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Abstract 

The OPTICS algorithm is a hierarchical density-based clustering method. It 

creates reachability plots to identify all clusters in the point set. 

Nevertheless, it has limitation, namely it is very slow for large data sets. We 

introduce the GridOPTICS algorithm, which builds a grid structure to 

reduce the number of data points, then it applies the OPTICS clustering 

algorithm on the grid structure. In order to get the clusters, the algorithm 

uses the reachability plots of the grid structure, then it determines to which 

cluster the original input points belong. The experimental results show that 

our new algorithm is faster than the OPTICS, the speed-up can be one or 

two orders of magnitude or more, which depends mainly on the τ parameter 

of the GridOPTICS algorithm. At the end of the article, we give some 

advice to which point set you can apply the GridOPTICS algorithm.  
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1. Introduction 

Cluster analysis is one of the important research fields of data mining, 

which is applied on many other disciplines, such as pattern recognition, 

image processing, machine learning, bioinformatics, information retrieval, 

artificial intelligence, marketing, psychology, etc. Data clustering is a 

method of creating groups or clusters of objects in a way that objects in one 

cluster are very similar to each other and objects in different clusters are 

quite distinct. In data clustering, the classes is not predefined, clustering 

algorithms determine them. (Gan et al., 2007) 

There are many effective clustering algorithms, such as grid-based, 

hierarchical, fuzzy, centre-based, search-based, graph-based, density-based, 

model-based, subspace clustering, etc. (Gan et al., 2007), (Han and Kamber, 

2006). Considering the topic of our article, we introduce the grid-based and 

the density-based techniques. Both of them “are popular for mining clusters 

in a large multidimensional space wherein clusters are regarded as denser 

regions than their surroundings”. (Gan et al., 2007) 

The grid-based clustering creates a grid structure in a way from the data 

points in the first step, in other words it partitions the data points into a finite 

number of cells and calculates the cell density for each cell. In the next step, 
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the algorithm operates on the grid structure to identify the clusters (Gan et 

al., 2007). The great advantage of grid-based clustering is its significant 

reduction of the computational complexity, especially for clustering very 

large data sets, which means, its processing time is fast, because similar data 

points will belong to the same cell and will be regarded as a single point. 

“This makes the algorithms independent of the number of data points in the 

original data set.” (Gan et al., 2007). Well-known grid-based clustering 

techniques are the STING (Wang et al., 1997), the CLIQUE (Agrawal et al., 

1998), the Wave-Cluster (Seikholeslami et al., 1998) and the OptiGrid 

(Hinneburg and Keim, 1999). Han and Kamber (2006) and Gan et al., 

(2007) gave a comprehensive summary of these techniques.  

The density-based clustering approach is capable of finding arbitrarily 

shaped clusters. The clusters are dense regions, which are separated by 

sparse regions. These algorithms can handle noise very efficiently. “The 

number of clusters is not required as a parameter, since density-based 

clustering algorithms can automatically detect the clusters”, and in this way 

they determine the number of the clusters as well. There is a disadvantage of 

the most density-based techniques that it is hard to choose parameter values 

in order that the algorithm gives an appropriate result. (Gan et al., 2007) 

Han and Kamber (2006) reviewed the well-known density-based clustering 

algorithms, which are the DBSCAN (Ester et al., 1996), the DENCLUE 

(Hinneburg and Gabriel, 2007), and the OPTICS (Ankerst et al., 1999).  

Clustering algorithms are sensitive to input parameters, in other words they 

have a significant influence on the results of clustering. It is not easy to find 

the parameters which ensure satisfying results. “The OPTICS algorithm 

creates an augmented ordering of the database representing its density-based 

clustering structure. This cluster-ordering contains information which is 

equivalent to the density-based clustering corresponding to a broad range of 

parameter settings.” (Ankerst et al., 1999) 

On the other hand, the OPTICS clustering algorithm has also limitations, 

namely it has high complexity, which means that it is very slow for large 

data sets (Yue et al., 2007) (Schneider and Vlachos, 2013). In this paper, we 

introduce a new algorithm named GridOPTICS which uses a grid structure 

to reduce the number of data points and then applies the OPTICS algorithm 

on the grid structure to find the clusters. The new algorithm has the 

advantage that it has fast processing time, whereas it also keeps the 

advantages of the OPTICS.  

The rest of the paper is organized as follows. Section 2 gives a short 

summary of new techniques of the grid-based and the density-based 

clustering and of their combinations. In Section 3, there is an overview of 
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the main definitions of the OPTICS algorithm. In Section 4, each step of our 

GridOPTICS algorithm is described, whereas Section 5 introduces how we 

implemented the algorithms. Section 6 gives the experimental results, 

namely we compare the execution time, the reachability plots and the 

clustered points of the OPTICS and the GridOPTICS for more point sets. 

Before the conclusion, we give advice when and how to apply our 

application. At the end, we summarize our results.  

 

2. Related works 

Combination of the grid-based and the density-based technique is common. 

Parikh and Varma (2014) gave a short survey of this topic. They presented 

short descriptions of some grid-based algorithm namely the new shifting 

clustering algorithm, the grid-based DBSCAN algorithm, the GDILC 

algorithm, the general grid-clustering approach, and the OPT-GRID(S).  

Similarly, Mann and Kaur (2013) collected some DBSCAN variant 

algorithms, namely GMDBSCAN and GDCLU combined the two 

techniques. The grid-based DBSCAN algorithm (Darong and Peng, 2012) is 

similar to our algorithm; however, they improved the DBSCAN algorithm.  

