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Abstract

It is well-known that Kirkendall shift occurs in binary systems. We investi-

gated diffusion on the nanometer scale in the framework of our conceptual

model [Erdélyi and Schmitz, Acta. Mater. 60 (2012) 1807]. Since on this

lengthscale the characteristic distances between the vacancy sources/sinks

can be comparable to the dimensions of the sample, the usual vacancy an-

nihilation processes, leading to the Kirkendall shift, cannot operate. In this

situation, we studied the Kirkendall shift in planar geometry in case of mis-

cible and restrictedly miscible systems by computer simulation.

Keywords: Kirkendall effect, diffusion, nanoscale, vacancy sources and

sinks

1. Introduction1

Since its discovery in 1947, the Kirkendall effect has played an important2

role in the development of solid state diffusion theory. Ernest Kirkendall in3

his third and last paper in a series [1, 2, 3] on the diffusion of Zn in α-brass4

presented the results of his diffusion couple experiment. He electroplated a5

brass-bar with pure copper, but before that he placed inert Mo-wires along6
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each of the two surfaces to mark the original interfaces of the diffusion couple.7

After heat treatments of different times cross sections of the diffusion couple8

were investigated and Kirkendall found that the wires shifted inwards moving9

parabolically with the annealing time. He explained this observation with10

that the Zn-atoms move much faster outwards than the Cu-atoms inwards,11

causing the inner brass to shrink. The first theoretical description was made12

by Darken [4] using independent diffusion fluxes for the different constituents.13

Based on these results, Seitz [5] and Bardeen [6] showed from atomistic point14

of view, that the interdiffusion accompanied by vacancy mechanism lead to15

Darken’s equations if it is assumed that the vacancy concenration is in local16

equilibrium. Vacancies should be created on one side and annihilated on the17

other side of the diffusion couple for the Kirkendall effect to occure.18

The manifestation of the Kirkendall effect, besides the marker movement,19

can be the appearance of diffusional porosity (Kirkendall voids [7, 8]), gen-20

eration of stresses [8, 9] and the deformation of the whole specimen on the21

macroscopic scale [10]. Hollow nanoshell and nanowire formation was also22

explained by the Kirkendall effect [11, 12, 13].23

In this study we are presenting a finite volume methode to describe the24

intediffusion process, as well as the Kirkendall effect on the nanoscale.25

2. Diffusion fundamentals26

As it is clear from Kirkendall’s work, the effect can be best visualized by27

the motion of inert markers placed along the diffusion zone. The intrinsic28

diffusion fluxes of the components ji[mol/m2s], which reflect the mobilities of29

the different species involved in the interaction, are then defined with respect30
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to this array of markers, called the Kirkendall frame of reference:31

ji = −Di
∂Ci

∂x
. (1)

Here Di[m
2/s] is the intrinsic diffusion coefficient, Ci[mol/m3] is the concen-32

tration of component i and x[m] is the position parameter. In case of an A-B33

binary diffusion couple the equations for the intrinsic fluxes are:34

jA = −DA
VB

V 2
m

∂NA

∂x
, jB = −DB

VA

V 2
m

∂NB

∂x
, (2)

where Ni is the mole fraction of species A or B, Vm [m3/mol] is the molar35

volume, Vi [m3/mol] are the partial molar volumes of the different atoms36

[14, 15]. The latter is found through the tangent construction in the Vm vs.37

Ni plot [16].38

In writing Eq.(1) we followed the traditional Fick’s approach, where the39

atomic flux is related to the gradient of the concentration (in moles per unit40

volume). There are of course more advanced methodes using the Onsager flux41

expressions for the intrinsic atomic fluxes that involve transport coefficients42

and thermodynamic forces acting on the atomic species. In this case the43

gradient of concentration is replaced with the corresponding gradient of mole44

fraction as required by the expression for the thermodynamic forces [17, 18].45

The marker velocity depends on the difference in intrinsic diffusivities of46

the species and the concentration gradient developing in the diffusion zone47

at the marker plane composition [4]:48

v = −(VBjB + VAjA) = −VB(DA −DB)
∂CB

∂x
. (3)

