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1. Introduction15

Let K be a compact body in R
2 (a non-empty compact set coinciding with the closure

of its interior) and consider the distance function induced by the taxicab norm. The so-
called conic function FK associated to K (introduced by Vincze and Nagy [1, Definition
6], see also Definition 2.1) measures the average taxicab distance of the points from K via
integration with respect to the Lebesgue measure, or explaining in another way: the conic20
function FK at some point (x, y) ∈ R

2 can be interpreted as the expectation of the random
variable defined as the taxicab distance of (x, y) and (ξ, η), where (ξ, η) is a uniformly
distributed random variable on K , for more details see part (ii) of Remark 1AQ4 . Conic functions
are extensively used in geometric tomography since they contain a lot of information about
unknown bodies, for a more detailed discussion see Gardner [2] and Vincze and Nagy [1].25
We call the attention that in the literature one can find other definitions of ‘conic functions’
that are completely different from ours. For example, in optimization, a conic function is
usually defined to be the ratio of a quadratic function and the square of a linear function
on the open halfspace, where the linear function is positive, see, e.g. Luksan [3, formula
(2.1)]. Wang et al. [4] introduced another definition of conic functions in metric spaces and30
obtained a new condition for metric spaces being compact in terms of conic functions.

We recall that one of the striking features of the conic function FK is that a point in
R

2 is a global minimizer of FK if and only if it bisects the area of K , i.e. the vertical
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and horizontal lines through this point cut the compact body K into two parts with equal
areas, see Vincze and Nagy [1, Corollary 1]. We call the attention that points with similar
properties are important and well studied in geometry. For instance, we mention that if S

is a convex set in R
2, then there exist two perpendicular lines that divide S into four parts

with equal areas, see Yaglom and Boltyanskii [5, Section 3].5
In Section 2 of the present paper, we generalize the conic function FK introduced

by Vincze and Nagy [1] in a way that it measures the average taxicab distance of the
points from K via integration with respect to some measure µ on K with µ(K ) < ∞, see
Definition 2.5. From geometric point of view, the body K associated with some measure
µ can be considered as a mathematical model of a non-homogeneous body and hence our10
generalization of conic functions may find applications in (geometric) tomography where
typically non-homogeneous bodies occur. We generalize Theorems 3, 4, 5, Lemmas 6, 7
and Corollary 1 in Vincze and Nagy [1] for conic functions FK ,µ associated with a compact
body K and a measure µ with µ(K ) < ∞. We only mention that it turns out that a point in
R

2 is a global minimizer of FK ,µ if and only if it bisects the µ-area of K , see Corollary 2.9.15
In Section 3, we give a stochastic algorithm for the global minimizer of the convex

function FK ,µ. In the heart of our algorithm, the well-known Robbins–Monro algorithm (see
[6]) lies, and we prove almost sure and Lq -convergence of our algorithm. More precisely,
we define recursively a sequence (Xk)k∈Z+ of random variables (see (3.1)) which forms an
inhomogeneous Markov chain and we prove almost sure and Lq -convergence of this Markov20
chain via Robbins–Monro algorithm, see Theorem 3.3. We also prove almost sure and
Lq -convergence of the sequence (FK ,µ(Xk))k∈N, see Theorem 3.6. In general, stochastic
algorithms for finding a minimum of a convex function have a vast literature, see, e.g.
Robert and Casella [7] and Bouleau and Lépingle [8]. Without giving an introduction of
the newest results in the field we only mention the paper [9] of Arnaudon et al., which in25
some sense motivated our study. They gave a stochastic algorithm which converges almost
surely and in L2 to the so-called p-mean of a probability measure supported by a regular
geodesic ball in a manifold.

2. Generalized conic functions

Let Z+, N, R and R+ denote the set of non-negative integers, positive integers, real numbers30
and non-negative real numbers, respectively. For an x ∈ R

2, we will denote its Euclidean
norm by ‖x‖. Let K ⊂ R

2 be a non-empty compact set such that it coincides with the
closure of its interior. In geometry, K is called a compact body. By B(Rd) and B(K ), we
denote the Borel σ -algebra on R

d and on K , respectively, where d ∈ N. For all x, y ∈ R

let us introduce the following notations35

{K <1 x} := {(α, β) ∈ K : α < x}, {x <1 K } := {(α, β) ∈ K : x < α},
{K <2 y} := {(α, β) ∈ K : β < y}, {y <2 K } := {(α, β) ∈ K : y < β},
{K =1 x} := {(α, β) ∈ K : α = x}, {K =2 y} := {(α, β) ∈ K : β = y}.

The notations {K ≤1 x}, {x ≤1 K }, {K ≤2 y} and {y ≤2 K } are defined in the same way.40
For a function f : R

2 → R, we will denote by D1 f and D2 f the partial derivatives of f .
Next, we recall the notion of a generalized conic function associated with K due to

Vincze and Nagy [1].
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Definition 2.1 (Vincze and Nagy [1, Definition 6]) The generalized conic function FK :
R

2 → R associated to K is defined by

FK (x, y) :=
1

A(K )

∫

K

d1((x, y), (α, β)) dαdβ, (x, y) ∈ R
2,

where A(K ) is the two-dimensional Lebesgue measure (area) of K , and the distance function5
d1 is given by d1((x, y), (α, β)) := |x − α| + |y − β|, (x, y), (α, β) ∈ R

2 (d1 is known to
be the metric induced by the taxicab norm).

The next result is about the global minimizer of FK .

Proposition 2.2 (Vincze and Nagy [1, Corollary 1]) A point in R
2 is a global minimizer

of the generalized conic function FK if and only if it bisects the area of K , i.e. the vertical10
and the horizontal lines through this point cut the compact body K into two parts with equal

area.

We note that the global minimizer of the generalized conic function FK is not unique
in general. In Proposition 2.3, we give a sufficient condition for its uniqueness.

In what follows we will frequently use the following conditions15

(C.1) K is connected,
(C.2) µ(B(p, ε) ∩ K ) > 0 for all p ∈ K , ε > 0 and B(p, ε),
where µ is a measure on the measurable space (K ,B(K )) and B(p, ε) denotes the
open ball around p with radius ε, and
(C.3) µ({K =1 x}) = µ({K =2 y}) = 0 for all x, y ∈ R.20
We call the attention that Condition (C.3) does not hold for a measure in general. For
example, if µ is the distribution of a discrete random variable having values in K ,
then Condition (C.3) does not hold. However, if µ is the two-dimensional Lebesgue
measure on K , then Conditions (C.2) and (C.3) hold automatically.

Proposition 2.3 If Condition (C.1) holds, then the convex function FK has a unique25
global minimizer (x∗, y∗) ∈ R

2, that is, FK (x, y) > FK (x∗, y∗) for (x, y) 
= (x∗, y∗),
(x, y) ∈ R

2.