G-DBSCAN (Ma et al., 2014) uses a grid method for the first time, and 

removes noise in order to reduce the points to be processed. Its goal was to 

reduce memory usage and improve efficiency of the algorithm. They did not 

give exact information how they assign input points to the grid structure, 

moreover, they analysed the efficiency of their algorithm on data sets which 

have only about a few hundred points.  

Zhao et al. (2011) proposed an enhanced grid-density based approach for 

clustering high dimensional data, which was accurate and fast, which they 

showed in the experimental evaluation, where they executed their AGRID+ 

algorithm for more synthetic data sets. Ma et al. (2003) presented the CURD 

algorithm, which uses references and density, and which has nearly linear 

time complexity. Achtert et al. (2006) introduced the DeLiClu algorithm, 

which avoids the non-intuitive ε parameter of the OPTICS and the density 

estimator of single-link algorithm.  

Some researchers changed the OPTICS algorithm in order to improve it in a 

way. Schneider and Vlachos (2013) introduced the fast density-based 

clustering technique based on random projections (FOPTICS), whose goal 

was to speed up the computation of the OPTICS algorithm. Alzaalan et al. 

(2012) enhanced the concept of core-distance of the OPTICS in order to 

make the algorithm less sensitive to data with variant density but they did 

not improve the performance. Patwary et al. (2013) introduced the scalable 

parallel OPTICS algorithm (POPTICS), which they tried out on a 40-core 



4 
 

shared-memory machine. Brecheisen et al. (2006) confined the OPTICS 

algorithm to ε-range queries on simple distance functions and carried out 

complex distance computations only at a stage of the algorithm where they 

were compulsory to compute the correct clustering result. Breunig et al. 

(2000) combined compression, namely the BIRCH algorithm, with the 

OPTICS algorithm to yield performance speed-up-factors. Brecheisen et al. 

(2006) combined the multi-step query processing with density-based 

clustering algorithms, namely with the DBSCAN and the OPTICS in order 

to accelerate them by more than one order of magnitude.  

Yue et al. (2007) presented a new algorithm named OGTICS, which 

modifies and improves the OPTICS with grid technology and has linear 

complexity, thus it is much faster than the OPTICS. The algorithm divides 

the data set into number of grids and assigns all data into these grids, then it 

partitions all grids to a few groups. In the next steps, it computes the centre 

of each grid and orders all grids to a queue in x-axis. In the last two steps, it 

generates a statistical histogram with the number of data across all grids and 

determines the optimal number of clusters and partitions. 

Our algorithm differs from this algorithm in creating of the grid structure 

and in processing of the grid structure. Namely, our algorithm builds a 

simpler grid structure, and we use the OPTICS algorithm with only a few 

changes in the processing, whereas they used ordering the grids by x-axis.  

 

3. The OPTICS algorithm 

The OPTICS (Ankerst et al., 1999) has two input parameters (ε and MinPts) 

which are used to find neighbours, core objects, core-distances, and 

reachability-distances. They introduced some other definition but only the 

previous definitions are important to describe our algorithm. 

The neighbours of the C point are the points which are in the ε-

neighbourhood of the C. C point is a core-object if the cardinality of the ε-

neighbourhood of the C point is equal or greater than MinPts. The core-

distance of the C point is the smallest ε’ (ε’<= ε) of which it is true that the 

cardinality of the ε’-neighbourhood of the C point is equal or greater than 

MinPts; if this ε’ does not exists, it is undefined. The reachability-distance 

of P point with regard to C point is undefined if the C is not core-object, 

otherwise the greater value from the core-distance of C point and the 

distance of the P and the C points.  

The OPTICS algorithm generates a structure in which the sequence of the 

input points is important, and it assigns a corresponding reachability-

distance for each point. This structure can be displayed by 2-D plots, the 

name of which is reachability plots. Valleys in reachability plots indicate 
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clusters: points having a small reachability value are closer and thus more 

similar to their predecessor points than points having high reachability 

value. (Brecheisen et al., 2006) 

If you want to determine the clusters of this structure, you can use the 

algorithm of Ankerst et al. (1999). However, Patwary et al. (2013) provided 

a simpler algorithm. Both of them need a new φ parameter (0<=φ<= ε), and 

they consider a cluster as an interval, where is it true that reachability 

distance of every point of the interval is not greater than φ. The cardinality 

of a cluster should be at least MinPts. 

 

4. The GridOPTICS algorithm 

The main idea of the GridOPTICS algorithm is to reduce the number of 

input points with a grid technique and then to execute the OPTICS 

algorithm on the grid structure. Based on the reachability plots, the clusters 

of the grid structure can be determined. In the end, the input points can be 

assigned to the clusters. It is supposed that the points are in the Euclidean 

space, so the Euclidean distance is used, however other distances can also be 

used. The GridOPTICS algorithm has 3 parameters, namely ε, MinPts, 

which play similar role as in the OPTICS, and τ, which defines the distance 

in the grid structure.  

The algorithm has 4 main steps, they are the following: 

 

1. Step: Constructing the grid structure 

The grid structure is very simple, that is there are grid lines which are 

parallel and their distance is τ in a dimension, moreover they are orthogonal 

to each other if they are not in the same dimension. In this way, they cross 

each other in grid points. The distance of two neighbour grid points is τ.  