In these calculations it is always supposed that only a volume diffusion con-49

trolled process operates. If this is the case, the inert markers positioned at50

3
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the original interface between the reactants are the only markers that stay at51

a constant composition and move parabolically in time (x2
∝ t or x ∝ t1/2)52

during the whole interdiffusion process. The velocity of these markers is:53

vK =
dx

dt
=

xK

2t
, (4)

where xK is the position of the Kirkendall plane. The location of the Kirk-54

endall plane in the diffusion zone can be found graphically as the intersection55

between the marker velocity plot 2tv vs. x and the straight line 2tvK = xK56

given by Eq.(4). In order to draw the line 2tvK = xK , one needs to know57

the position of the plane in the diffusion zone where the inert markers were58

located at the beginnig of the diffusion process, i.e. at time t = 0. However, if59

the total volume of the specimen does not change during the interdiffusion,60

this position can be determined by the usual Boltzmann-Matano method61

[14, 15]. This kind of measurement allows us to determine the intrinsic dif-62

fusion coefficients at a single composition, namely that of the Kirkendall63

marker plane. To extend the measurement over the entire concentration64

range, a so-called multifoil diffusion technique has been introduced [19, 20].65

The characteristic feature of such a sample is, that each end-member of the66

diffusion couple is composed of several thin foils with fiducial markers in be-67

tween. Interdiffusion in such a multilayered sample will cause the markers68

to move relative to the laboratory-fixed frame of reference. In the particular69

case of [20], 20µm Pd and 21µm thick Ni foils were used with ThO2 powder70

as fiducial markers (the diameter of the oxide particles were ∼ 0.5 − 1µm).71

By measuring the shift of the markers, the Kirkendall diplacement was de-72

termined over the entire concentration range and the displacement curve was73

constructed. Cornet [21, 22] and later van Loo [23] proposed a method to74

4



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

obtain the Kirkendall velocity and then the intrinsic diffusion coefficient from75

the displacement curve. It was found to be:76

v =
1

2t

(

y − xo
dy

dxo

)

, (5)

with xo beeing the original location of the markers at t = 0, y is the dis-77

placement of the markers, i.e. y = x− xo and t is the annealig time. As it is78

clear from Eq. (5), the position of the Kirkendall plane, as marked by inert79

markers placed at the initial interface (xo = 0), is given by vK = y/2t (vK is80

the velocity of the markers placed at the initial contact interface). This also81

means that the Kirkendall plane can be found graphically as the intersection82

between the marker velocity plot (Eq.(5)) and the straigth line (2tvK = xK),83

supposing that at t = 0 time the markers were at xo = 0.84

In this study we are modeling the above described phenomenon. Based85

on our conceptual model [24], a one dimensional finite volume methode was86

developed. The planar sample was divided into n slabs (n = 2000), where87

each slab mimics a metallic foil in the above described multifoil experiment.88

Note, that the number of the slabs only influences the spatial resolution of89

the calculated concentration profiles. In each computational cycle the total90

number of atoms transported between the neighboring slabs were calculated91

from which the change of composition as well as the thickness of the slab92

were determined. During the calculations the walls of the slabs are taken93

as markers in a multifoil experiment. From the calculations we get the dis-94

placement curve by registering the positions of the cell walls and the number95

of computation cycles. The velocity curve was calculated from Eq.(5) as a96

usual procedure in case of multifoil experiments.97

For the computer simulation a simplified version of the model described98

5
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in [24] was implemented. In that work a complete set of analytical equations99

was developed in order to describe reactive diffusion in spherical core shell100

nanostructures. The model takes into account elastic stress, its plastic re-101

laxation, as well as possible non-equilibrium vacancy densities. Furthermore,102

thermodynamic driving forces are included to model formation of intermetal-103

lic product phases in intermediate composition range. Here we use the planar104

version of these equations (see the Appendix A. in [24]). In addition the effect105

and the change of the molar volume during the interdiffusion as well as the106

consequences of the developing stresses were neglected. On the other hand,107

considering that the vacancy concentration changes due to atomic fluxes as108

well as due to the activity of vacancy sinks and sources, the continuity equa-109

tion written in the Kirkendall reference system contains the vacancy flux110

and the term of vacancy sources and sinks as well. Including these terms111

into Fick’s second law we arrive at:112

∂Ni

∂t
= −Vm(∇jix+NiSv), (6)