Proof The existence of a global minimizer of FK can be checked as follows. By Theorem
3 in Vincze and Nagy [1], FK is a finite-valued convex function defined on R

2 and its level
sets are compact subsets of R

2. Hence, FK is continuous and consequently it reaches its30
minimum on every compact set.

Now we turn to prove the uniqueness of (x∗, y∗). Let us suppose that (x∗, y∗) ∈ R
2 and

(x̃∗, ỹ∗) ∈ R
2 are global minimizers of FK such that (x∗, y∗) 
= (x̃∗, ỹ∗). Then x∗ 
= x̃∗

or y∗ 
= ỹ∗. We may assume that x̃∗ < x∗. Then both of the vertical lines R
2 =1 x∗ and

R
2 =1 x̃∗ bisect the area of K . Note that since Condition (C.3) holds automatically for the35

two-dimensional Lebesgue measure, the bisection of the area of K is well defined. Let us
consider the open half-planes

H∗ := R
2 <1 x∗ and H̃∗ := R

2 >1 x̃∗.
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Note that (x̃∗, ỹ∗) ∈ H∗ and (x∗, y∗) ∈ H̃∗. We show that K ∩ (H∗ ∩ H̃∗) = ∅. On the
contrary, let us suppose that there exists p ∈ R

2 such that p ∈ K ∩ (H∗ ∩ H̃∗). Since K is
a non-empty compact body, there exist

0 < ε < min{d2(p, R
2 =1 x∗), d2(p, R

2 =1 x̃∗)}5

and q ∈ B(p, ε) such that q is an interior point of K , where d2 denotes the standard
Euclidean distance on R

2. Hence, there exists

0 < δ < min{d2(p, R
2 =1 x∗), d2(p, R

2 =1 x̃∗)}

such that B(q, δ) ⊂ K ∩ (H∗ ∩ H̃∗). Then10

A(K <1 x̃∗) = A(x̃∗ <1 K ) ≥ A(B(q, δ)) + A(x∗ <1 K ),

A(x∗ <1 K ) = A(K <1 x∗) ≥ A(B(q, δ)) + A(K <1 x̃∗), (2.1)

and hence

A(K <1 x∗) ≥ 2A(B(q, δ)) + A(K <1 x∗),15

i.e. 0 ≥ A(B(q, δ)), which yields us to a contradiction. At this point, we implicitly used
that Condition (C.2) holds automatically for the two-dimensional Lebesgue measure. Hence
K ∩ (H∗ ∩ H̃∗) = ∅. Let 0 < η < (x∗ − x̃∗)/2, and let us consider the open half-planes

I ∗ := R
2 >1 x∗ − η and Ĩ ∗ := R

2 <1 x̃∗ + η.20

Then I ∗ and Ĩ ∗ are open sets of R
2, I ∗ ∩ Ĩ ∗ = ∅, and, since K ∩ (H∗ ∩ H̃∗) = ∅, we have

K ⊂ I ∗ ∪ Ĩ ∗. Further, I ∗ ∩ K and Ĩ ∗ ∩ K are separated sets such that their union equals
K . This is a contradiction due to the connectedness of K . Hence x∗ = x̃∗, and in a similar
way we have y∗ = ỹ∗. �25

We call the attention that Condition (C.1) is sufficient but not necessary in order that
the generalized conic function FK should have a uniquely determined global minimizer.
Figure 1 shows three different cases where Condition (C.1) is not satisfied but FK has a
unique global minimizer.

On the subfigure (c) of Figure 1, the circles have centres (−1/
√

12, 0) and (1/2n, 0)30
with radii 1/

√
12 and 1/2n+2, respectively, where n ∈ Z+.

Figure 1. Examples for K such that Condition (C.1) does not hold but FK has a unique global
minimizer.
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Example 2.4

(i) If K is the square with vertexes (0, 0), (0, 1), (1, 0), (1, 1), then

FK (x, y) =
(

x −
1

2

)2

+
(

y −
1

2

)2

+
1

2
, (x, y) ∈ K ,

see, e.g. Vincze and Nagy [1, Example 3]. Using that K is connected, by Propositions5
2.2 and 2.3, the global minimizer of FK is (x, y) = ( 1

2 , 1
2 ).

(ii) If K is the triangle with vertexes (0, 0), (0, 1), (1, 0), then

FK (x, y) = −
2

3
(x3 + y3) + 2(x2 + y2) − (x + y) +

2

3
, (x, y) ∈ K .

Indeed, FK (x, y) = E(|ξ − x |) + E(|η − y|) for all (x, y) ∈ R
2, where (ξ, η) is10

a uniformly distributed random variable on K . Then the joint density function of
(ξ, η), and the density functions of the marginals of (ξ, η) take the forms

f(ξ,η)(α, β) =
{

2 if (α, β) ∈ K ,

0 if(α, β) 
∈ K ,

and15

fξ (α) =
{

−2α + 2 if α ∈ [0, 1],
0 if α 
∈ [0, 1], fη(β) =

{
−2β + 2 if β ∈ [0, 1],
0 if β 
∈ [0, 1],

respectively. Hence for all (x, y) ∈ K ,

E(|ξ − x |) =
∫ 1

0
|α − x |(−2α + 2) dα

=
∫ x

0
(x − α)(−2α + 2) dα +

∫ 1

x

(α − x)(−2α + 2) dα20

= −
2

3
x3 + 2x2 − x +

1

3
,

and similarly E(|η − y|) = − 2
3 y3 + 2y2 − y + 1

3 for all (x, y) ∈ K . Hence, the
global minimizer of FK is (1 −

√
2/2, 1 −

√
2/2). Indeed, the solution in K of the

system of equations25

D1 FK (x, y) = −2x2 + 4x − 1 = 0 and D2 FK (x, y) = −2y2 + 4y − 1 = 0,

is (1 −
√

2/2, 1 −
√

2/2). Using that K is connected, by Propositions 2.2 and 2.3,
the global minimizer of FK is (1 −

√
2/2, 1 −

√
2/2).

In what follows, we generalize the notion of the conic function introduced by Vincze30
and Nagy [1, Definition 6], see also Definition 2.1.

Definition 2.5 Let µ be a measure on the measurable space (K ,B(K )) such that µ(K )

< ∞. The generalized conic function FK ,µ : R
2 → R associated to K and µ is defined by

FK ,µ(x, y) :=
∫

K

d1((x, y), (α, β)) µ(dα, dβ), (x, y) ∈ R
2.

35
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Remark 1

(i) Note that under the conditions of Definition 2.5, we have FK ,µ(x, y) is well defined
for all (x, y) ∈ R

2, since for fixed (x, y) ∈ R
2, the function K ∋ (α, β) �→

d1((x, y), (α, β)) is bounded and µ(K ) < ∞.
(ii) If µ is a measure on K such that µ(K ) < ∞ and it is absolutely continuous with5

respect to the Lebesgue measure on K with Radon-Nikodym derivative hµ, then

FK ,µ(x, y) =
∫

K

d1((x, y), (α, β))hµ(α, β) dαdβ, (x, y) ∈ R
2.