In an n-dimensional space, an input point (p1, p2, … pn) is assigned to a grid 

point (g1, g2, … gn) (gi=k, k is element of integers, i=1, …, n) in the 

following way: gi-τ/2 <=pi <gi+ τ/2, (i=1, …, n). The algorithm counts how 

many input points belong to each grid point. It only stores the grid points to 

which at least one input point has been assigned.  

Figure 1 shows a simple example how the algorithm assigns the input points 

to the grid in two dimensions. On the left side, there are the input points and 

the grid lines, on the right side, there are the grid points and the number 

which shows how many input points belong to each grid point. 

In this way, each input point is transformed into a grid point, which can hurt 

accuracy in a minimal way. If the grid was moved with τ’ (-τ <τ’< τ) in a 

dimension, an input point would be likely to be transformed into another 
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grid point but the inaccuracy problem would be the same. You will see that 

it could influence the results only to the slightest degree.  

 

2. Step: Applying the OPTICS algorithm to the grid structure 

The OPTICS searches the points in the ε-neighbourhood of a point more 

times. To perform this task it should examine all input points. Because of 

the grid, this task is simpler than in the OPTICS, since the neighbours of a 

grid point are also in the grid structure. We know that the distance of two 

neighbour grid points is τ, and we want to find points in ε-neighbourhood of 

a point. Figure 2 shows the neighbour grid points of the C. The serial 

numbers of the grid points show the order in which the algorithm should 

process them when it calculates the core-distance of the C point.  

Zhao et al. (2011) gave a comprehensive discussion about the 

neighbourhood on a high-dimensional grid structure.  

In the second step, the algorithm calculates the core-distance of each stored 

grid point (C point) firstly. The OPTICS defines the core-distance of C point 

as the smallest ε’<= ε of which it is true that the cardinality of the 

ε’-neighbourhood of the C point is equal or greater than MinPts; if this ε’ 

does not exists, it is undefined. The GridOPTICS algorithm calculates it in 

the next way:  

1. if the number of the points assigned to the C is more than MinPts, 

the core-distance will be 0;  

2. if the distance of the C and the points marked by 1 on Figure 2 

(which is τ) is not more than ε, and the number of input points 

assigned to the C and the grid points marked by 1 is not less than 

MinPts, the core-distance will be the distance of the C and the 

points marked by 1 (in this case this is τ);  

3. if the distance of C and the points marked by I (I = 2, 3, …, ε/τ) on 

Figure 2 is not more than ε, and the number of input points 

assigned to the C and the grid points marked by 1, 2, … I is not less 

than MinPts, the core-distance will be the distance of the C and 

points marked by I;  

4. otherwise the core-distance is undefined.  

The other part of the second step is almost the same as the steps of the 

OPTICS. The algorithm chooses a grid point from the unprocessed grid 

points, and accounts it processed, then if it is a core-object, the algorithm 

continues the processing with the neighbour grid points, otherwise the 

algorithm repeats this step until there are unprocessed grid points.  

In the processing of the neighbour grid points, the algorithm searches the 

neighbour grid points and puts them into a neighbour collection. Then, it 
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chooses the point of the collection which has the smallest reachability-

distance, accounts it processed, takes out from the neighbour collection, and 

if the point is core-object, the algorithm adds its neighbour grid points to the 

neighbour collection. Until the neighbour collection is not empty, the 

algorithm continues the processing of the next element of the neighbour 

collection.  

Figure 3 shows the pseudo-code of the second main step.  

As a result, there is a structure in which there is a given sequence of grid 

points with their corresponding reachability-distances.  

 

3. Step: Determining clusters of the grid points 

In this step, the algorithm assigns a cluster number to each cluster. We do 

not find automatically all clusters as Ankerst et al. (1999), instead we follow 

the method of Brecheisen et al. (2006), moreover our algorithm is similar to 

the algorithm of Patwary et al. (2013) but it is not the same. We also used 

the results of Sander et al. (2003), who automatically determined the 

significant clusters in reachability plots with the help of dendograms.  

Our goal is to find the clusters in which the reachability distance is less than 

φ (0<=φ<=maximum of the reachability distances, or φ is undefined). We 

could also find all clusters if we applied all φ values but we will show 

results only for a few φ values. However, if you need all clusters, you can 

apply the algorithm of Ankerst et al. (1999) on the processed grid points of 

the GridOPTICS.  

Our algorithm processes the sequence of the grid points, and it says that if 

the reachability distance of a point is bigger than φ, there is a new cluster. 

However, if a cluster has fewer grid points than MinPts, it is noise, so it 

should examine how many points the cluster under processing has.  

Figure 4 shows the pseudo-code of the third step.  

 

4. Step: Assigning the input points to the clusters 

In the last step, the GridOPTICS algorithm determines to which cluster each 

input point belongs. It looks through the input points and searches the grid 

point which was assigned to it, and reads its cluster number.  

If you want to find all clusters in the reachability plots, you should execute 

the last two steps for all φ values.  

 

5. Implementation 

We realized the algorithm in the C# language in the Visual Studio 2010 

Express Edition. We executed our program on 2-dimensional input points.  
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We created the grid structure in a way that we shifted the input points in 

order that the minimum coordinates could be 0, and we divided the 

coordinates by τ. Consequently, the indexes of the grid structure started with 

0 and its coordinates are small non-negative integer values, which makes the 

calculation faster.  