where Sv[mol · m−3
· s−1] is the vacancy source term, i.e. the number of113

vacancies created in unit volume per unit time. This expression is very114

similar to [17, 18]. We define sv as:115

sv = Sv · Vm = Kr(C
o
v − Cv), (7)

which is the rate of change of the atomic fraction of vacancies due to cre-116

ation/annihilation. Kr[1/s] determines the effectiveness of sinks and sources,117

therefore sv is proportional to the deviation of the vacancy concentration118

from it’s equilibrium value. Note that Kr may vary with spatial coordinates,119

depending on the spatial distribution of the sinks and sources. Since Kr is a120

6
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function of space, the solution of the diffusion equation, i.e. the movement121

of the inert markers will not follow the so called parabolic law. (Note that122

taking constant Kr the solution adheres to the traditional parabolic time123

evolution.) Another effect which may alter rhe parabolic behaviour of the124

diffusion process is the finite size of the sample. When the diffusion profile125

reaches the end of the diffusion couple, the kinetic of the process is changing.126

3. Results of the computer simulation127

The algorithm and the selection of the input parameters were similar to128

the ones in [24]. Several cases have been studied. In order to validate our129

calculations we performed simulations using the parameters given in [20, 25].130

The intrinsic diffusivities were concentration dependent, but the ratio of the131

diffusivities was constant (DA/DB = const.). The interdiffusion coefficient132

(D̃ = CBVBDA + CAVADB) was also constant in the whole concentration133

range. Studies have been completed in ideal solid solutions with vacancy134

sinks and sources active enough in every cell of the one dimensional finite vol-135

ume model to maintain equilibrium vacancy concentration during the whole136

process. Fig. 1. displays a representative plot showing that our model safely137

reproduces the calculations, implemented in the traditional Darken’s model138

[25], as well as the experimental observations reported in [25]. The scale on139

the horizontal and vertical axes are in arbitrary units on the figures. The140

dashed and the solid lines mark the displacement and the velocity curve141

respectively. The straight line represents the (2tvK = xK) equation. The142

interdiffusion coefficients published in [20] were used to calculate the concen-143

tration profiles and the corresponding Kirkendall displacement and velocity144

7
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curves. It can be clearly seen, that the displacement as well as the velocity145

curves are almost exactly follow the trace of the experimental data presented146

(displacement curve) on Fig.10. and the velocity curve on Fig.14. in [20].147

Fig. 1b. demonstrates the composition dependence of the diffusivities. Note148

the logarithmic scale on the vertical axis.149

We extended our studies to immiscible systems too and also by chang-150

ing the arrangement of vacancy sources and sinks along the sample. Con-151

centration dependent diffusivities have been used with various composition152

dependence.153

We simulated the diffusion process in which the diffusivities depend ex-154

ponentially on the concentration (for instance Di = Dioexp(mNi), where155

i = A or B), moreover the ratio of the diffusivities are constant. Fig. 2a.156

shows the displacement (dashed line) as well as the velocity curve (solid red157

line) when the vacancy sources and sinks are evenly active in every slab158

(foil). On Fig. 2b. the same is plotted but with a different vacancy source159

and sink distribution. As it was mentioned before, Kr in Eq.(7) may vary160

along the sample. It was supposed that the vacancy sources and sinks are161

active enough in the slabs in the very vicinity of the starting interface to162

maintain the equilibrium vacancy concentration all the time (Kr = 1/s) but163

beyond that their activities approach to zero following a Gaussian distribu-164

tion. For the sake of simplicity we will call this distribution of vacancy sinks165

and sources Gaussian in this paper (see the dot-dashed curve on Fig. 2b.).166

This is a practical assumption since there are always impurities at the contact167

plane. Fig. 2c. demonstrates the composition dependence of the diffusivities.168

Note the logarithmic scale on the vertical axis.169
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As it was expected based on the consideration of Philibert [15], the max-170

imum of the velocity curve and that of the displacement curve coincide with171

the position of the Kirkendall plane for the case of constant ratio of intrinsic172

diffusivities in both cases. On the other hand, the velocity curve in Fig. 2b.173