With

hµ(α, β) :=
{ 1

A(K )
if (α, β) ∈ K ,

0 if (α, β) 
∈ K ,
10

we have FK ,µ coincides with FK given in Definition 2.1. Note also that the conic
function FK can be interpreted as the expectation of an appropriate random variable.
Namely, FK (x, y) = E[d1((x, y), (ξ, η))], (x, y) ∈ R

2, where (ξ, η) is a uniformly
distributed random variable on K .15

Next, we generalize Theorems 3, 4 and 5, Lemmas 6 and 7 and Corollary 1 in Vincze
and Nagy [1] for the generalized conic function FK ,µ.

Theorem 2.6 The generalized conic function FK ,µ : R
2 → R+ is a convex function

which satisfies the growth condition

lim inf
‖(x,y)‖→∞

FK ,µ(x, y)√
x2 + y2

≥ µ(K ) > 0.20

Consequently, the level sets of the function FK ,µ are bounded and hence compact subsets

of R
2.

Proof Recall that

FK ,µ(x, y) =
∫

K

d1((x, y), (α, β)) µ(dα, dβ), (x, y) ∈ R
2.25

The convexity of FK ,µ is clear, since the integrand is a convex function for any fixed element
(α, β) ∈ K , and the Lebesgue integral with respect to the measure µ is monotone. Further,
since d2((x, y), (α, β)) ≤ d1((x, y), (α, β)), (x, y), (α, β) ∈ R

2, where d2 is the standard
Euclidean distance on R

2, we have30

FK ,µ(x, y) ≥
∫

K

d2((x, y), (α, β)) µ(dα, dβ), (x, y) ∈ R
2,

and then

FK ,µ(x, y)√
x2 + y2

≥
∫

K

(
d2((x, y), (α, β)) −

√
x2 + y2

√
x2 + y2

+ 1

)
µ(dα, dβ)

35
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for (x, y) ∈ R
2, (x, y) 
= (0, 0). The triangle inequality shows that

√
x2 + y2 = d2((x, y), (0, 0)) ≤ d2((x, y), (α, β)) + d2((α, β), (0, 0))

= d2((x, y), (α, β)) +
√

α2 + β2,

and then5

FK ,µ(x, y)√
x2 + y2

≥
∫

K

(
1 −

√
α2 + β2

√
x2 + y2

)
µ(dα, dβ), (x, y) ∈ R

2, (x, y) 
= (0, 0).

By Fatou’s lemma,

lim inf
‖(x,y)‖→∞

FK ,µ(x, y)√
x2 + y2

≥ lim inf
‖(x,y)‖→∞

∫

K

(
1 −

√
α2 + β2

√
x2 + y2

)
µ(dα, dβ)

≥
∫

K

lim inf
‖(x,y)‖→∞

(
1 −

√
α2 + β2

√
x2 + y2

)
µ(dα, dβ) = µ(K ) > 0.10

Here for completeness, we note that one can use Fatou’s lemma, since for all c > 0,

∫

K

inf

{
1 −

√
α2 + β2

√
x2 + y2

: ‖(x, y)‖ ≥ c

}
µ(dα, dβ)

=
∫

K

(
1 −

√
α2 + β2

c

)
µ(dα, dβ) > −∞,

15

where the last inequality follows by that K is compact (hence bounded) and µ(K ) < ∞.
Let d ∈ R+ and let us suppose that the level set {(x, y) ∈ R

2 : FK ,µ(x, y) ≤ d} is
unbounded. Then one can choose a sequence (xn, yn), n ∈ N, such that FK ,µ(xn, yn) ≤ d ,
n ∈ N, and limn→∞ ‖(xn, yn)‖ = ∞. This would imply that

lim
n→∞

FK ,µ(xn, yn)√
x2

n + y2
n

= 0,20

which contradicts to the growth condition. �

Lemma 2.7 Let us suppose that Condition (C.3) holds. For the generalized conic function

FK ,µ, we have

FK ,µ(x, y) = x
(
µ({K <1 x}) − µ({x <1 K })

)
−
∫

K

α(1{α<x} − 1{x<α}) µ(dα, dβ)25

+ y
(
µ({K <2 y}) − µ({y <2 K })

)
−
∫

K

β(1{β<y} − 1{y<β}) µ(dα, dβ)

for all (x, y) ∈ R
2.

Proof By definition,

FK ,µ(x, y) =
∫

K

(|x − α| + |y − β|) µ(dα, dβ), (x, y) ∈ R
2.30
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Here,
∫

K

|x − α|µ(dα, dβ) =
∫

K<1x

|x − α|µ(dα, dβ) +
∫

x≤1 K

|x − α|µ(dα, dβ)

=
∫

K<1x

(x − α)µ(dα, dβ) +
∫

x≤1 K

(α − x) µ(dα, dβ)

= x
(
µ({K <1 x}) − µ({x ≤1 K })

)
−
∫

K<1x

α µ(dα, dβ)

+
∫

x≤1 K

α µ(dα, dβ),5

and the integral
∫

K
|y − β|µ(dα, dβ) can be handled similarly. The assertion follows by

taking into account Condition (C.3). �

Lemma 2.8 Let us suppose that Condition (C.3) holds. For the generalized conic function

FK ,µ, we have10

D1 FK ,µ(x, y) = µ({K <1 x}) − µ({x <1 K }), (x, y) ∈ R
2,

D2 FK ,µ(x, y) = µ({K <2 y}) − µ({y <2 K }), (x, y) ∈ R
2.

Proof Let h > 0. Then for all (x, y) ∈ R
2,

FK ,µ(x + h, y) − FK ,µ(x, y)

h
15

=
∫

K

|x + h − α| − |x − α|
h

µ(dα, dβ)

=
∫

K<1x

|x + h − α| − |x − α|
h

µ(dα, dβ)

+
∫

x≤1 K≤1x+h

|x + h − α| − |x − α|
h

µ(dα, dβ)

+
∫

x+h<1 K

|x + h − α| − |x − α|
h

µ(dα, dβ)

=
∫

K<1x

x + h − α − (x − α)

h
µ(dα, dβ)20

+
∫

x≤1 K≤1x+h

x + h − α − (α − x)

h
µ(dα, dβ)

+
∫

x+h<1 K

α − x − h − (α − x)

h
µ(dα, dβ)

= µ({K <1 x}) − µ({x + h <1 K })

+
∫

x≤1 K≤1x+h

|x + h − α| − |x − α|
h

µ(dα, dβ).
25

Using that ||a| − |b|| ≤ |a − b|, a, b ∈ R, for the integrand, we have
∣∣∣∣
|x + h − α| − |x − α|

h

∣∣∣∣ ≤
1

h
|x + h − α − (x − α)| =

|h|
h

= 1, x, α ∈ R, h > 0,
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and hence, by dominated convergence theorem,
∣∣∣∣
∫

x≤1 K≤1x+h

|x + h − α| − |x − α|
h

µ(dα, dβ)

∣∣∣∣

≤
∫

x≤1 K≤1x+h

∣∣∣∣
|x + h − α| − |x − α|

h

∣∣∣∣ µ(dα, dβ)

≤ µ({x ≤1 K ≤1 x + h}) → µ({K =1 x}) = 05

as h ↓ 0. Then, for all (x, y) ∈ R
2,

lim
h↓0

FK ,µ(x + h, y) − FK ,µ(x, y)

h
= µ({K <1 x}) − µ({x ≤1 K })

= µ({K <1 x}) − µ({x <1 K }). (2.2)

Similarly, if h < 0, then10

FK ,µ(x + h, y) − FK ,µ(x, y)

h
= µ({K <1 x + h}) − µ({x <1 K })

+
∫

x+h≤1 K≤1x

|x + h − α| − |x − α|
h

µ(dα, dβ)

for all (x, y) ∈ R
2, and hence, using again Condition (C.3),

lim
h↑0

FK ,µ(x + h, y) − FK ,µ(x, y)

h
= µ({K ≤1 x}) − µ({x <1 K })15

= µ({K <1 x}) − µ({x <1 K }) (2.3)

for all (x, y) ∈ R
2. Then (2.2) and (2.3) yield that D1 FK ,µ(x, y) = µ({K <1 x})

− µ({x <1 K }), (x, y) ∈ R
2.

