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Specific molecular recognition is assumed to require a well-defined set of contacts and devoid of
conformational and interaction ambiguities. Growing experimental evidence demonstrates how-
ever, that structural multiplicity or dynamic disorder can be retained in protein complexes, termed
as fuzziness. Fuzzy regions establish alternative contacts between specific partners usually via tran-
sient interactions. Nature often tailors the dynamic properties of these segments via
post-translational modifications or alternative splicing to fine-tune affinity. Most experimentally
characterized fuzzy complexes are involved in regulation of gene-expression, signal transduction
and cell-cycle regulation. Fuzziness is also characteristic to viral protein complexes, cytoskeleton
structure, and surprisingly in a few metabolic enzymes. A plausible role of fuzzy complexes in
increasing half-life of intrinsically disordered proteins is also discussed.
� 2015 The Authors. Published by Elsevier B.V. on behalf of the Federation of European Biochemical
Societies. This is an open access article under the CC BY license (http://creativecommons.org/licenses/

by/4.0/).
1. Introduction

The classical view is that molecular specificity is determined by
a well-defined set of interactions, which are formed between
stable, folded interfaces. Protein complexes however have to be
sensitive to environmental conditions, signals, which require
structural malleability and variable, tunable interactions.
Intrinsically disordered (ID) proteins function as an ensemble of
conformations, but are generally thought to adopt a three dimen-
sional structure upon interacting with their partners [1,2].
Coupled folding and binding usually involves short protein regions,
which are distinguished in recognition [3]. These preformed [4] or
molecular recognition elements [5] have distinct secondary struc-
ture preferences, which are biased towards their bound conforma-
tion. ID protein segments, which undergo folding upon binding
however are usually small peptide fragments, while a considerable
fraction of the protein still retains its conformational heterogeneity
in the complex. These ID regions are often overlooked as they do
not mediate permanent interactions or they are simply truncated,
even removed for experimental convenience (e.g. promoting crys-
tallization or to avoid aggregation). Despite the lack of clear
structural interpretation of their biological significance, biochemi-
cal data in many cases demonstrate that dynamic regions inevita-
bly contribute to function, or can even critically influence
biological activity [6]. Protein complexes, where conformational
heterogeneity of ID regions is retained and is required for function
are termed as fuzzy complexes [7]. The corresponding ID regions,
which adopt different structures or remain disordered upon bind-
ing are called as fuzzy regions. The term is derived from fuzzy logic
with variables having truth values ranging in degree between 0
and 1. This many-valued logic is in contrast to traditional binary
logic, where variables only have true or false values [8,9]. In case
of ID proteins, fuzzy complexes can be characterized by a range
of dynamic properties, which correspond to different biological
outputs [10,11].