shows a local maximum at the Kirkendall plane (which in this case coincide174

with the Matano plane), the global maximum is more to the left. This means175

that although the Kirkendall plane is stable, the markers placed on positions176

where the gradient of the velocity curve is negative (left to the Kirkendall177

plane) get closer to each other during the process, which means another con-178

densation of the markers, which is different from the Kirkendall plane. In179

case of a system having a miscibility gap similar results were obtained. The180

maximum of the velocity curve and displacement curve in this case also co-181

incide with the position of the Kirkendall plane and altering the distribution182

of the sources and sinks to a Gaussian one, the velocity curve changes con-183

siderably, showing another local maximum, indicating similar behavior as in184

ideal solid solution.185

Fig. 3a. shows again the displacement as well as the velocity curve when186

the vacancy sources and sinks are evenly active in every slab (foil) and in187

Fig. 3b. the result of a calculation with a Gaussian vacancy source and188

sink distribution is plotted. In this system an exponential concentration189

dependence of the intrinsic diffusion coefficients were supposed, no other190

constrain was taken into consideration, moreover there is also a miscibility191

gap (0.25 < NA < 0.75). It can be seen that the maximum of the Kirkendall192

velocity is situated at the Matano and not at the Kirkendall plane. On193

the other hand, the maximum of the displacement and the position of the194

9
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Kirkendall plane coincide. The same is true if we look at Fig. 3b, where the195

vacancy sources and sinks have different distribution. As can bee seen, in this196

case as well there are other local maxima of the velocity curve, indicating197

again that the markers are getting closer to each other in the vicinity of198

these peaks. This practically would mean that the markers are ”attracted”199

by these maxima implying three weak places along the diffusion direction.200

The shape of the reconstructed velocity curve on Fig. 2b. and Fig. 3b. are201

due to the space dependance of Kr effectiveness factor, as well as the finite202

size of the film203

The presented plots so far showed only stable Kirkendall planes in a sense,204

that those markers which, at the end of the annelaling, ended up slightly205

ahead of the intersection point of the velocity curve and the straigth line206

(2tvK = xK), would slow down (lower velocity) and if these markers were207

behind this plane, they would move faster (higher velocity). In other words,208

the plane located at the intersection point tends to attract inert markers in209

its vicinity.210

According to [21, 22, 25], there is no reason why the maximum in the211

velocity curve, the maximum in the displacement curve and the Kirkendall212

plane should coincide. On Fig. 4a. we show a plot, where this is not the213

case. Moreover the Kirkendall plane in this case is unstable since, following214

the earlier argument, the markers which are slightly ahead of the Kirkendall215

plane, move faster and markers slightly behind this plane will migrate slower.216

Fig. 4b. demonstrates the composition dependence of the diffusivities.217

Experimental verification of these ideas can be found in previous studies218

on diffusion phenomena and the Kirkendall effect in the β′-ordered AuZn219

10
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phase (B2 structure) of the binary Au-Zn system [26].220

From these calculations it is clear that our model gives unexpected results221

concerning the position of the fiducial markers used in a so-called multifoil222

experiments. Applying real concentration dependent diffusivities and a spa-223

tial distribution of vacancy sinks and sources, even in these simple cases, we224

found, that there is indeed a Kirkendall plane which, by definition, is the225

plane that stays at a constant composition and moves parabolically in time226

during the whole interdiffusion process. On the other hand, there are other227

places in the diffusion zone which attract markers. That place or even those228

places do not move parabolically in time but, as the process goes further,229

attract more and more particles. As a result, such a place may become a230

problematic microstructural feature in any joint, because of higher mechan-231

ical failure risk at this plane.232

4. Conclusions233

Interdiffusion on the nanometer scale was investigated in the framework234

of our conceptual model [24]. We studied the Kirkendall shift in planar235

geometry in case of miscible and restrictedly miscible systems by computer236

simulation. A one dimensional finite volume method was developed, in which237

the sample was divided into n slabs. The slabs mimicked the foils in the so238

called multifoil experiment. From the calculations we get the displacement239

as well as the velocity curves by registering the position of the cell walls240

and the number of computation cycles. Calculations were performed in two241

different distribution of vacancy sources and sinks i.e.: the sources and sinks242

are distributed evenly in the whole sample, or they followed a Gaussian243

11
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distribution, having the maximum at the location of the Kirkendall plane.244