In a similar way, we have D2 FK ,µ(x, y) = µ({K <2 y}) − µ({y <2 K }),20
(x, y) ∈ R

2. �

If µ is a measure on (Rd ,B(Rd)), then by the µ-area of a Borel measurable set S ∈
B(Rd), we mean µ(S).

Corollary 2.9 Let us suppose that Condition (C.3) holds. A point in R
2 is a global

minimizer of the generalized conic function FK ,µ if and only if it bisects the µ-area of K ,25
i.e. the vertical and the horizontal lines through this point cut the body K into two parts with

equal µ-areas. Moreover, if Conditions (C.1) and (C.2) hold too, then the convex function

FK ,µ has a unique global minimizer (x∗, y∗) ∈ R
2, that is, FK ,µ(x, y) > FK ,µ(x∗, y∗) for

(x, y) 
= (x∗, y∗), (x, y) ∈ R
2.

Proof First note that under Condition (C.3), the concept of bisection of the µ-area of K is30
well defined. The first part of the corollary is a consequence of Lemma 2.8 using that a local
minimum of a convex function defined on R

2 is a global minimum, too. Under Conditions
(C.1), (C.2) and (C.3), the existence of a global minimizer (x∗, y∗) of FK ,µ follows by
that FK ,µ is a convex function defined on R

2 and its level sets are compact subsets of R
2

(see Theorem 2.6). Indeed, a finite-valued convex function defined on R
2 is continuous35

and it reaches its minimum on every compact set. Now, we turn to prove the uniqueness of
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(x∗, y∗). The proof goes along the very same lines as in the proof of Proposition 2.3. Indeed,
the area A (two-dimensional Lebesgue measure) has to be replaced by the measure µ. �

Before we generalize Theorem 4 in Vincze and Nagy [1], we need to introduce some
notations and to recall the Cavalieri principle for product measures.

Definition 2.10 Let µ1 and µ2 be σ -finite measures on (R,B(R)) and let µ := µ1 ×µ2 be5
their product measure on (R2,B(R2)). Given a measurable set S ∈ B(R2), the generalized
X -ray functions of S with respect to µ into the coordinate directions are defined by

X S,µ(y) := µ1(Sy), y ∈ R, and YS,µ(x) := µ2(Sx ), x ∈ R,

where Sx := {y ∈ R : (x, y) ∈ S} and Sy := {x ∈ R : (x, y) ∈ S}. (Note that Sx , Sy ∈10
B(R) for all x, y ∈ R, see, e.g. Lemma 5.1.1 in Cohn [10].)

For the product measure µ defined in Definition 2.10, we have µ(K ) < ∞.

Theorem 2.11 (The Cavalieri principle, see, e.g. Cohn [10, Theorem 5.1.3]) Let µ1 and

µ2 be σ -finite measures on (R,B(R)) and let µ := µ1 × µ2 be their product measure on

(R2,B(R2)). If S ∈ B(R2), then the functions X S,µ, YS,µ : R → R+ are Borel measurable,15
and

µ(S) = (µ1 × µ2)(S) =
∫

R

YS,µ(x)µ1(dx) =
∫

R

X S,µ(y)µ2(dy).

Theorem 2.12 Let K , K ∗ ⊂ R
2 be compact bodies, let µi , µ∗

i , i = 1, 2, be σ -finite

measures on (R,B(R)) that are absolutely continuous with respect to the Lebesgue measure20
on (R,B(R)) with Radon-Nikodym derivatives fi , f ∗

i , i = 1, 2. Let µ := µ1 × µ2 and

µ∗ := µ∗
1 × µ∗

2 be their product measures on (R2,B(R2)) and we assume that µ and µ∗

are supported by K and K ∗, respectively. Let us suppose that Condition (C.3) holds for K

and µ, and K ∗ and µ∗, respectively. Then FK ,µ = FK ∗,µ∗ if and only if f2(y)X K ,µ(y) =
f ∗
2 (y)X K ∗,µ∗(y) for (Lebesgue) almost every y ∈ R, and f1(x)YK ,µ(x) = f ∗

1 (x)YK ∗,µ∗(x)25
for (Lebesgue) almost every x ∈ R.

Proof By Theorem 2.11 (the Cavalieri principle), for all x, y ∈ R,

µ(K <1 x) =
∫

R

YK<1x,µ(s) µ1(ds) =
∫ x

−∞
YK ,µ(s) µ1(ds) =

∫ x

−∞
YK ,µ(s) f1(s) ds,

µ(x <1 K ) =
∫

R

Yx<1 K ,µ(s) µ1(ds) =
∫ ∞

x

YK ,µ(s) µ1(ds) =
∫ ∞

x

YK ,µ(s) f1(s) ds,

µ(K <2 y) =
∫

R

X K<2 y,µ(t) µ2(dt) =
∫ y

−∞
X K ,µ(t) µ2(dt) =

∫ y

−∞
X K ,µ(t) f2(t) dt,30

µ(y <2 K ) =
∫

R

X y<2 K ,µ(t) µ2(dt) =
∫ ∞

y

X K ,µ(t) µ2(dt) =
∫ ∞

y

X K ,µ(t) f2(t) dt,

(2.4)
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and, by Fubini’s theorem, for all x, y ∈ R,
∫

K

α1{α<x} µ(dα, dβ) =
∫ x

−∞
sYK ,µ(s) µ1(ds) =

∫ x

−∞
sYK ,µ(s) f1(s) ds,

∫

K

α1{x<α} µ(dα, dβ) =
∫ ∞

x

sYK ,µ(s) µ1(ds) =
∫ ∞

x

sYK ,µ(s) f1(s) ds,

∫

K

β1{β<y} µ(dα, dβ) =
∫ y

−∞
t X K ,µ(t) µ2(dt) =

∫ y

−∞
t X K ,µ(t) f2(t) dt,

∫

K

β1{y<β} µ(dα, dβ) =
∫ ∞

y

t X K ,µ(t) µ2(dt) =
∫ ∞

y

t X K ,µ(t) f2(t) dt. (2.5)5

Indeed, for example, the first statement of (2.5) holds since, by Fubini’s theorem for non-
rectangular regions,