In the core-distance calculation, we could use that the neighbour grid points 

of C (cx,cy) marked by 1 on Figure 2 are (cx-1,cy), (cx+1,cy), (cx,cy-1), 

(cx, cy+1). Similarly, it is very easy to find the coordinates of the other 

neighbour grid points. To make the search of the neighbours easy, we used a 

List collection to store the relative coordinates of the possible ε-neighbours 

in the appropriate order shown in Figure 2, and we stored the grid structure 

in a Dictionary collection, which supported the search by coordinates.  

The neighbour and the processed grid points were stored in List collections 

because the algorithm did not need to search the grid points by coordinates 

any more, but it needed the order of the processed grid points to produce the 

reachability plots.  

 

6. A basic example 

We examine the steps of the GridOPTICS algorithm with a synthetic point 

set which has 20 points. Table 1 shows the input points named 

PointSetFirstTry20. The parameters of the algorithms are ε = 50, MinPts=3, 

τ=4.  

In the first step, the GridOPTICS algorithm creates the grid structure, which 

is shown in Table 2. There are the two coordinates of the grid structure in 

the first two columns, whereas the third column shows how many input 

points belong to the grid point.  

In the second step, firstly the algorithm calculates the core distances, which 

is shown in the fourth column. The core distances are calculated for the 

input points, namely the distances of the grid points are multiplied with the 

value of τ. Then, the algorithm orders the points with the help of their 

reachability distances. The fifth column of Table 2 shows the reachability 

distances; moreover, the sequence of the grid points in Table 2 corresponds 

to the result of the algorithm. This means that the sequence of the grid 

points and their reachability distances constitute the reachability plots. 

In the third step the algorithm assigns a cluster number to each clusters of 

grid points. The sixth and seventh columns of Table 2 show the cluster 

numbers when φ=8 and φ=22. 

In the last step, the algorithm determines to which cluster each input point 

belongs. The third and fourth columns of Table 1 show the cluster numbers 
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of input points. The order of the input points is the same as the original 

order, the reachability plots cannot be read from there.  

 

7. Experimental Results 

Firstly, we used some home-generated synthetic point sets as input point 

sets of our GridOPTICS algorithm. The coordinates of the input points are 

integer values. The synthetic point sets have noisy points in order to show 

how the GridOPTICS finds them. Moreover, they have more clusters and 

these clusters have various densities in order that there are more valleys of 

the reachability plots. The goal of the valleys is that we could easier make 

comparison between the reachability plots resulted by OPTICS and 

GRIDOPTICS. The program is executed on a PC which had 2GB RAM, and 

2.01 GHz AMD Athlon CPU.  

We make comparison of execution time and results of the OPTICS and the 

GridOPTICS algorithm. Brecheisen et al. (2006) state that “ε has to be very 

high in order to create reachability plots without loss of information and 

MinPts is typically only a small fraction of cardinality of input data, e.g., 

MinPts=5 is a suitable value even for large databases”. In the experience, we 

used very large ε values in order to easily compare the reachability plots; 

moreover, we also used higher MinPts values.  

The following abbreviations are used in the tables: OT is the execution time 

of the OPTICS, GOT is the execution time of the GridOPTICS, NGP is the 

number of the grid points, and MP is MinPts. The measure of the execution 

time is millisecond.  

First, we executed both algorithms on a synthetic point set with 407 input 

points called PointSet500. The x coordinates range between 84 and 573, 

whereas y coordinates are between 410 and 815. Table 3 shows the 

execution time of the OPTICS and the GridOPTICS and the number of grid 

points of the GridOPTICS.  

If τ=1, the grid structure is almost the same as the input points, so the 

GridOPTICS will have almost the same result as the OPTICS but the 

execution will be longer because the GridOPTICS builds the grid structure 

first. If τ is bigger, the grid structure will have fewer grid points, so it will be 

faster. You can read from Table 3, if τ >=10, the execution time will be less 

with one or two orders of magnitude or more.  

Figure 5 shows the results executed on the PointSet500 with ε=500, 

MinPts=5. Subfigure A shows the reachability plots produced by the 

OPTICS, Subfigure B is the clustered points resulted the OPTICS where 

φ=44. The C, D, E, F, G and H parts of the figure show the reachability 

plots produced by the GridOPTICS, where τ=1, 5, 10, 20, 30, 40. The red 
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line in reachability plots of each subfigures shows the value of the φ, which 

is 44 in these cases.  

You can see little green points on the reachability plots of the GridOPTICS 

in Figure 5, which show how many input points belong to a grid point. The 

reachability plots of the GridOPTICS executed with τ=1 parameter are 

similar to that of the OPTICS, the algorithm can produce almost the same 

results as the OPTICS. The other reachability plots show us that if the τ is 

higher, the plot is plainer, there are not so many cuts in the valleys, 

moreover, more input points belong to a grid point, consequently the 

reachability distances in the valleys are growing with the τ.  

In case of this point set the τ=40 is very high because it means that there are 

10-12 gridlines in each dimension. This can cause inaccuracy, namely 

Figure 6 shows its result, where you see two points in two red circles which 

should be noise instead of clustered points.  

The GridOPTICS with the other τ values created the same clusters as the 

OPTICS in the above described cases. 

Figure 7 and 8 show reachability plots of PointSet500.  

The GridOPTICS can cause inaccuracy because the original input points are 

substituted with grid points. The higher the τ is, the more inaccurate the 

result is. This inaccuracy can cause that a few input points are clustered but 

they should be noise, or the GridOPTICS consider some input points to be 

noise but they should be clustered. In the most cases, these input points are 

in the border of a cluster. Another inaccuracy can happen when two or more 

clusters are contracted.  