Four topological categories of fuzzy complexes have been previ-
ously defined depending on the location of the ID region (Fig. 1)
[7]: (i) polymorphic complexes represent static disorder, where
alternative conformations are realized in the complex (e.g. WH2
domains and actin [12]); (ii) clamps, where fuzzy regions link glob-
ular binding domains or peptide motifs (e.g. UPF1–UPF2 [13]); (iii)
flanking complexes, where fuzzy regions neighbor binding sites
and provide additional contacts (Antennapedia-DNA complex
[14]); (iv) random complexes, where variable short motifs are
interconnected by fuzzy regions (e.g. elastin [15]). These topologies
are not mutually exclusive, they can also appear in combination
(e.g. in case of NLS peptides and importin a [16]). Furthermore,
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Fig. 1. Interplay between topological and mechanistic categories of fuzzy complexes. Fuzzy proteins are displayed by colored cartoons, binding partners are shown by gray
solid surfaces. Dynamic fuzzy regions are represented by dotted lines. Missing designates combinations for which no experimental evidence have been found yet. Columns
are described from top to bottom, rows from left to right. Polymorphic complexes. In the Tcf-b catenin (1jdh, lime; 1g3j, orange) complex, the multiple conformations of the
transcription factor lower the entropic penalty of binding [58]. In RNase I (2k11, polymorphic regions are shown by orange) the ability of the side chains of R4, K6, R32, R39
and K102 to adopt multiple conformations is crucial upon competing for two targets, the negatively charged membrane components and RNA [124]. In the complex of NLS-
importin a (1ejy, lime; 1ejl, orange) the alternative binding modes may account for diverse NLS binding by the same receptor and effective competition with mammalian
NLSs [16]. These are realized via two basic clusters, which act in a synergistic manner. Clamp complexes. The 4E-BP2 binds to EIF4E (3am7, lightorange) in a bipartite
manner, where mutations in the linker change the dynamics of the complex from microsecond to millisecond conformational exchange [111]. Binding of Ubx to DNA (1b8i,
brightorange, Exd is shown by limegreen) is influenced by the interplay of three fuzzy regions. The I1 region contains a YPWM motif, which mediates communication with the
Hox cofactor Extradenticle (Exd) and relieves repression of DNA binding by I1 [96]. In the complex of I2 and PP1 (2o8a, orange) the regions, which connect the recognition
elements remain invisible in the electron density, yet contribute to converting the active to inactive form of the phosphatase via transient contacts [119,135]. Flanking
complexes. In the MeCP2–DNA (3c2i, slate) complex, the presence of the fuzzy regions increase the propensity of secondary structure elements towards the binding
competent form [27]. In the SF1-U2AF65 complex (1o0p, cyan) the fuzzy flanking regions tune the entropy of binding and thus improve binding affinity. Transient
interactions also affect specificity for different U2AF RRMs [110]. Upon binding WH2 domains to actin (3u9d, blue) fuzziness enables two opposite functions (actin
polymerization vs disassembly), which is controlled by the ionic strength via screening a single charge-charge interaction [62]. In the SfbI-Fn complex (1o9a, limegreen) the
fuzzy regions flanking the consensus FnBP motifs enable combinatorial usage of the binding sites to increase binding affinity and ensure selectivity control. Random
complexes. The UmuD02 homodimer (1i4v, dark yellow) interchanges between many different conformations, and the degree of dynamics depends on the fuzzy N-terminal
arm [114]. c-Myc binds to Bin1 SH3 (1mv0, wheat) in a multipartite manner involving two competing phosphorylation sites (T58, S62), which determine the turnover of c-
Myc [48]. Sic1 has 9 suboptimal binding motifs for Cdc4, which dynamically interchange in the complex (as a courtesy of Tanja Mittag). Phosphorylation of 6 sites provides
optimal binding and sets the threshold for Sic1 degradation [20].
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different ranges of the structural spectrum are observed by differ-
ent experimental techniques, varying between static and dynamic
complexes [17]. Albeit the existence of some random complexes
(e.g. T-cell receptor n-chain [18]) have been recently debated
[19], experimental data strongly argue against global structural
ordering in other cases (Sic1-Cdc4 [20], elastin [15]), where short
peptide motifs [21], or posttranslational modification sites mediate
variable interactions between highly disordered polymers. Weak
sequence determinants (often referred as ‘sequence independent
binding’) are also characteristic of complexes of transcription fac-
tors [22,23] or histone tails [24], and were also recently observed
for proteins, which form membraneless organelles [25].

Molecular scenarios of how fuzzy regions impact biological
activities can be grouped into four categories, which have been
detailed earlier [6,26]. Alternative, often transient contacts by
fuzzy regions can modulate conformational equilibrium and
increase probability of the binding competent form (conformational
selection, e.g. MeCP2 [27,28]) or can influence the flexibility of the
binding interface and thus decrease the entropic penalty of binding
(flexibility modulation, e.g. Ets-1 [29,30]). Fuzzy regions can com-
pete with the binding partner via electrostatic interactions or steric
hindrance (competitive binding, e.g. HMGB1 [31]), but can also
improve affinity by increasing the local concentration of the glob-
ular, weak-affinity binding domains (tethering, e.g. RPA IULD
[32,33]). Fig. 1 shows the coupling between the topological cate-
gories and mechanisms of fuzzy complexes. Based on the available
experimental data, flexibility/entropy modulation, competitive
binding or tethering can be achieved by all four topological cate-
gories, but conformational selection is currently limited to flanking
fuzzy complexes. We however cannot exclude that this scenario
can also be combined to other fuzzy complex types.

