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Abstract 

The marine-derived fungus Penicillium sp. (strain IO1) isolated from the Mediterranean 

sponge Ircinia oros yielded a new fusarielin analogue (1) together with the known compounds 

griseofulvin (4) and dechlorogriseofulvin (5). The structure of 1 was unambiguously 

elucidated by comprehensive spectroscopic analysis (1D and 2D NMR, and mass 

spectrometry) as well as by comparison with the literature, while the absolute configuration of 

1 was determined on the basis of TDDFT ECD calculations. A further Penicillium sp. (strain 

IO2) that was isolated from the same sponge I. oros yielded the known compounds 

dehydrocurvularin (6), curvularin (7), and trichodimerol (8). Co-cultivation of both Penicillium 

strains (IO1 and IO2) was found to induce the accumulation of the known norlichexanthone (2) 

and monocerin (3) that were not detected in either of the two axenic fungal controls. 

Compounds 3 and 6 showed pronounced cytotoxicity against the murine lymphoma (L5178Y) 

cell line with IC50 values of 8.4 and 4.7 μM, respectively. 
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Marine-derived fungi have received considerable attention in recent years due to their 

capacity to produce structurally unique and bioactive metabolites as potential sources of 

pharmaceutical leads.1-3 Examples include neoechinulin B and its analogues, isolated from the 

marine-derived fungus Eurotium rubrum, as potent inhibitors of a panel of influenza viruses 

including resistant strains,4 as well as the anthraquinone derivative lunatin from the 

sponge-derived fungus Curvularia lunata, which showed antimicrobial activity against 

Bacillus subtilis, Staphylococcus aureus and Escherichia coli.5 Marine invertebrates, such as 

sponges (Porifera), continue to be one of the most important sources of fungal isolates when 

compared to algae, sediment or drift wood.6 Fungal symbionts of sponges are suggested to 

play a role in the biosynthesis of bioactive secondary metabolites used as chemical defense by 

their hosts,7 which makes them attractive as promising sources of new bioactive metabolites. 

In our ongoing studies on bioactive compounds from sponge-associated fungi, we 

investigated an unknown Penicillium sp. (IO1), which was isolated from the Mediterranean 

sponge Ircinia oros collected at Kemer of Antalya in Turkey. Subsequent bioactivity-guided 

isolation yielded a new fusarielin derivative (1) and two known compounds (4 and 5). 

Co-cultivation of this fungus with a further Penicillium sp. (IO2) isolated from the same 

sponge resulted in the accumulation of the known compounds (2 and 3) that were not present 

in either of the fungal axenic controls. 

 

Results and Discussion 

From the Mediterranean sponge I. oros two Penicillium strains (IO1 and IO2) were isolated 

that differed with regard to their natural products when grown on solid rice medium. The 

crude EtOAc extract of Penicillium sp. strain IO1, was submitted to chromatographic 

separation using silica gel and Sephadex LH-20 as stationary phases followed by purification 

with semi-preparative reversed phase HPLC to yield one new compound (1) and two known 

compounds, including griseofulvin (4)8 and dechlorogriseofulvin (5)8 (Figure 1). 

Compound 19 was isolated as a pale yellow gel. The molecular formula was determined as 



  

C22H32O4 on the basis of a prominent ion peak at m/z 361.2369 [M + H]+ observed in the 

HRESIMS spectrum, indicating seven degrees of unsaturation. The 1H NMR spectrum of 1 

revealed the presence of three tertiary methyl groups at δH 1.94 (3H, d, J = 1.5 Hz, H3-19), 

1.55 (3H, s, H3-21) and 1.50 (3H, s, H3-22), two secondary methyl groups at δH 1.58 (3H, d, J 

= 6.0 Hz, H3-18) and 1.01 (3H, d, J = 7.0 Hz, H3-20), and four olefinic protons at δH 7.13 (1H, 

dd, J = 11.4, 1.5 Hz, H-3), 6.51 (1H, dd, J = 15.0, 11.4 Hz, H-4), 5.70 (1H, dd, J = 15.0, 9.8 

Hz, H-5) and 5.01 (1H, m, H-17) (Table 1). The 13C NMR showed a total of 22 resonances 

(Table 1) assigned to eight sp2 carbons [including two carbonyl groups at δC 216.5 (C-13) and 

171.9 (C-1)], five methyl groups [δC 29.1 (C-21), 18.1 (C-20 and C-22), 13.5 (C-18) and 12.7 

(C-19)], eight aliphatic sp3 carbons (including three methylenes and five methines), and one 

oxygenated quaternary carbon at δC 78.5 (C-14), as supported by DEPT and HSQC spectra 

(Figure S4 and S6). 