The grid structure may be moved with τ‘ (-τ< τ’ < τ) in a dimension but it 

will cause the same inaccuracy on the other side of the clusters. 

With higher MinPts value, the reachability plots of the OPTICS are also 

plainer, there are not so many cuts in the valleys. In this way, the 

reachability plots of the GridOPTICS can be more similar to it. We can state 

if the MinPts is higher, the GridOPTICS will be less or not inaccurate.  

Let us see other input points. PointSet1000 has 919 synthetic points, the x 

coordinates range between 234 and 572, whereas y coordinates are between 

390 and 783. Table 4 shows the execution time of the GridOPTICS and the 

OPTICS on the PointSet1000. 

In case of this point set, there will be less than 10 gridline in each dimension 

if you choose τ >=30. In this way, there will not be enough grid points in 

order that the GridOPTICS can give an accurate result.  

Part A of Figure 9 shows clustered points and the C part shows the 

reachability plots resulted by the OPTICS with ε =400, MinPts=5 and φ 

=20. Subfigure B demonstrates clustered points, whereas Subfigure D 
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displays the reachability plots of the GridOPTICS with ε =400, MinPts=5, 

τ=10, and φ =20. In this case, the clusters are similar to each other, but on 

Subfigure B you can find inaccuracy, namely you can find input points 

which are noise instead of being clustered. These are caused by the 

transformation into the grid structure. At the same time, the GridOPTICS is 

thirty-four times faster than the OPTICS in this case.  

PointSet4000 has 4028 synthetic points; the x coordinates range between 37 

and 986, whereas y coordinates are between 20 and 933. Table 5 shows the 

execution time of the algorithms on this point set.  

The OPTICS takes about 1,5 hour to give results for a set which has about 

4000 points, whereas the GridOPTICS takes  about 24 minute if τ=5, it takes 

2 minutes if τ=10, and it takes less than a minute if τ>=20. 

Part A of Figure 10 shows reachability plots, Subfigure C and E display the 

clustered points of the OPTICS with ε =1000, MinPts=20, φ =25 and φ =45, 

in  case of Subfigure C φ =25, whereas on Subfigure E φ =45. Subfigure B 

shows reachability plots, whereas D (φ =25) and F (φ =45) parts show the 

clustered points of the GridOPTICS with ε =1000, MinPts=20, τ=20, φ =25 

and φ =45.  

In this case, the GridOPTICS is faster about 400 times as the OPTICS but 

the GridOPTICS loses information, namely if φ=25, the GridOPTICS finds 

a lot of noise (noise points are black on the figures), where the OPTICS 

finds clusters, furthermore the GridOPTICS contracts clusters together. 

However, the GridOPTICS finds the main clusters similarly to the OPTICS. 

If φ =45, the results of the two algorithms are fast the same.   

PointSet5000 has 5045 synthetic points, the x coordinates range between 22 

and 978, whereas y coordinates are between 16 and 934. Table 6 shows the 

execution time of the algorithms on this point set. 

Considering the execution time it took the OPTICS algorithm about three 

hours to give results, whereas it took the GridOPTICS about 7 minutes 

when τ =10.  

Figure 11 shows the results executed on the PointSet5000 with ε=1000 and 

MinPts=5. Subfigure A shows the reachability plots resulted by the OPTICS 

and Subfigure B shows the reachability plots resulted by the GridOPTICS 

with τ =10. φ=12 and φ=32 which values are represented by the red lines on 

these two subfigures. Subfigure C and E show the clustered points resulted 

by the OPTICS, in case of the C, φ=12, whereas in  case of the E, φ=32. 

Similarly, Subfigures D and F show the clustered points resulted by the 

GridOPTICS, in case of the D, φ=12, whereas in case of the F, φ=32. 

You can see a similar inaccuracy on Figure 11 as Figure 10, namely the 

GridOPTICS finds a lot of noise, where the OPTICS finds clusters, and the 
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GridOPTICS contracts clusters together. At the same time, the execution 

time of the GridOPTICS is 23 times faster than the OPTICS in this case.  

PointSet3000 has 2976 synthetic points; the x coordinates range between 

204 and 877, whereas y coordinates are between 60 and 876. Table 7 shows 

the execution time of the algorithms on this point set. 

Figure 12 shows the results executed on PointSet3000 with ε=800, 

MinPts=5. Subfigure A shows the reachability plots resulted by the 

OPTICS, whereas B, C and D parts show the reachability plots resulted by 

the GridOPTICS with τ =5, 10 and 20. φ=6 and φ=21 are chosen which are 

represented by the red lines on each subfigure. Subfigure A, B, C, and D are 

cut and enlarged in order that you can see the important parts of the 

reachability plots. The E and G parts of Figure 13 show the clustered points 

resulted by the OPTICS in case of the E φ=6, whereas in case of the G 

φ=21. Similarly, F and H parts of the figure show the clustered points 

resulted by the GridOPTICS τ =5, in  case of the F φ=6, whereas in  case of 

the H φ=21. Subfigure I and J show the clustered points resulted by the 

GridOPTICS, in case of I, τ =10 and φ=21, whereas in case of J τ =20 and 

φ=21. In case of the GridOPTICS with τ =10 and 20 and φ=6, all input 

points are noises.  