In Table 1 we assemble fuzzy protein complexes, with experi-
mental evidence for structural multiplicity or disorder in the bound
state and with biochemical evidence demonstrating the impact of
the fuzzy region on function. Detailed description of these examples,
including structural and biochemical data can be found in the Fuzzy
Complexes Database (FuzDB, http://protdyn-database.org/). In the
following we discuss how structural and interaction ambiguity in
protein complexes affect different cellular functions.

1.1. Fuzzy complexes in regulation of gene-expression

Eukaryotic transcription machinery relies on gigantic com-
plexes, where different conformational states and the

http://protdyn-database.org/


Table 1
Fuzzy protein complexes with different cellular functions.

Function Protein name Partner Organism References

Gene-expression
Chromatin structure and dynamics

H10 linker histone DNA Mus musculus [24,35]
FACT DNA Drosophila melanogaster [36]
MeCP2 DNA Homo sapiens [27,28]
MBD2 NurD DNA Homo sapiens [94]

Transcription factors
Max DNA Homo sapiens [37,95]
NKX3.1 DNA Drosophila melanogaster [40]
ApLLP DNA Aplysia kurodai [96]
Neurogenin 1 DNA Homo sapiens [97]
Ultrabithorax DNA, Exd Drosophila melanogaster [38,44]
HMGB1 DNA Rattus norvegicus [31]
Oct-1 DNA Homo sapiens [39]
Ets-1 DNA Mus musculus [29,30]
c-Myc Bin1 SH3 domain Homo sapiens [48]
Nrf2 Keap1 Mus musculus [98]
Prothymosin a Keap1 Homo sapiens [99]

Coactivator interactions
GCN4 Med15 Saccharomyces cerevisiae [46,47]
p65 (RelA) CBP TAZ1 Mus Musculus [100]
p53 TAD CBP NCBD Homo sapiens [45]
KID KIX Mus musculus [101,102]

Interactions with the basal machinery
EWS PIC Homo sapiens [41]
SP1 TFIID Homo sapiens [103]
GCN4 PIC Saccharomyces cerevisiae [22]
Gal4 PIC Saccharomyces cerevisiae [104]
PC4 PIC Homo sapiens [105]

Nuclear receptors, transport
PPAR-c DNA Homo sapiens [106]
NLS Importin-a Xenopus laevis [16,107]

mRNA maturation, translation
Cup eIF4E Drosophila melanogaster [108]
UPF2 UPF1 Homo sapiens [13]
RNAP II CTD mRNA maturation factors Saccharomyces cerevisiae [109]
SF1 U2AF65 Homo sapiens [110]
4E-BP2 eIF4E Homo sapiens [111]
L7/L12 Ribosome Escherichia coli [112,113]

DNA repair
RPA DNA Homo sapiens [32,33]
UmuD02 UmuD2 Escherichia coli [114]
UvrD DNA Escherichia coli [115]

Signaling
Ste5 Fus3 Saccharomyces cerevisiae [56]
Tcf3, Tcf4 b-Catenin Homo sapiens [58]
E-cadherin b-Catenin Mus musculus [57]
ijBa NFjB Homo sapiens [81]
Calmodulin MBP Homo sapiens [116]
RLP1 SH3 Gallus gallus [117]
I2 PP1 Mus musculus [118,119]

Cell-cycle regulation
p27Kip1 Cdk2/cyclin Homo sapiens [60]
p21WAF1/CIP1 Cdk2/cyclin Homo sapiens [59]
Sic1 Cdc4 Saccharomyces cerevisiae [20,61]