Detailed analysis of the 1H-1H COSY spectrum disclosed the presence of a continuous spin 

system starting from H-3 and sequentially extending until H-12 with H-10 further correlating 

with an aliphatic methyl (H3-20) (Figure 2a). In addition, COSY correlations from H-6 to 

H-15 and from H-7 to H-12 were observed. The HMBC correlations from H-15 (δH 2.76) to 

C-13, C-14, C-6 (δC 49.3), and C-7 (δC 45.8); H3-21 to C-13, C-14 and C-15 (δC 66.0); and 

H-12 (δH 2.60) to C-6 and C-13 further extended this substructure from C-12 to C-15 (Figure 

2a), thus indicating the presence of a decalone ring similar to that of fusarielins and 

rapiculin.10, 11 Further HMBC correlations from H-4 to C-2 (δC 127.0), C-3 (δC 139.5), and 

C-6, and from H3-19 to C-1, C-2 and C-3 corroborated the presence of a 

2-methylpenta-2,4-dienoic acid moiety and its connection to the decalone moiety at C-6. 

Moreover, a but-2-en-2-yl group was attached at C-15, as supported by the COSY correlation 

between H-17 and H3-18, as well as by the HMBC correlations from H3-22 to C-15, C-16 (δC 

133.8) and C-17 (δC 125.6) (Figure 2a), thereby rationalizing the remaining element of 

unsaturation. Thus, the planar structure of 1 was established as shown in Figure 1. 

The geometry of the double bonds in the 2-methylpenta-2,4-dienoic acid side chain was 

deduced as E based on the ROESY correlation between H3-19 and H-4 and the large coupling 

constant between H-4 and H-5 (3J4,5 = 15.0 Hz), respectively. Likewise, the ROESY 

correlation between H3-22 and H3-18 indicated the 16E configuration of the double bond in 



  

the but-2-en-2-yl group (Figure 2b). 

Accordingly, the relative configuration of the stereocenters of the decalone moiety of 1 was 

deduced by analysis of the coupling constants and the ROESY spectrum (Figure 2b). The 

axial orientations of H-12, H-7, and H-6 were suggested by the large vicinal coupling 

constants (3J6,7 = 3J7,12 = 11.6 Hz), hence indicating the presence of a trans-decalone ring as 

observed in fusarielins.10 This was further corroborated by the absence of a cross-peak 

between H-7 and H-12 in the ROESY spectrum of 1. Moreover, the relatively small coupling 

constant between H-6 and H-15 (3J6,15 = 5.4 Hz) revealed the equatorial orientation for the 

latter and subsequently the axial orientation for the but-2-en-2-yl group. The ROESY 

spectrum further showed correlations of H-12 with H3-20, H3-21 and H-6, which confirmed 

the co-facial orientation of these protons and the (6S*,7S*,10S*,12R*,14S*,15R*) relative 

configuration (Figure 2b). 

The conformers differed in the orientation of the C-15 substituent and the carboxyl group 

(Figure S9). All the conformers reproduced the intense negative CE at 266 nm, and the 

Boltzmann-weighted TDDFT-ECD spectra computed with three functionals (B3LYP, 

BH&HLYP, PBE0) and TZVP basis set for (6S,7S,10S,12R,14S,15R)-1 gave good agreement 

with the experimental ECD spectrum, although the intensity of the 218 positive CE was 

underestimated (Figure S10).  

In order to improve the agreement, the reoptimization of the MMFF conformers of 

(6S,7S,10S,12R,14S,15R)-1 was also carried out at B97D/TZVP level with PCM for 

acetonitrile, which afforded 14 conformers above 2% population  (Figure 3). The 

Boltzmann-weighted TDDFT-ECD spectra of these conformers also reproduced the positive 

218 CE of the experimental spectrum with the BH&HLYP/TZVP method providing the best 

agreement, which allowed determining the absolute configuration as (6S,7S,10S,12R,14S,15R) 

(Figure 4). 

The ECD calculations also revealed that the negative 266 nm CE is governed by the π-π* 

transition of the C-6 and C-15 side-chains (Figure S11). On the basis of the above data, 1 was 

identified as a new natural product, for which the name fusarielin I is proposed. 

The crude EtOAc extract of the second Penicillium strain (IO2) analyzed in this study 

yielded three known compounds namely dehydrocurvularin (6),12 curvularin (7),12 and 



  

trichodimerol (8),13 as evident by comparison of their NMR and mass spectroscopic data with 

the literature. 

