y) = \begin{cases} 1 & \text{if } (x, y) \in K, \\ 0 & \text{if } (x, y) \notin K. \end{cases}$$

10

15

20

25

30

Further, let  $x_0 := (0, 0)^{\top}$  and  $t_k := \frac{1}{k}, k \in \mathbb{N}$ . Then

$$X_0 = \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \qquad X_k = -\sum_{i=1}^k t_i Q_i = -\sum_{i=1}^k \frac{1}{i} Q_i, \quad k \in \mathbb{N},$$

5

where the sequence  $(Q_i)_{i \in \mathbb{N}}$  is such that the conditional distribution of  $Q_i$  with respect to  $X_{i-1}$  is given by (3.3). By Theorem 3.3 and part (i) of Example 2.4, we have  $\mathbb{P}(\lim_{k\to\infty} X_k = X^*) = 1$  and  $\lim_{k\to\infty} \mathbb{E} ||X_k - X^*||^q = 0$  for all  $q \in \mathbb{N}$ , where  $X^* = (1/2, 1/2)^{\top}$ . Note also that if  $X_{i-1} \in K$ , then the conditional distribution of  $Q_i$  with respect to  $X_{i-1}$  takes the form

$$Q_{i} = \begin{cases} \begin{pmatrix} 1 \\ 1 \end{pmatrix} & \text{with probability } X_{i-1}^{(1)} X_{i-1}^{(2)}, \\ \begin{pmatrix} 1 \\ -1 \end{pmatrix} & \text{with probability } X_{i-1}^{(1)} \left(1 - X_{i-1}^{(2)}\right), \\ \begin{pmatrix} -1 \\ 1 \end{pmatrix} & \text{with probability } \left(1 - X_{i-1}^{(1)}\right) X_{i-1}^{(2)}, \\ \begin{pmatrix} -1 \\ -1 \end{pmatrix} & \text{with probability } \left(1 - X_{i-1}^{(1)}\right) \left(1 - X_{i-1}^{(2)}\right). \end{cases}$$

10

Finally, we remark that  $X_1 = (1, 1)^{\top}$  and  $X_2 = (1/2, 1/2)^{\top}$ .

# **3.2.** Almost sure and $L^q$ -convergence of $(F_{K,\mu}(X_k))_{k \in \mathbb{Z}_+}$

First we recall an equivalent reformulation of  $L^q$ -convergence, where  $q \in \mathbb{N}$ , see, e.g. Chow and Teicher [13, Theorem 4.2.3].

15 LEMMA 3.5 Let  $d, q \in \mathbb{N}, \xi : \Omega \to \mathbb{R}^d$  and  $\xi_n : \Omega \to \mathbb{R}^d, n \in \mathbb{N}$ , be  $\mathbb{R}^d$ -valued random variables such that  $\mathbb{E}(\|\xi\|^q) < \infty$  and  $\mathbb{E}(\|\xi_n\|^q) < \infty, n \in \mathbb{N}$ . Then  $\xi_n$  converges to  $\xi$  in  $L^q$  as  $n \to \infty$  (i.e.  $\lim_{n\to\infty} \mathbb{E}(\|\xi_n - \xi\|^q) = 0$ ) if and only if  $\xi_n$  converges in probability to  $\xi$  as  $n \to \infty$  and the set of random variables  $\{\|\xi_n\|^q : n \in \mathbb{N}\}$  is uniformly integrable, i.e.

$$\lim_{m\to\infty}\sup_{n\in\mathbb{N}}\mathbb{E}\left(\|\xi_n\|^q\mathbf{1}_{\{\|\xi_n\|^q>m\}}\right)=0.$$

THEOREM 3.6 Let us suppose that Conditions (C.1)–(C.4) hold. Then the sequence of onedimensional random variables  $(F_{K,\mu}(X_k))_{k\in\mathbb{N}}$  converges almost surely and in  $L^q$   $(q \in \mathbb{N})$ to  $F_{K,\mu}(X^*)$  as  $k \to \infty$ , where  $X^*$  denotes the unique global minimizer of  $F_{K,\mu}$ .