Cytoskeleton structure
Thymosin b4 Actin Bos taurus [62]
Ciboulot Actin Drosophila melanogaster [12]
Myelin basic protein Actin Mus musculus [63]
Dynein IC NudE Drosophila melanogaster [120]

Viral proteins
Nucleoprotein Phosphoprotein Measles virus [64]
Nucleoprotein Phosphoprotein Henipah virus [65,67]
Nucleoprotein Phosphoprotein Hendra virus [65,66]
E1A CBP TAZ2 Human adenovirus [121]

(continued on next page)
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Table 1 (continued)

Function Protein name Partner Organism References

NS5A SH3 Hepatitis C virus [71]
preS1 c2-Adaptin Hepatitis B virus [72]
NS5B VAPC Hepatitis C virus [122]
Nucleoprotein VP35 Ebola virus [123]

Enzymes
Cellulase E Cellulose Humicola insolens [73]
Thymine–DNA glycosylase DNA Homo sapiens [74]
Anhydrin DNA Aphelenchus avenae [75]
RNase I RNase inhibitor Homo sapiens [124]

Endocytosis/adhesion
LigB Fibronectin Leptospira interrogans [125]
SfbI Fn3 Streptococcus pyogenes [126]
AP180 Clathrin Mus musculus [127]

Chaperones
Hsp90 Ppp5 TRP Homo sapiens [17]
Hsp25 a-Lactalbumin Homo sapiens [128,129]
aA-crystallin HMM Bos taurus [130,131]

Self-assembly, aggregation
Sup35 Sup35 prion amyloid Saccharomyces cerevisiae [132]
Ure2 Ure2 prion amyloid Saccharomyces cerevisiae [133]
Elastin Elastin Bos taurus [15]
a-Synuclein Membrane Homo sapiens [134]
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corresponding alternative interaction patterns result in
gene-specific activation or repression. Conformational heterogene-
ity of fuzzy regions contribute to regulation of transcription at all
levels.

Condensation and dynamics of chromatin fibers is modulated by
malleable regions, in High Mobility Group (HMG) proteins, chro-
matin remodeling complexes and histone tails [34]. H10 linker his-
tones for example affect linker DNA structures and play a role in
stabilization of higher-order chromatin assemblies via their disor-
dered 100 AA C-terminal domain (CTD) [35]. Owing to the high
positive charge of H1 CTD, it was thought to function through an
electrostatic mechanism. Detailed mutagenesis and scrambling
experiments however showed that only two discontinuous
stretches of CTD (98–122 and 147–170) mediate interactions with
DNA and facilitate chromatin fiber condensation irrespective of
their exact order and primary sequence [24]. Stabilization of chro-
matin structure was dependent only on the amino acid composi-
tion of these two regions, which is conserved in all H1 isoforms
and their distance from the globular domain. In addition to chro-
matin, H1�CTD is also capable to interact with various other
nuclear proteins, for example DFF40 apoptotic nuclease. Any
H1�CTD peptides, which are longer than 47 amino acids can acti-
vate the enzyme in a sequence-independent, but
composition-dependent manner [35]. Mutants, with altered amino
acid compositions indicate that different CTD-mediated functions
require different degrees of disorder to order transition, but are
incompatible with a completely folded structure.
Sequence-independent interactions of the H1 isoform CTDs that
are mediated by variable pattern of a-helical elements enable
redundant functions, where posttranslational modifications or fur-
ther protein–protein interactions impart isoform-specific effects
on gene-expression. The chromatin remodeling factor FACT (facil-
itates chromatin transcription) uses HMG domains for DNA inter-
actions to displace histone H2A/H2B dimers from nucleosomes.
The globular domains are flanked by two disordered regions of
opposite charge, which do not gain structure upon DNA binding
[36]. The negatively charged segment establishes intramolecular
interactions with the positive residues of the HMG domain as well
as the ID region and competes for DNA. Multiple phosphorylation
of this negative ID region increases the inhibitory effect by masking
the nucleotide-binding residues. Indeed, FACT was shown to be
dephosphorylated in early embryogenesis. Methyl CpG binding
protein 2 (MeCP2) is involved in deciphering epigenetic informa-
tion by recognizing DNA methylation patterns [27]. Mutations in
disordered linkers, which connect specific DNA-binding elements
of MeCP2 are diagnosed in Rett-syndrome. The N-terminal domain
(NTD) remains substantially disordered in complex with DNA with
marginal increase (7%) in secondary structure elements as com-
pared to the unbound form. On the other hand, the MeCP2 NTD
improves binding affinity to DNA by 10-fold by inducing conforma-
tional changes in the globular methylated DNA binding domain
(MBD) via transient interactions, which increase population of
binding-competent states [28].