It is clear that our results, concerning the position of the cell walls which245

act as markers in a multifoil experiment, are different from the earlier ones.246

Applying realistic situations, like concentration dependent diffusivities as well247

as spatial distribution of vacancy sinks and sources, even in very simple cases248

it was found that besides the Kirkendall plane there are other places in the249

interdiffusion specimen which attract markers. Markers placed to positions250

where the gradient of the velocity curve gets negative during the process251

get closer to each other as time goes on, resulting another condensation of252

the markers, which is different from the Kirkendall plane. That place, or253

even those places do not move parabolically in time but, as the process254

goes further, attract more and more particles, getting weaker and weaker in255

mechanical point of view.256
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[13] C. Cserháti, G. Glodán, D. L. Beke, Hollow hemisphere formation by291

pure Kirkendall porosity, Diff. Found. 1 (2014) 61–73.292

[14] P. G. Shewmon, Diffusion in Solids, McGraw-Hill Book Company, USA,293

1963.294

[15] J. Philibert, Atom Movements, Diffusion and Mass Transport in Solids,295

Les Editions de Physique, Les Ulis, France, 1991.296

[16] R. A. Swalin, Thermodynamics of Solids, John Wiley & Sons, Inc.,New297

York, 1972.298

[17] J. Svoboda, F. Fischer, P. Fratzl, Diffusion in multi-component systems299

with no or dense sources and sinks for vacancies, Acta Mater. 50 (2002)300

1369–1381.301

[18] J. Svoboda, F. Fischer, P. Fratzl, Diffusion and creep in multi-302

component alloys with non-ideal sources and sinks for vacancies, Acta303

Mater. 54 (2006) 3043–3053.304

[19] T. Heumann, G. Walther, Der Kirklendall-Effekt in Silber-Gold-305

Legirungen im gesamtem Konzentrtionsbereich, Z. Metallkd. 48 (1957)306

151.307

[20] M. J. H. van Dal, M. C. L. P. Pleumeekers, A. A. Kodentsov, F. J. J.308

14



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

van Loo, Intrinsic diffusion and Kirkendall effect in Ni-Pd and Fe-Pd309

solid solutions, Acta. Mater. 48 (2000) 385–396.310

[21] J. F. Cornet, D. Calais, Etude de leffect Kirkendall dapres les equations311

de Darken, J. Phys. Chem. Solids. 33 (1972) 1675–1684.312

[22] J. F. Cornet, Complements a letude de leffect Kirkendall selon les equa-313

tions de Darken, J. Phys. Chem. Solids. 35 (1974) 1247–1252.314

[23] F. J. J. van Loo, G. F. Bastin, G. D. Rieck, Marker displacements as a315

result of diffusion in binary metal systems, Sci. Sint. 11 (1979) 9–27.316
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Figure 1: Representative plot, showing the validity of our model. The displacement

(dashed line) and the velocity curve (solid red line) on plot (a) are the same as in Fig. 10.

and Fig. 14. in [20]. Plot(b) shows the concentration dependence of the interdiffusion

coefficient, as well as the intrinsic diffusivities of the different species. The experimental

data-points are replotted from [20].
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Figure 2: In case of ideal solid solution plot (a) shows the displacement (dashed line) as well

as the velocity curve (solid red line) when the vacancy sources and sinks are evenly active

at every slab. On plot (b) the same is presenteded but with a Gaussian vacancy source

and sink distribution (dot-dashed line, see the text). Plot (c) shows the concentration

dependence of the diffusivities of the different species.
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Figure 3: In case of a solid solution with a miscibility gap, plot (a) shows the displacement

(dashed line) as well as the velocity curve (solid red line) when the vacancy sources and

sinks are evenly active at every slab. In plot (b) the same is presented but with a Gaussian

vacancy source and sink distribution (dot-dashed line). Plot (c) shows the concentration

dependence of the diffusivities of the different species.
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Figure 4: On plot (a) the maximum of the Kirkendall velocity (solid red line) is situated at

the Matano and not at the Kirkendall plane. In this calculation Kr = 1 in every slab. The

Kirkendall plane is unstable in this case (see the text). Plot (b) shows the concentration

dependence of the diffusivities of the different species.
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