*Proof* By Theorem 3.3,  $\mathbb{P}(\lim_{k\to\infty} X_k = X^*) = 1$ , and hence to prove that  $\mathbb{P}(\lim_{k\to\infty} 25)$  $F_{K,\mu}(X_k) = F_{K,\mu}(X^*) = 1$ , it is enough to check that  $F_{K,\mu}$  is continuous. This follows by that  $F_{K,\mu}$  is a convex function defined on  $\mathbb{R}^2$  (see Theorem 2.6). We give an alternative argument, too. Let  $(x_n, y_n)^\top \in \mathbb{R}^2$ ,  $n \in \mathbb{N}$ , be such that  $\lim_{n\to\infty} (x_n, y_n) = (x, y)$ , where  $(x, y)^\top \in \mathbb{R}^2$ . Then for all  $(\alpha, \beta)^\top \in \mathbb{R}^2$ ,  $\lim_{n\to\infty} d_1((x_n, y_n), (\alpha, \beta)) = d_1((x, y), (\alpha, \beta))$ , and using that K is bounded,

$$\sup_{n\in\mathbb{N}}\sup_{(\alpha,\beta)\in K}d_1((x_n, y_n), (\alpha, \beta)) < \infty$$

30

20

| GOPT 919499 | Initial | CE:YS | QA:EK |
|-------------|---------|-------|-------|
| 8-5-2014    | Initial |       |       |

M. Barczy et al.

By Lebesgue dominated convergence theorem (which can be used since  $\mu(K) < \infty$ )

$$\lim_{n \to \infty} F_{K,\mu}(x_n, y_n) = \int_K \lim_{n \to \infty} d_1((x_n, y_n), (\alpha, \beta)) \,\mu(\mathrm{d}\alpha, \mathrm{d}\beta)$$
$$= \int_K d_1((x, y), (\alpha, \beta)) \,\mu(\mathrm{d}\alpha, \mathrm{d}\beta) = F_{K,\mu}(x, y).$$

5 yielding that  $F_{K,\mu}$  is continuous.

Further, using Lemma 3.5 and that almost sure convergence yields convergence in probability, in order to prove  $L^q$ -convergence of  $(F_{K,\mu}(X_k))_{k\in\mathbb{N}}$ , it is enough (and actually necessary) to check that

$$\lim_{m \to \infty} \sup_{k \in \mathbb{N}} \mathbb{E}\left( \|X_k\|^q \mathbf{1}_{\{\|X_k\|^q > m\}} \right) = 0.$$
(3.5)

We show that the sequence  $(||X_k||^q)_{k \in \mathbb{N}}$  is bounded, and then (3.5) readily follows. Let  $D := \sup_{k \in \mathbb{N}} \{t_k\} = t_1 > 0$  (indeed,  $(t_k)_{k \in \mathbb{N}}$  is a decreasing sequence of positive numbers). Let us consider the rectangle *R* with vertexes

15  

$$\left(\inf\{x:(x, y) \in K\} - D\sqrt{2}, \inf\{y:(x, y) \in K\} - D\sqrt{2}\right),$$

$$\left(\inf\{x:(x, y) \in K\} - D\sqrt{2}, \sup\{y:(x, y) \in K\} + D\sqrt{2}\right),$$

$$\left(\sup\{x:(x, y) \in K\} + D\sqrt{2}, \inf\{y:(x, y) \in K\} - D\sqrt{2}\right),$$

$$\left(\sup\{x:(x, y) \in K\} + D\sqrt{2}, \sup\{y:(x, y) \in K\} + D\sqrt{2}\right).$$

Since  $||Q_k|| = \sqrt{2}, k \in \mathbb{N}$ , if  $X_n \in K$  with some  $n \in \mathbb{N}$ , then  $X_{n+1} \in R$ , i.e. the recursion (3.1) cannot leave the rectangle *R* starting from *K* by one step. Next we check that if  $X_n \in R$ with some  $n \in \mathbb{N}$ , then  $X_{n+1} \in R$ , which yields that the recursion (3.1) cannot leave the rectangle *R*. We distinguish eight cases according to the Figure 2.