Transcription factors (TFs) bind to specific DNA sequences to
activate or repress gene-expression, while their disordered trans-
activation domains (TADs) are involved in interactions with other
proteins of the transcription machinery. Numerous examples illus-
trate that conformational heterogeneity of TADs can be used to
fine-tune DNA-binding affinity or specificity. Transient intramolec-
ular interactions could be established (i) with the charged
DNA-binding residues and screen/mask positive charges (e.g.
HMGB1 [31]), (ii) with the binding interface and modulate its flex-
ibility (e.g. Ets-1 [30]), (iii) with the globular domains to perturb
their conformational equilibrium (e.g. Max [37]), (iv) with other
disordered regions to provide steric hindrance (e.g. Ultrabithorax
[38]). Fuzzy regions can also mediate variable intermolecular con-
tacts and provide anchor sites to the DNA target (e.g. Oct-1 [39] or
NK-2 homeodomains [40]). Although fuzzy segments are often dis-
tantly located from the binding interface, their impact on DNA
binding could be significant, modulating affinity even up to 3
orders of magnitude [29].

Structural heterogeneity implies weak sequence constraints and
compositional bias for TAD interactions, as it was observed in case of
GCN4 [22] or EWS [41]. Interactions between aromatic residues and
phosphoserine (p–cation interactions) or simple electrostatic pat-
terns can also drive the formation of dynamic assemblies (e.g.
Ets-1 [42], EWS [43]). Alternative splicing often tailors the length
or the embedded binding motifs of the fuzzy TAD regions resulting
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in context-dependent gene regulation. Different Ubx isoforms for
example are expressed in a stage- and tissue-specific manner and
are spliced in the fuzzy linker, which connects the homeodomain
(HD) to the Extradenticle binding YPWM motif [44].

Communication of TADs with other parts of the transcription
machinery is also facilitated by ambiguous interactions. Binding
of the tumor suppressor p53 TAD to the coactivator CBP/p300 is
mediated by two a-helices, while residues between these struc-
tured elements remain largely disordered in the complex [45].
Despite that no persistent contacts of the linker region with CBP
were observed, its presence improves binding by 10-fold, mostly
via tethering the low-affinity acidic region to the target. The
GCN4 transcription activator binds the Gal11/Med15 Mediator
subunit via multiple, low affinity interactions, which additively
contribute to transcription activation [46]. The highly specific com-
plex has a simple interface, which is mostly formed by hydropho-
bic residues. GCN4 contacts Gal11/Med15 in multiple
conformations and orientations, which enable rapid sampling of
multiple Gal11 binding domains to recruit Mediator to the pro-
moter. In accord, multimerization of transcription factor
DNA-binding sites increases transcriptional activity. Interestingly,
a high-affinity binding to Gal11/Med15 could be achieved by opti-
mizing residues around the short, conserved sequence-specific
motif of GCN4 resulting in a more ambiguous (‘fuzzier’) interface
[47]. This interaction mode also facilitates specific recognition of
other activator binding domains, such as the TFIID subunit 12.
Binding of 1–88 residues of c-Myc oncoprotein TAD to Bin1 SH3
domain is also mediated by multivalent interactions and results
in a highly dynamic complex [48]. Fuzziness facilitates probing of
the phosphorylation state of S62, which is critical for c-Myc cellu-
lar stability. This is achieved by simultaneously sampling an
ensemble of adjacent interactions, enabling a rapid exchange
between the primary site and weaker adjacent binding sites.