∫

K

α1{α<x} µ(dα, dβ) =
∫ αu

αb

(∫

Kα

α1{α<x} µ2(dβ)

)
µ1(dα)

=
∫ αu

αb

α1{α<x}µ2(Kα) µ1(dα)10

=
∫ αu

αb

α1{α<x}YK ,µ(α)µ1(dα)

=
∫ x

−∞
sYK ,µ(s) µ1(ds),

where Kα = {β ∈ R | (α, β) ∈ K } and

αb := inf
{
α | ∃β ∈ R : (α, β) ∈ K

}
, αu := sup

{
α | ∃β ∈ R : (α, β) ∈ K

}
.15

Further, by (2.4), Lemma 2.8 and Lebesgue differentiation theorem,

D1 D1 FK ,µ(x, y) = D1
(
µ({K <1 x}) − µ({x <1 K })

)

= D1

(∫ x

−∞
YK ,µ(s) f1(s) ds −

∫ ∞

x

YK ,µ(s) f1(s) ds

)

= 2YK ,µ(x) f1(x) for all y ∈ R and almost every x ∈ R, (2.6)20

and similarly,

D1 D2 FK ,µ(x, y) = D2 D1 FK ,µ(x, y) = 0 for all (x, y) ∈ R
2,

D2 D2 FK ,µ(x, y) = 2X K ,µ(y) f2(y) for all x ∈ R and almost every y ∈ R. (2.7)25

Let us suppose that FK ,µ = FK ∗,µ∗ . By (2.6) and (2.7), we have f1(x)YK ,µ(x) =
f ∗
1 (x)YK ∗,µ∗(x) for almost every x ∈ R, and f2(y)X K ,µ(y) = f ∗

2 (y)X K ∗,µ∗(y) for almost
every y ∈ R, as desired.

Conversely, let us suppose that f2(y)X K ,µ(y) = f ∗
2 (y)X K ∗,µ∗(y) for almost every

y ∈ R, and f1(x)YK ,µ(x) = f ∗
1 (x)YK ∗,µ∗(x) for almost every x ∈ R. Then, by Lemma30

2.7, (2.4) and (2.5), we get FK ,µ = FK ∗,µ∗ . �
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Remark 2 Note that, under the conditions of Theorem 2.12, for almost every (x, y) ∈ R
2,

the matrix consisting of the second-order partial derivatives of FK ,µ takes the form

[
2 f1(x)YK ,µ(x) 0

0 2 f2(y)X K ,µ(y)

]
,

which is a positive semidefinite matrix, since the Radon-Nikodym derivatives fi and f ∗
i ,5

i = 1, 2 are non-negative almost everywhere. Note also that this is in accordance with the
fact that FK ,µ is a convex function due to Theorem 2.6.

Before we generalize Theorem 5 in Vincze and Nagy [1], we need to recall some notions.

Definition 2.13 Let K be a compact body in R
2. For all ε > 0, the outer parallel body K ε

is the union of closed Euclidean balls centred at the points of K with radius ε > 0.10

Definition 2.14 The Hausdorff distance between two compact bodies K and L is given by

H(K , L) := inf
{
ε > 0 : K ⊂ Lε and L ⊂ K ε

}
.

The collection of compact bodies in R
2 furnished with the Hausdorff distance H is a

metric space, see, e.g. Beer [11].15

Lemma 2.15 Let Kn , n ∈ N, K be compact bodies, and let µ be a Radon measure on

(R2,B(R2)).

(i) We have limε↓0 µ(K ε) = µ(K ).

(ii) If Kn → K as n → ∞ with respect to the Hausdorff metric H, then the following

regularity properties are equivalent:20

(a) limn→∞ µ((K \ Kn) ∪ (Kn \ K )) = 0,

(b) limn→∞ µ(Kn) = µ(K ).

Proof The proofs go along the very same lines as those of Lemmas 1 and 2 in Vincze and
Nagy [1] by replacing the area A (two-dimensional Lebesgue measure) by the measure µ

in the proofs and referring to that µ(L) < ∞ for all compact sets L ⊂ R
2 (due to that µ is25

a Radon measure). �

Definition 2.16 Let Kn , n ∈ N, and K be compact bodies, and let µ be a Radon measure
on (R2,B(R2)). The convergence Kn → K as n → ∞ with respect to the Hausdorff metric
is called regular if one of the conditions (a) and (b) of part (ii) of Lemma 2.15 holds.

Theorem 2.17 Let Kn , n ∈ N, and K be compact bodies, and let µ be a Radon measure30
on (R2,B(R2)) supported by K ε for some ε > 0. Let us suppose that the convergence

Kn → K as n → ∞ with respect to the Hausdorff metric is regular. Then

lim
n→∞

FKn ,µ(x, y) = FK ,µ(x, y), (x, y) ∈ R
2.
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Proof The proof goes along the very same lines as that of Theorem 5 in Vincze and Nagy
[1], but replacing the integration with respect to the two-dimensional Lebesgue measure by
the integration with respect to the measure µ. �

For the remaining sections of the paper, we will need some further properties of the
convex function FK ,µ. Next, we recall some general facts from the theory of convex5
functions, see, e.g. Polyak [12, Lemma 3, Section 1.1.4].

Lemma 2.18 Let F : R
d → R be a differentiable and convex function such that its

gradient is Lipschitz continuous with constant L > 0, i.e.

‖grad F(p) − grad F(q)‖ ≤ L‖p − q‖, p, q ∈ R
d , (2.8)10

where grad F(p) := (D1 F(p), D2 F(p))⊤, p ∈ R
d . Then we have an affine lower bound

F(q) ≥ F(p) + 〈grad F(p), q − p〉, p, q ∈ R
d .

Lemma 2.19 Let µ1 and µ2 be σ -finite measures on (R,B(R)) that are absolutely

continuous with respect to the Lebesgue measure on (R,B(R)) with bounded Radon-15
Nikodym derivatives. Let µ := µ1 × µ2 be their product measure on (R2,B(R2)) and

we assume that µ is supported by K . Further, let us suppose that Condition (C.3) holds.

Then the generalized conic function FK ,µ : R
2 → R associated with K and µ satisfies the

conditions of Lemma 2.18, and consequently, we have an affine lower bound for FK ,µ.

Proof By Theorem 2.6, FK ,µ is convex. Under Condition (C.3), by Lemma 2.8 and (2.4),20

D1 FK ,µ(x, y) =
∫ x

−∞
YK ,µ(s) µ1(ds) −

∫ ∞

x

YK ,µ(s) µ1(ds)

=
∫ x

−∞
YK ,µ(s) f1(s) µ1(ds) −

∫ ∞

x

YK ,µ(s) f1(s) µ1(ds)

for (x, y) ∈ R
2, where f1 denotes the (bounded) Radon-Nikodym derivative of µ1 with

respect to the Lebesgue measure on R. Using that the integral as a function of the upper25
limit of the integration is continuous, we have D1 FK ,µ is continuous on R

2. Similarly, one
can check that D2 FK ,µ is also continuous on R

2. This implies that FK ,µ is differentiable
on R

2.
Condition (2.8) for FK ,µ can be checked as follows. Let us start with the difference of

the partial derivatives with respect to the first variable30

D1 FK ,µ(q) − D1 FK ,µ(p)

= µ(K <1 q(1)) − µ(q(1) <1 K ) − (µ(K <1 p(1)) − µ(p(1) <1 K ))

for all p = (p(1), p(2)), q = (q(1), q(2)) ∈ R
2, where the equality follows by Lemma 2.8.