You can see on Figure 12 and Figure 13 that it is not worth choosing higher 

value for the τ as 10 in this case, because the clusters having small 

granularity are lost. Therefore, we can suggest using lower τ value, namely τ 

=5. The cardinality of the point set is slight, consequently the execution time 

is not so long.  

We also executed both algorithms on some clustering data sets from the 

http://cs.joensuu.fi/sipu/datasets/ website. Figure 14 shows the results 

executed on the Aggregation data set (Gionis, 2007), where Table 8 shows 

the execution time of the algorithms. The Aggregation data set has 788 

points, the x coordinates range between 335 and 3655, whereas y 

coordinates are between 195 and 2915.  

Figure 15 shows the results executed on the Dim2 data set, where Table 9 

shows the execution time of the algorithms. The Dim2 data set has 1351 

points, the x coordinates range between 0 and 978207, whereas y 

coordinates are between 0 and 1000000. 

Figure 16 shows the results executed on the A1 data set (Kärkkäinen and 

Fränti, 2006), where Table 10 shows the execution time of the algorithms. 

The A1 data set has 3000 points, the x coordinates range between 0 and 

65535, whereas y coordinates are between 32064 and 64978. 

Figure 17 shows the results executed on the S3 data set (Fränti and 

Virmajoki, 2006), where Table 11 shows the execution time of the 
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algorithms. The S3 data set has 5000 points, the x coordinates range 

between 32710 and 942327, whereas y coordinates are between 70003 and 

947322. 

Figure 18 shows the results executed on the Unbalance data set, where 

Table 12 shows the execution time of the algorithms. The Unbalance data 

set has 6500 points, the x coordinates range between 139779 and 575805, 

whereas y coordinates are between 271530 and 440940. 

Figure 19 shows the results executed on the t4.8k data set (Karypis et al., 

1999), where Table 13 shows the execution time of the algorithms. The 

t4.8k data set has 8000 points, the x coordinates range between 14642 and 

634957, whereas y coordinates are between 21381 and 320874. 

Figure 20, 21 and 22 show examples for the results of the GridOPTICS 

executed on data sets with 100000 and 50000 data points.  

 

8. Application of the GridOPTICS 

We suggest using the GridOPTICS if you have more than 500-600 input 

points, because if you have only less than 500 input points, the OPTICS 

works fast, it takes only 1 second to give results. But, you can read from 

Table 4 (PointSet1000) that if you have about 1000 points, it takes the 

OPTICS  about 1,5 hour to give results on a simple PC, whereas it takes the 

GridOPTICS 13 second if τ=5.  

Moreover, the GridOPTICS is very useful, if you have a data set where a lot 

of input points have the same coordinates with each other, which means that 

the number of the grid points may be a fractional part of the number of input 

points even if τ=1. Figure 23 shows an example for such a data set, where 

τ=1 and the cardinality of the grid points is fewer with one order of 

magnitude as the cardinality of input points.  

In most examples, we used large ε values in order to show entire 

reachability plots. Of course, you can execute the GridOPTICS with smaller 

ε, which will results that it may not find the rough-grained clusters. The 

OPTICS works similarly. In Figure 24 you can find an example for smaller 

ε, namely they are the reachability plots and the clustered points of the 

GridOPTICS on PointSet5000 with ε=40, MinPts=5, τ =10, and φ=32. 

The τ should be less or equal with ε, otherwise a cluster will consist of the 

input points which belong to a grid point. Of course, it can also be 

considered a clustering algorithm.  

We would estimate the value of τ based on the cardinality of the point set 

and the range of the coordinates. We would choose the τ in order to be at 

least 500-1000 grid points. If there are less than 1000 grid points, the 

GridOPTICS gives results in a few minute. However, 500-1000 grid points 
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are not enough for large data sets. Hence, we could consider the relationship 

between the execution time and the cardinality of the grid points, because 

the execution time substantially depends on the cardinality of the grid 

points. Finally, who will apply this algorithm, should decide what they need. 

On the one hand, you can set a higher value to τ, consequently the algorithm 

will be faster but less accurate, however in  case of large data sets the high τ 

values may scarcely cause accuracy problems. On the other hand, you can 

choose lower value for τ, which will result in longer execution time, but 

more accurate results.  

 

9. Future Work 

We plan to try out the algorithm for more dimensions and with more types 

of distances. One type of real world examples can be that the input data are 

GPS coordinates, which need a special distance.  

We also plan to find an appropriate method to measure the quality of the 

GridOPTICS algorithm considering the OPTICS. Both algorithms generate 

reachability plots and it would be better if we could compare the 

reachability plots instead of the resulted clusters. But, we cannot find any 

quality measurement technique for the reachability plots. We plan to give 

one in the future.  