A lower resolution structural characterization has been obtained
on how fuzziness contributes to the activity of multiprotein
transcriptional coactivators. Signal transmission from activa-
tors/repressors to the core machinery is often coupled to significant
conformational rearrangements. A series of experimental evidence
support conformational heterogeneity of the Mediator of RNA
polymerase II (RNAPII) [49]. Mediator is a complex of �26 subunits
(the exact composition varies by species), which activates
gene-expression via interacting with gene-specific transcription
factors. Binding to different TFs however, does not reduce the confor-
mational ensemble to a single state, instead, it only shifts the
conformational equilibrium [50]. The p53 TAD for example triggers
different structures upon contacting different Mediator subunits,
which have different impacts on RNAPII activity [51]. Similarly, upon
binding to the core machinery the conformation of the Mediator
Head module is shifted towards an open state, which facilitates more
extensive, yet heterogeneous interactions with RNAP CTD and pro-
motes its phosphorylation [52]. Ambiguity of Mediator interactions
enables dynamic exchange at the actively transcribed genes, as the
activator induced structural changes facilitate dissociation from
the promoter and switch to the elongation state [53].

1.2. Fuzzy complexes in signal transduction

Signaling requires an orchestrated action of multiple short
motifs [54], which are usually embedded in disordered regions
[55]. The relatively simple pattern of residues, which determines
binding affinity or specificity results in weak structural constraints
on the flanking segments even within the context of the partner. A
series of examples illustrate that regions outside the motifs remain
disordered upon contacting the target, yet affect thermodynamics
or kinetics of complex formation. This is achieved by transient
electrostatic or hydrophobic interactions mediated by fuzzy
regions, which can provide non-specific contacts with the partner.
On the other hand, dynamic regions can also contribute to speci-
ficity by coordinating the action of multiple motifs.

In yeast pheromone response pathway the Ste5 scaffold protein
binds its mitogen-activated protein kinase partner Fus3 in a bipar-
tite manner, while the linking segment remains invisible in the
complex by X-ray crystallography [56]. The individual Ste5 binding
sites have no measurable affinity for Fus3, while the affinity of the
construct with both sites is comparable to that of other docking pep-
tides (e.g. Ste7). Multiple independent recruitment sites for Fus3
were shown to allosterically activate the kinase and mediate phos-
phorylation events thus quantitatively modulate pathway output.

Multiple, quasi-independent interactions govern b-catenin
binding to E-cadherin and Tcf transcription factors in the Wnt sig-
naling pathway. In this manner the different interaction sites are
controlled independently, which result in combinatorial regulation
via integration of multiple signals. All these complexes are charac-
terized by structural multiplicity, where a minimal interface is
defined, while the rest of the contacts are variable or dynamic.
The interaction of the cytoplasmic domain of E-cadherin with
b-catenin for example is gradually modulated by phosphorylation,
where each of the posttranslational modifications induce local
structure ordering and leaves the rest of the interface unperturbed
[57]. On the other hand, phosphorylation of b-catenin by GSK-3b
has an opposite effect and decrease affinity for E-cadherin without
completely eliminating the interaction between the two proteins
owing to the disordered nature and extensive interaction interface.
The phosphoserine interactions of E-cadherin are thought to mimic
the amphipathic helix binding of Tcf3, which contacts the same
site on b-catenin. Tcf3 binds b-catenin via two salt bridges, also
denoted as charge buttons, mediated by a cluster of negatively
charged residues. Although only one of them is sufficient to medi-
ate high-affinity interactions with b-catenin, these multiple nega-
tive residues are conserved in the Tcf family [58]. Upon
interacting with b-catenin the negatively charged residues adopt
multiple conformations (a-helix in Tcf4 and b-strand in Tcf3),
and mutating any of them reduces binding affinity. Structural mul-
tiplicity has been proposed to lower the entropic penalty of bind-
ing, but it can also be more effective in competing with
E-cadherin at different phosphorylation stages.