We have

µ(K <1 q(1)) = µ(K <1 min{p(1), q(1)}) + µ(min{p(1), q(1)} <1 K <1 q(1))

and

µ(q(1) <1 K ) = µ(max{p(1), q(1)} <1 K ) + µ(q(1) <1 K <1 max{p(1), q(1)}).
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Of course we can change the role of q and p to express µ(K <1 p(1)) and µ(p(1) <1 K )

in a similar way. Then

D1 FK ,µ(q) − D1 FK ,µ(p)

= µ(min{p(1), q(1)} <1 K <1 q(1)) − µ(q(1) <1 K <1 max{p(1), q(1)})
− µ(min{p(1), q(1)} <1 K <1 p(1)) + µ(p(1) <1 K <1 max{p(1), q(1)}).5

Hence, we can see that if p(1) = min{p(1), q(1)} and consequently, q(1) = max{p(1), q(1)},
then

D1 FK ,µ(q) − D1 FK ,µ(p) = 2µ(p(1) <1 K <1 q(1)).10

If q(1) = min{p(1), q(1)} and p(1) = max{p(1), q(1)}, then

D1 FK ,µ(q) − D1 FK ,µ(p) = −2µ(q(1) <1 K <1 p(1)).

In general,

|D1 FK ,µ(q) − D1 FK ,µ(p)| = 2µ(min{p(1), q(1)} <1 K <1 max{p(1), q(1)}).15

Therefore, using Theorem 2.11 (the Cavalieri principle), we can estimate the difference of
the absolute value of the first-order partial derivatives of FK ,µ as follows:

|D1 FK ,µ(q) − D1 FK ,µ(p)| ≤ 2
∫ max{p(1),q(1)}

min{p(1),q(1)}
YK ,µ(s) µ1(ds)

≤ 2

(
sup
s∈R

YK ,µ(s)

)
µ1

((
min{p(1), q(1)}, max{p(1), q(1)}

))
20

= 2

(
sup
s∈R

YK ,µ(s)

)∫ max{p(1),q(1)}

min{p(1),q(1)}
f1(s) ds

≤ 2C1

(
sup
s∈R

YK ,µ(s)

)
|p(1) − q(1)|

with some constant C1 > 0, where sups∈R YK ,µ(s) < ∞ (since µ(K ) < ∞), and f1 denotes
the bounded Radon-Nikodym derivative of µ1 with respect to the Lebesgue measure on R.25
Similarly,

|D2 FK ,µ(q) − D2 FK ,µ(p)| ≤ 2C2

(
sup
t∈R

X K ,µ(t)

)
|p(2) − q(2)|

with some constant C2 > 0. Therefore,

‖grad FK ,µ(p) − grad FK ,µ(q)‖30

=
√

(D1 FK ,µ(p) − D1 FK ,µ(q))2 + (D2 FK ,µ(p) − D2 FK ,µ(q))2

≤ L‖p − q‖, p, q ∈ R
2,

where

L := 2 max

{
C1 sup

s∈R

YK ,µ(s), C2 sup
t∈R

X K ,µ(t)

}
,35
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i.e. condition (2.8) for FK ,µ is satisfied with d = 2 and with the Lipschitz constant L given
above. �

3. A stochastic algorithm for the global minimizer of FK,µ

We provide a stochastic algorithm for computing the global minimizer of generalized conic
function FK ,µ introduced in Definition 2.5, and we prove almost sure and Lq -convergence5
of this algorithm.

In this section, we assume that

(C.4) µ is a probability measure on K .

Let (tk)k∈N be a decreasing sequence of positive numbers such that
∑∞

k=1 tk = ∞ and∑∞
k=1 t2

k < ∞.10
Let (Pk)k∈N be a sequence of independent identically distributed (two-dimensional)

random variables such that their common distribution on (R2,B(R2)) is given by µ. Let
x0 ∈ K be arbitrarily chosen. We define recursively a Markov chain (Xk)k∈Z+ by

X0 := x0, and Xk+1 := Xk − tk+1 Qk+1, k ∈ Z+, (3.1)15

where

Qk+1 :=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
1
1

)
if X

(1)
k ≥ P

(1)
k+1 and X

(2)
k ≥ P

(2)
k+1,

(
1

−1

)
if X

(1)
k ≥ P

(1)
k+1 and X

(2)
k < P

(2)
k+1,

(
−1
1

)
if X

(1)
k < P

(1)
k+1 and X

(2)
k ≥ P

(2)
k+1,

(
−1
−1

)
if X

(1)
k < P

(1)
k+1 and X

(2)
k < P

(2)
k+1,

with the notations Xk := (X
(1)
k , X

(2)
k ), Pk := (P

(1)
k , P

(2)
k ), k ∈ N.

Remark 1 Note that if µ is a probability measure on K such that it is absolutely continuous20
with respect to the Lebesgue measure on K with Radon-Nikodym derivative (density
function) hµ given by

hµ(x, y) =
{ 1

A(K )
if (x, y) ∈ K ,

0 if (x, y) 
∈ K ,

i.e. µ is the uniform distribution on K , then (Pk)k∈N is a sequence of independent identically25
distributed (two-dimensional) random variables such that their common distribution is the
uniform distribution on K .

3.1. Almost sure and Lq-convergence of (Xk)k∈Z+

First, we recall the so-called Robbins–Monro algorithm based on Bouleau and Lépingle
[8, Theorem B.5.1, Chapter 2]. This algorithm (in dimension 1) was originally invented by30
Robbins and Monro [6].
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Let d ∈ N and (tn)n∈Z+ be a decreasing sequence of positive real numbers. Let us
suppose that all the random variables introduced below are defined on a probability space
(	,F , P). The Robbins–Monro algorithm generates a sequence of R

d -valued random
variables (θn)n∈Z+ given by the recursion

θn+1 := θn + tn+1(β − ξn+1), n ∈ Z+,5

where β ∈ R
d , θ0 is a given R

d -valued random variable and (ξn)n∈Z+ is a sequence of
d-dimensional random variables such that there exists a Borel measurable function M :
R

d → R
d satisfying

E(ξn+1 | Fn) = M(θn) P-almost surely for all n ∈ N,10

where the filtration (Fn)n∈Z+ is defined by F0 := σ(θ0) (the sigma-algebra generated
by θ0) and Fn := σ(θ0, θ1, . . . , θn, ξ1, . . . , ξn), n ∈ N (the sigma-algebra generated by
θ0, θ1, . . . , θn, ξ1, . . . , ξn).