If  $X_n$  is in the rectangle numbered 1, then  $Q_{n+1} = (-1, 1)^{\top}$  and hence, by the choice of D,

$$X_{n+1} = X_n + t_{n+1} \begin{pmatrix} 1 \\ -1 \end{pmatrix} \in R$$



Figure 2. The eight cases.

25

|          | GOPT 919499 | Initial | CE:YS | QA:EK |
|----------|-------------|---------|-------|-------|
| 8-5-2014 | 8-5-2014    | IIIIuai |       |       |

21

If  $X_n$  is in the rectangle numbered 2, then  $Q_{n+1} = (1, 1)^\top$  or  $Q_{n+1} = (-1, 1)^\top$  according to the cases  $X_n^{(1)} \ge P_{n+1}^{(1)}$  and  $X_n^{(1)} < P_{n+1}^{(1)}$ , and hence

$$X_{n+1} = X_n + t_{n+1} \begin{pmatrix} -1 \\ -1 \end{pmatrix} \in R$$
 or  $X_{n+1} = X_n + t_{n+1} \begin{pmatrix} 1 \\ -1 \end{pmatrix} \in R.$ 

If  $X_n$  is in the rectangle numbered 3, then  $Q_{n+1} = (1, 1)^{\top}$  and hence

$$X_{n+1} = X_n + t_{n+1} \begin{pmatrix} -1 \\ -1 \end{pmatrix} \in R.$$

The other cases can be handled similarly.

# Acknowledgements

10 We are grateful for the referee for his/her several valuable comments that have led to an improvement of the manuscript. The research of Mátyás Barczy was realized in the frames of TÁMOP 4.2.4. A/2-11-1-2012-0001 'National Excellence Program – Elaborating and operating an inland student and researcher personal support system'.

#### Funding

15 The project was subsidized by the European Union and co-financed by the European Social Fund. Abris Nagy has been supported, in part, by the Hungarian Academy of Sciences, the European Union and the State of Hungary, co-financed by the European Social Fund in the framework of TÁMOP 4.2.4. A/2-11-1-2012-0001 'National Excellence Program'. Csaba Vincze was partially supported by the European Union and the European Social Fund through the project Supercomputer, the national virtual lab [grant number TÁMOP-4.2.2.C-11/1/KONV-2012-0010]. Csaba Vincze is supported by the University of Debrecen's internal research project RH/885/2013.

## References

25

AQ5

30

35

40

AQ6

- Vincze Cs, Nagy Á. On the theory of generalized conics with applications in geometric tomography. J. Approx. Theory. 2012;164:371–390.
- [2] Gardner RJ. Geometric tomography. 2nd ed. New York (NY): Cambridge University Press; 2006.
  - [3] Lukšan L. Conjugate gradient algorithms for conic functions. Aplikace Matematiky. 1986;31:427–440.
  - [4] Wang G-J, Wang W, Ren F. Conic functions on metric spaces and their application. Appl. Math. Lett. 2005;18:451–454.
- [5] Yaglom IM, Boltyanskii VG. Convex figures. Holt, Rinehart and Winston; 1961.
- [6] Robbins H, Monro S. A stochastic approximation method. Ann. Math. Stat. 1951;22:400–407.
- [7] Robert C, Casella G. Monte Carlo statistical methods. 2nd ed. Springer Verlag; 2004.
- [8] Bouleau N, Lépingle D. Numerical methods for stochastic processes. Wiley; 1994.
- [9] Arnaudon M, Dombry C, Phan A, Yang L. Stochastic algorithms for computing means of probability measures. Stoch. Process. Appl. 2012;122:1437–1455.
  - [10] Cohn DL. Measure theory. Boston: Birkhäuser; 1980.
  - [11] Beer GA. The Hausdorff metric and convergence in measure. Mich. Math. J. 1974;21:63-64.
  - [12] Polyak BT. Introduction to optimization. New York (NY): Optimization Software Inc., Publications Division; 1987.
  - [13] Chow YS, Teicher H. Probability theory. 3rd ed. New York (NY): Springer-Verlag; 1997.