Interestingly, co-cultivation of the two Penicillium sp. strains (IO1 and IO2) induced the 

production of two known compounds norlichexanthone (2)14 and monocerin (3),15 which were 

not detected in either of the axenic fungal controls (Figure S12). Co-cultivation of 

microorganisms has repeatedly been shown to induce the formation of compounds that are not 

detected when the respective microorganisms are grown under axenic conditions.16 This 

elicitation of natural product accumulation is believed to be caused by 

competition/antagonism of different microorganisms and has been shown to be due to an 

activation of biogenetic gene clusters that remain silent under axenic conditions.17,18 

All compounds analyzed in this study were submitted to a cellular cytotoxicity (MTT) 

assay employing the L5178Y mouse lymphoma cell line. Compounds 3 and 6 exhibited 

significant cytotoxicity with IC50 values of 8.4 and 4.7 μM, respectively, compared to 

kahalalide F as a positive control (IC50 4.3 μM). Monocerin (3) was previously reported as 

antifungal, insecticidal, and phytotoxic secondary metabolite from several fungal species.19,20 

The antimicrobial activity of 2 against Staphylococcus aureus, Sarcina ventriculi, 

Pseudomonas aeruginosa, Candida albicans, Aspergillus niger and Fusarium oxysporum was 

also described with MIC values similar to those of ampicillin and nystatin.21 Therefore, it 

could be assumed that the production of 2 and 3 during co-cultivation is triggered by one of 

these fungi as a stress response to suppress the growth of its competitor. 
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Table 1 1D and 2D NMR spectral data of 1 at 600 (1H) and 150 (13C) MHz (in CD3OD, δ in 

ppm). 

No. δC  δH (J in Hz) HMBC 

1 171.9, qC   

2 127.0, qC   

3 139.5, CH 7.13, dd (11.4, 1.5) 1, 2, 5, 19 

4 128.5, CH 6.51, dd (15.0, 11.4) 2, 3, 6 

5 145.3, CH 5.70, dd (15.0, 9.8) 2, 3, 6, 7 

6 49.3, CH 2.88, ddd (11.6, 9.8, 5.4) 4, 5, 7, 8, 15, 16,  

7 45.8, CH 1.75, qd (11.6, 2.7) 6, 8, 9, 12 

8 28.14, CH2 
1.51, m 

1.31, m 
 

9 32.0, CH2 1.50, m  

10 28.10, CH 2.12, m  

11 32.5, CH2 
1.80, dd (13.6, 1.8) 

1.32, m 
9, 10, 12 

12 44.9, CH 2.60, td (11.6, 2.9) 6, 7, 8, 11, 13 

13 216.5, qC   

14 78.5, qC   

15 66.0, CH 2.76, d (5.4) 5, 6, 7, 13, 14, 16, 17, 21, 22 

16 133.8, qC   

17 125.6, CH 5.01, m  

18 13.5, CH3 1.58, d (6.0) 16, 17 

19 12.7, CH3 1.94, d (1.5) 1, 2, 3 

20 18.1, CH3 1.01, d (7.0) 9, 10, 11 

21 29.1, CH3 1.55, s 13, 14, 15 

22 18.1, CH3 1.50, s 15, 16, 17 

 



  

 

Figure 1 structures of isolated compounds. 

Figure 2 (a) 1H-1H COSY (bold lines) and key HMBC (arrows) correlations of 1. 

        (b) key ROESY correlations of 1. 

Figure 3 Structures and populations of the conformers of (6S,7S,10S,12R,14S,15R)-1 

obtained by the B97D/TZVP reoptimization of the initial MMFF conformers with 

PCM for acetonitrile  

Figure 4 Comparison of the experimental ECD of 1 (black) with the Boltzmann-weighted 

BH&HLYP/TZVP ECD spectra of (6S,7S,10S,12R,14S,15R)-1 (blue) computed for 

the 14 B97D/TZVP (PCM for acetonitrile) conformers. Bars represent the computed 

rotational strength of the lowest-energy conformer. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

 

Figure 1 structures of isolated compounds 
 
 
 

 
 

 

  Figure 2 (a) 1H-1H COSY (bold lines) and key HMBC (arrows) correlations of 1. 

        (b) key ROESY correlations of 1. 

 

 

 

 

 

 

 



  

 

 

Figure 3 Structures and populations of the conformers of (6S,7S,10S,12R,14S,15R)-1 

obtained by the B97D/TZVP reoptimization of the initial MMFF conformers with 

PCM for acetonitrile. 

 

 

Figure 4 Comparison of the experimental ECD of 1 (black) with the Boltzmann-weighted 

BH&HLYP/TZVP ECD spectra of (6S,7S,10S,12R,14S,15R)-1 (blue) computed for the 14 

B97D/TZVP (PCM for acetonitrile) conformers. Bars represent the computed rotational 

strength of the lowest-energy conformer. 

 