The following assumptions will be used.15
Assumption (A.1) The R

d -valued random variable θ0 belongs to Lq(	,F , P), where
q ∈ N.
Assumption (A.2) There exists some B > 0 such that ‖ξn‖ ≤ B for all n ∈ N.
Assumption (A.3) There exists some θ∗ ∈ R

d such that for each ε ∈ (0, 1),

inf
ε≤‖θ−θ∗‖≤1/ε

〈θ − θ∗, M(θ) − β〉 > 0,20

where 〈·, ·〉 denotes the usual inner product in R
d . Here, Assumption (A.3) could be

interpreted as a ‘half-space’ assumption: roughly speaking, given the value of θn , the
expected value of θn+1 will be on that side of the hyperplane through θn having normal
vector θ∗ − θn which contains θ∗.25

Theorem 3.1 [Almost sure and Lq -convergence of Robbins–Monro algorithm] Let us

suppose that Assumptions (A.1), (A.2) and (A.3) hold and that the decreasing sequence

(tn)n∈Z+ of positive numbers satisfies

∞∑

n=0

tn = ∞ and

∞∑

n=0

t2
n < ∞.

30

Then P(limn→∞ θn = θ∗) = 1 and limn→∞ E ‖θn − θ∗‖q = 0 for all q ∈ N.

Note that under the conditions of Theorem 3.1, the point θ∗ ∈ R
d exists uniquely due to

that, by Theorem 3.1, P(limn→∞ θn = θ∗) = 1 and the limit of an almost surely convergent
sequence of random variables is unique (up to probability one). We also mention that, from
a technical point of view, Assumption (A.3) is used for defining an appropriate non-negative35
supermartingale in order to prove the almost sure convergence of the sequence (θn)n∈Z+ ,
see, e.g. Bouleau and Lépingle [8, proof of Theorem B.5.1, Chapter 2].

We will prove almost sure and Lq -convergence of the recursion given in (3.1). But, first
we present an auxiliary lemma.
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Lemma 3.2 Let us consider the sequence (Xk)k∈Z+ defined by (3.1). Let us suppose that

Conditions (C.3) and (C.4) hold. Then

E(Qi | X i−1) = grad FK ,µ(X i−1), i ∈ N, (3.2)

and5

E(Xk) = x0 −
k∑

i=1

ti E(grad FK ,µ(X i−1)), k ∈ N.

Proof First note that Xk = x0 −
∑k

i=1 ti Qi , k ∈ N, where the sequence (Qi )i∈N is such
that the conditional distribution of Qi with respect to X i−1 is given by

Qi =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
1
1

)
with probability µ

({
(x, y) ∈ K : X

(1)
i−1 ≥ x, X

(2)
i−1 ≥ y

})
,

(
1

−1

)
with probability µ

({
(x, y) ∈ K : X

(1)
i−1 ≥ x, X

(2)
i−1 < y

})
,

(
−1
1

)
with probability µ

({
(x, y) ∈ K : X

(1)
i−1 < x, X

(2)
i−1 ≥ y

})
,

(
−1
−1

)
with probability µ

({
(x, y) ∈ K : X

(1)
i−1 < x, X

(2)
i−1 < y

})
.

(3.3)10

Then

E(Qi | X i−1) =
(

1
1

)
µ
({

(x, y) ∈ K : X
(1)
i−1 ≥ x, X

(2)
i−1 ≥ y

})

+
(

1
−1

)
µ
({

(x, y) ∈ K : X
(1)
i−1 ≥ x, X

(2)
i−1 < y

})

+
(

−1
1

)
µ
({

(x, y) ∈ K : X
(1)
i−1 < x, X

(2)
i−1 ≥ y

})
15

+
(

−1
−1

)
µ
({

(x, y) ∈ K : X
(1)
i−1 < x, X

(2)
i−1 < y

})

=
(

µ({(x, y) ∈ K : X
(1)
i−1 ≥ x}) − µ({(x, y) ∈ K : X

(1)
i−1 < x})

µ({(x, y) ∈ K : X
(2)
i−1 ≥ y}) − µ({(x, y) ∈ K : X

(2)
i−1 < y})

)

for i ∈ N. Note that by Condition (C.3) and Lemma 2.8, we also have

E(Qi | X i−1) =
(

D1 FK ,µ(X
(1)
i−1, X

(2)
i−1)

D2 FK ,µ(X
(1)
i−1, X

(2)
i−1)

)
= grad FK ,µ(X i−1), i ∈ N.20

Hence, by the tower rule, the expectation of Xk takes the form

E(Xk) = x0 −
k∑

i=1

ti E(Qi ) = x0 −
k∑

i=1

ti E(E(Qi | X i−1))

= x0 −
k∑

i=1

ti E(grad FK ,µ(X i−1)), k ∈ N.

25
�
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Theorem 3.3 Let us suppose that Conditions (C.1)–(C.4) hold. Then the sequence of

2-dimensional random variables defined in (3.1) converges almost surely and in Lq (q ∈ N)

to the unique global minimizer X∗ of the generalized conic function FK ,µ, i.e. P(limn→∞ Xn

= X∗) = 1 and limn→∞ E ‖Xn − X∗‖q = 0.

Proof First note that under Conditions (C.1)–(C.3), there exists a unique global minimizer5
θ∗ of FK ,µ, that is FK ,µ(θ) > FK ,µ(θ∗) for all θ 
= θ∗, θ ∈ R

2, see, Corollary 2.9. Let us
apply Theorem 3.1 with the following choices:

• d := 2, β := 0 ∈ R
2 and ξn+1 := Qn+1, n ∈ Z+.

• θ∗ ∈ R
2 is such that grad FK ,µ(θ∗) = 0 ∈ R

2. Note that under the Conditions
(C.1)–(C.3), by Corollary 2.9, θ∗ is unique, and it is nothing else but the unique10
global minimizer of FK ,µ.

In what follows we check that Assumptions (A.1)–(A.3) hold. Assumption (A.1) holds
trivially. Assumption (A.2) holds with B :=

√
2, since

∥∥∥∥
(

1
1

)∥∥∥∥ =
∥∥∥∥
(

1
−1

)∥∥∥∥ =
∥∥∥∥
(

−1
1

)∥∥∥∥ =
∥∥∥∥
(

−1
−1

)∥∥∥∥ =
√

2.
15

Since E(Qi | X0, X1, . . . , X i−1, Q1, . . . , Qi−1) = E(Qi | X i−1), by (3.2), we have
M : R

2 → R
2, M(θ) = grad FK ,µ(θ), θ ∈ R

2, and by Corollary 2.9,

M(θ∗) = grad FK ,µ(θ∗) = 0 ∈ R
2.

Finally, for Assumption (A.3), we have to check that for all ε ∈ (0, 1),20

inf
ε≤‖θ−θ∗‖≤1/ε

〈θ − θ∗, grad FK ,µ(θ)〉 > 0.