 

10. Conclusion 

In this paper, we introduced the GridOPTICS clustering algorithm. It builds 

a grid structure from the input points in the first step, then it executes the 

OPTICS algorithm on the grid structure in the second step, afterwards it 

determines the clusters of the grid points in the third step, and finally, it 

assigns the input points to the clusters. The algorithm has the same 

advantage as the OPTICS, namely it builds reachability plots to find more 

than one clustering structure. Moreover, its execution time can be faster 

with more orders of magnitude than the OPTICS, which is very useful for 

large data sets which have more thousand points. However, the 

GridOPTICS can be less accurate than the OPTICS. The user of our 

algorithm has to decide whether the accuracy or the speed of their 

application is important. In the experimental results, we made comparison 

between the execution times and results of the GridOPTICS and the 

OPTICS. At the end of the article, we gave suggestions when to use the 

GridOPTICS algorithm and how its parameter can be chosen, and finally, 

we gave more examples for data sets clustered by the GridOPTICS. 
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Tables 

Original x 

coordinate 

Original y 

coordinate 

Cluster  

Number  

if φ=8 

Cluster  

Number 

if φ=22 
54 7 1 1 

2 5 noise noise 

30 3 noise 1 

52 3 1 1 

52 5 1 1 

51 5 1 1 

28 19 2 1 

27 18 2 1 

27 19 2 1 

27 18 2 1 

23 16 2 1 

92 33 3 2 

90 34 3 2 

96 35 3 2 

97 34 3 2 

91 36 3 2 

96 33 3 2 

96 31 3 2 

92 34 3 2 

95 35 3 2 

Table 1 – The FirstTry20 point set  

 

X Y Card.  

of 

input 

points 

Core 

Distance 

Reach.  

Distance 

Cluster  

Number  

if φ=8 

Cluster  

Number 

if φ=22 

13 1 1 5,656854 3,402823E+38 1 1 

12 0 3 0 5,656854 1 1 

7 0 1 16,49242 20 noise 1 

5 3 1 5,656854 14,4222 2 1 
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6 4 4 0 5,656854 2 1 

0 0 1 28 28 noise noise 

22 8 4 0 45,60702 3 2 

23 8 1 4 4 3 2 

24 8 3 0 4 3 2 

24 7 1 4 4 3 2 

Table 2 – The Grid points with the cardinality of the input points, the 

reachability distances, the core distances and the cluster numbers generated 

from the FirstTry20 point set (ε=50, MinPts=3, τ =4)  

 

ε MP OT τ 1 5 10 20 30 40 

   NGP 391 225 100 55 39 18 

500 5 6270 GOT 9392 2122 166 84 34 33 

500 10 5583 GOT 9598 1512 211 76 11 6 

500 20 6690 GOT 9598 1367 202 57 9 6 

Table 3 – The execution time of the algorithms on the PointSet500 

 

ε MP OT τ 1 5 10 20 30 

   NGP 863 484 241 118 76 

400 5 64330  GOT 78660 13969 1849 266 86 

500 10 69599 GOT 82527 14987 1648 290 64 

400 20 61515 GOT 87628 16361 1759 245 97 

Table 4 - The execution time of the algorithms on the PointSet1000. 

 

ε MP OT τ 5 10 20 30 

   NGP 2365 1120 486 309 

1000 5 5474880 GOT 1518406 164218 14750 3334 

1000 10 5699831 GOT 1679268 175580 14774 3998 

1000 20 5429290 GOT 1483909 159955 13513 3542 

Table 5 - The execution time of the algorithms on the PointSet4000. 

 

ε MP OT τ 5 10 20 30 

   NGP 3282 1589 646 408 

1000 5 10853077 GOT 4388269 466100 32677 8193 

Table 6 - The execution time of the algorithms on the PointSet5000. 
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ε MP OT τ 5 10 20 

   NGP 1666 953 434 

800 5 2154836 GOT 550441 96625 10150 

Table 7 - The execution time of the algorithms on the PointSet3000. 

 

ε MP OT τ 110 

   NGP 399 

3000 5 12696 GOT 2237 

Table 8 - The execution time of the algorithms on the Aggregation. 

 

ε MP OT τ 10000 

   NGP 145 

1000000 5 70651 GOT 212 

Table 9 - The execution time of the algorithms on the Dim2. 

 

ε MP OT τ 500 

   NGP 1725 

60000 5 697345 GOT 173274 

Table 10 - The execution time of the algorithms on the A1. 

 

ε MP OT τ 10000 

   NGP 2530 

100000 5 3226123 GOT 540397 

Table 11 - The execution time of the algorithms on the S3. 

 

ε MP OT τ 4000 

   NGP 378 

500000 5 7091022 GOT 1997 

Table 12 - The execution time of the algorithms on the Unbalance. 

 

ε MP OT τ 5500 

   NGP 3037 

600000 5 13664865 GOT 947071 

Table 13 - The execution time of the algorithms on the t4.8k. 
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Figures 

 

Figure 1: Input points and grid points 

 

 

Figure 2 – C point and its neighbours 
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Calculate Core Distances; 

while Element Number of Unprocessed Grid Elements != 0 

  {  

  C is an Element From the Unprocessed Grid Elements 

  account C processed 

  if C is core-object  

    { 

    add Neighbours of C to Neighbour Grid Elements 

    while Element Number of Neighbour Grid Elements != 0 

      { 

      calculate Reachability Distances for every  

         Element of Neighbour Grid Elements  

         with regard to each Processed Element  

      S is the Element from Neighbour Grid Elements which  

         has the Smallest Reachability Distance 

      account S processed 

      take out S from Neighbour Grid Elements 

      if S is core-object  

        add Neighbours of S to Neighbour Grid Elements 

      } 

    } 

  } 

Figure 3: The pseudo-code of second step - Applying the OPTICS to the 

grid structure 
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ClusterNumber = 0 

ClusterElementNumber = 1 

ClusterGridElementNumber =  

    Number of Input Points of Processed Grid Elements [0] 

Cluster Number of Processed Grid Elements [0] = clusterNumber 

 

for i = 1.. Element Number of Processed Grid Elements 

  { 

  if Reachability Distance of Processed Grid Elements[i] >= φ 

    { 

    if (ClusterElementNumber < MinPts) 

        for j = 0 .. clusterElementNumber  

          Processed Grid Elements [i - 1 – j] is NOISE  

      else ClusterNumber++; 