Since FK ,µ is a convex and differentiable function defined on R
2 (see, Theorem 2.6 and

the proof of Lemma 2.19), we have

〈grad FK ,µ(θ), θ∗ − θ〉 ≤ FK ,µ(θ∗) − FK ,µ(θ) ≤ 0, ∀ θ ∈ R
2, (3.4)25

where the last inequality follows by that θ∗ is the global minimizer of FK ,µ, see also Lemma
2.18. Since θ∗ is strict global minimizer of FK ,µ, i.e. FK ,µ(θ) > FK ,µ(θ∗) for all θ 
= θ∗,
θ ∈ R

2 (see Corollary 2.9) and {θ ∈ R
2 : ε ≤ ‖θ − θ∗‖ ≤ 1/ε} is a compact set, by (3.4),

we get Assumption (A.3) holds in our case. �30

Example 3.4 Let K be the square with vertexes (0, 0), (0, 1), (1, 0), (1, 1) as in part (i) of
Example 2.4. Let us assume that µ is the probability measure on K with Radon-Nikodym
derivative with respect to the Lebesgue measure given by

hµ(x, y) =
{

1 if (x, y) ∈ K ,

0 if (x, y) 
∈ K .35
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Further, let x0 := (0, 0)⊤ and tk := 1
k

, k ∈ N. Then

X0 =
(

0
0

)
, Xk = −

k∑

i=1

ti Qi = −
k∑

i=1

1

i
Qi , k ∈ N,

where the sequence (Qi )i∈N is such that the conditional distribution of Qi with respect to
X i−1 is given by (3.3). ByTheorem 3.3 and part (i) of Example 2.4, we have P(limk→∞ Xk =5
X∗) = 1 and limk→∞ E ‖Xk − X∗‖q = 0 for all q ∈ N, where X∗ = (1/2, 1/2)⊤. Note
also that if X i−1 ∈ K , then the conditional distribution of Qi with respect to X i−1 takes
the form

Qi =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
1
1

)
with probability X

(1)
i−1 X

(2)
i−1,

(
1

−1

)
with probability X

(1)
i−1

(
1 − X

(2)
i−1

)
,

(
−1
1

)
with probability

(
1 − X

(1)
i−1

)
X

(2)
i−1,

(
−1
−1

)
with probability

(
1 − X

(1)
i−1

) (
1 − X

(2)
i−1

)
.

10

Finally, we remark that X1 = (1, 1)⊤ and X2 = (1/2, 1/2)⊤.

3.2. Almost sure and Lq-convergence of (FK,µ(Xk))k∈Z+

First we recall an equivalent reformulation of Lq -convergence, where q ∈ N, see, e.g. Chow
and Teicher [13, Theorem 4.2.3].

Lemma 3.5 Let d, q ∈ N, ξ : 	 → R
d and ξn : 	 → R

d , n ∈ N, be R
d -valued random15

variables such that E(‖ξ‖q) < ∞ and E(‖ξn‖q) < ∞, n ∈ N. Then ξn converges to ξ in

Lq as n → ∞ (i.e. limn→∞ E(‖ξn − ξ‖q) = 0) if and only if ξn converges in probability to

ξ as n → ∞ and the set of random variables {‖ξn‖q : n ∈ N} is uniformly integrable, i.e.

lim
m→∞

sup
n∈N

E
(
‖ξn‖q1{‖ξn‖q>m}

)
= 0.

20

Theorem 3.6 Let us suppose that Conditions (C.1)–(C.4) hold. Then the sequence of one-

dimensional random variables (FK ,µ(Xk))k∈N converges almost surely and in Lq (q ∈ N)

to FK ,µ(X∗) as k → ∞, where X∗ denotes the unique global minimizer of FK ,µ.

Proof By Theorem 3.3, P(limk→∞ Xk = X∗) = 1, and hence to prove that P(limk→∞
FK ,µ(Xk) = FK ,µ(X∗)) = 1, it is enough to check that FK ,µ is continuous. This fol-25
lows by that FK ,µ is a convex function defined on R

2 (see Theorem 2.6). We give an
alternative argument, too. Let (xn, yn)⊤ ∈ R

2, n ∈ N, be such that limn→∞(xn, yn) =
(x, y), where (x, y)⊤ ∈ R

2. Then for all (α, β)⊤ ∈ R
2, limn→∞ d1((xn, yn), (α, β)) =

d1((x, y), (α, β)), and using that K is bounded,

sup
n∈N

sup
(α,β)∈K

d1((xn, yn), (α, β)) < ∞.30
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By Lebesgue dominated convergence theorem (which can be used since µ(K ) < ∞)

lim
n→∞

FK ,µ(xn, yn) =
∫

K

lim
n→∞

d1((xn, yn), (α, β)) µ(dα, dβ)

=
∫

K

d1((x, y), (α, β)) µ(dα, dβ) = FK ,µ(x, y),

yielding that FK ,µ is continuous.5
Further, using Lemma 3.5 and that almost sure convergence yields convergence in

probability, in order to prove Lq -convergence of (FK ,µ(Xk))k∈N, it is enough (and actually
necessary) to check that

lim
m→∞

sup
k∈N

E
(
‖Xk‖q1{‖Xk‖q>m}

)
= 0. (3.5)

10

We show that the sequence (‖Xk‖q)k∈N is bounded, and then (3.5) readily follows. Let
D := supk∈N{tk} = t1 > 0 (indeed, (tk)k∈N is a decreasing sequence of positive numbers).
Let us consider the rectangle R with vertexes

(
inf {x : (x, y) ∈ K } − D

√
2, inf {y : (x, y) ∈ K } − D

√
2
)

,
(

inf {x : (x, y) ∈ K } − D
√

2, sup{y : (x, y) ∈ K } + D
√

2
)

,15
(

sup{x : (x, y) ∈ K } + D
√

2, inf {y : (x, y) ∈ K } − D
√

2
)

,
(

sup{x : (x, y) ∈ K } + D
√

2, sup{y : (x, y) ∈ K } + D
√

2
)

.

Since ‖Qk‖ =
√

2, k ∈ N, if Xn ∈ K with some n ∈ N, then Xn+1 ∈ R, i.e. the recursion
(3.1) cannot leave the rectangle R starting from K by one step. Next we check that if Xn ∈ R20
with some n ∈ N, then Xn+1 ∈ R, which yields that the recursion (3.1) cannot leave the
rectangle R. We distinguish eight cases according to the Figure 2.

If Xn is in the rectangle numbered 1, then Qn+1 = (−1, 1)⊤ and hence, by the choice
of D,

Xn+1 = Xn + tn+1

(
1

−1

)
∈ R.25

Figure 2. The eight cases.
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If Xn is in the rectangle numbered 2, then Qn+1 = (1, 1)⊤ or Qn+1 = (−1, 1)⊤ according
to the cases X

(1)
n ≥ P

(1)
n+1 and X

(1)
n < P

(1)
n+1, and hence

Xn+1 = Xn + tn+1

(
−1
−1

)
∈ R or Xn+1 = Xn + tn+1

(
1

−1

)
∈ R.

If Xn is in the rectangle numbered 3, then Qn+1 = (1, 1)⊤ and hence5

Xn+1 = Xn + tn+1

(
−1
−1

)
∈ R.

The other cases can be handled similarly. �
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