    Cluster Number of Processed Grid Elements [i] =  

         ClusterNumber 

    ClusterElementNumber = 1 

    ClusterGridElementNumber  

      = Number of Input Points of Processed Grid Elements [i] 

    } 

  else 

    { 

    Cluster Number of Processed Grid Elements [i] =  

        ClusterNumber 

    ClusterElementNumber +=  

       Number of Input Points of Processed Grid Elements [i] 

    ClusterGridElementNumber++ 

    } 

 } 

 

if (ClusterElementNumber < MinPts) 

   for j = 0..ClusterElementNumber  

     Processed Grid Elements [Processed Grid  

           Elements Number - 1- j] is NOISE 

 

Figure 4 - The pseudo-code of the third step - Determining clusters of the 

grid points 
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Figure 5 – Results executed on PointSet500 with ε=500, MinPts=5. 

 

 

Figure 6 – The clustered points of the PointSet500, executed with τ=40 
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Figure 7 – The reachability plots of the OPTICS (left side) and the 

GridOPTICS (right side) on the PointSet500 with ε=500, MinPts=20, τ =20, 

and φ=42. 

 

 

Figure 8 – Results of the GridOPTICS on the PointSet500 with ε=500, 

MinPts=20, φ=42, τ=1, 5, 10, 20, 30, 40. 
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Figure 9 – Results of the OPTICS and the GridOPTICS on the PointSet1000 

with ε =400, MinPts=5, τ=10, and φ =20. 

 

 

Figure 10 – Results of the OPTICS and the GridOPTICS on the 

PointSet4000 with ε =1000, MinPts=20, τ=20, φ =25, and φ =45. 
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Figure 11 - Results of the OPTICS and the GridOPTICS on the 

PointSet5000 with ε=1000, MinPts=5, τ =10, φ=12 and φ=32. 

 

 

Figure 12 – The reachability plots of the OPTICS and the GridOPTICS on 

the PointSet3000 with ε=800, MinPts=5, τ =5, 10, 20, φ=6 and φ=21.  
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Figure 13 – The clustered points of the OPTICS and the GridOPTICS on the 

PointSet3000 with ε=800, MinPts=5, τ =5, 10, 20, φ=6 and φ=21.  

 

 

Figure 14 – The reachability plots and clustered points of the OPTICS (A,C) 

and the GridOPTICS (B,D) on the Aggregation with ε=3000, MinPts=5, 

τ=110 and φ=115.  
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Figure 15 – The reachability plots and clustered points of the OPTICS (A,C) 

and the GridOPTICS (B,D) on the Dim2 with ε= 1000000, MinPts=5, 

τ=10000 and φ=10100.  

 

 

Figure 16 – The reachability plots and clustered points of the OPTICS (A,C) 

and the GridOPTICS (B,D) on the A1 with ε= 60000, MinPts=5, τ=500 and 

φ=501.  
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Figure 17 – The reachability plots and clustered points of the OPTICS (A,C) 

and the GridOPTICS (B,D) on the S3 with ε= 100000, MinPts=5, τ=10000 

and φ=12000.  

 

Figure 18 – The reachability plots and clustered points of the OPTICS (A,C) 

and the GridOPTICS (B,D) on the Unbalance with ε= 500000, MinPts=5, 

τ=4000 and φ=5000.  
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Figure 19 – The reachability plots and clustered points of the OPTICS (A,C) 

and the GridOPTICS (B,D) on the t4.8k with ε= 600000, MinPts=5, τ= 5500 

and φ=5800.  

 

 

Figure 20 – The clustered points and the reachability plots resulted by the 

GridOPTICS with ε=10000, MinPts=50, τ =1000, and φ=1010 on BIRCH2 

data set (Zhang et al., 1997), whose cardinality is 100000. The execution 

time is 1279471 milliseconds. The number of the grid points is 7131. The x 

coordinates range between 47734 and 1000000, whereas the y coordinates 

range between 0 and 86244. 

 

 

Figure 21 – The clustered points and the reachability plots resulted by the 

GridOPTICS with ε=800, MinPts=5, τ =200, and φ=21 on 

PointsetCircle50000 synthetic data set, whose cardinality is 49968. The 

execution time is 121626 milliseconds. The number of the grid points is 
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1023. The x coordinates range between 81 and 920, whereas the y 

coordinates range between 81 and 920. 

 

 

Figure 22 – The clustered points and the reachability plots resulted by the 

GridOPTICS with ε=100000, MinPts=50, τ =8000, and φ=8010 on BIRCH1 

data set (Zhang et al., 1997), whose cardinality is 100000. The execution 

time is 191413781 milliseconds. The number of the grid points is 13507. 

The x coordinates range between 1371 and 996108 whereas the y 

coordinates range between 0 and 1000000. 

 

 

Figure 23 – Results of the GridOPTICS with ε=200, MinPts=5, τ =1, and 

φ=2 on the PointSet41000, whose cardinality is 41000. The cardinality of 

the grid points is 2541. The execution time is 1925881 millisecond. The x 

coordinates range between 27 and 158 whereas the y coordinates range 

between 14 and 199. 

 

 

Figure 24 – Results of the GridOPTICS with ε=40, MinPts=5, τ =10 and 

φ=32 on the PointSet5000. 

 

 