1.3. Fuzzy complexes in cell-cycle regulation

Tight regulation of cell division is assisted by the dynamics of
the corresponding cell-cycle kinase complexes with their inhibi-
tors. p21WAF1/CIP1 and p27Kip1 interact with the Cdk2/cyclin com-
plex in a similar fashion, where regions binding to cyclin (D1)
and Cdk2 (D2) are connected by an a-helical segment (LH).
Although the helical conformation of LH is transiently populated
in the unbound state, it is not fully stabilized upon interacting with
Cdk/cyclin complexes [59]. Instead, LH remains dynamic and
serves as an adaptable linker to specifically recognize different
Cdk/cyclin structures using conserved D1 and D2 interfaces.
Albeit LH does not establish direct contacts with the targets and
provides only negligible contribution to the binding free energy,
it affects cell-cycle regulation. Indeed, changing the length of LH
of p21 by 3 residues (+/�) impairs Cdk/cyclin binding and thus
impacts the G1 ? S transition. Alteration of the LH subdomain also
affects binding promiscuity in vivo.

Beyond the Cdk2 binding region, the �100 AA C-terminal
domain of p27Kip1 remains dynamically disordered in the complex
[60]. Owing to conformational heterogeneity, the CTD dimensions
vary in a wide range between extended and rather compact forms.
The latter enable T187 at the C-terminus to contact the Cdk2 active
site. Phosphorylation of T187 initiates degradation of p27 and pro-
gress of the cell cycle, as it will be detailed below.
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Ultrasensitive regulation of the cell cycle is illustrated by the
CDK inhibitor Sic1, multiple phosphorylation of which sets the
threshold for the onset of DNA replication. Sic1 binds to the Cdc4
subunit of the SCF ubiquitin ligase in a phosphorylation dependent
manner via 9 sub-optimal CPD (Cdc4 phosphodegron) motifs.
Although only a single target site is available, binding becomes
optimal after phosphorylation of six or more sites [61]. A single
high-affinity CPD motif can also recruit Sic1 to Cdc4, but leads to
premature degradation of Sic1 and genome instability. Sic1
remains intrinsically disordered upon phosphorylation with only
local ordering [20]. Surprisingly, the multiple phosphorylated sites
on Sic1 were shown to be in dynamic equilibrium upon interacting
with Cdc4. Although electrostatics is crucial for binding, the intrin-
sically disordered state also helps to span the distance to the cat-
alytic center of Cdc34 subunit of the ubiquitin ligase.

1.4. Fuzzy complexes in organization of cytoskeleton structure

Upon various stimuli, the actin cytoskeleton has to undergo
substantial rearrangements, which involves partial disassembly
of actin filaments and then re-assembly of new filament arrays.
Proteins with multiple WASP-homology 2 (WH2) domains, such
as thymosin b4, Ciboulot, WASP or WAVE serve as actin regulators
[12]. WH2 domains are disordered in isolation and adopt different
structures upon binding to actin. The C-terminal regions however,
remain disordered in the complex, dynamic interactions of which
determine whether actin assembly or sequestration takes place.
Increasing dynamics of the C-terminal region of thymosin b4 sup-
ports unidirectional assembly, whereas decreased dynamics result
in disassembly of the filament [62]. The degree of dynamics of the
WH2 C-terminal region critically depends on a single salt bridge
close to the LKKT/V motif. At physiological ionic strength this
induces sequestration of G-actin, whereas at higher salt concentra-
tions the weaker electrostatic interaction increases koff and leads to
elongation of actin filaments.

The myelin basic protein (MBP) also promotes G-actin polymer-
ization and assembly of F-actin fibers into bundles to provide links
between cytoskeleton and the myelin sheath. Cytoskeleton inter-
actions can be reversed by calcium-dependent binding of MBP to
calmodulin and are also regulated by a variety of posttranslational
modifications of MBP. Association with actin induces formation of
secondary structure elements in MBP, but the complex exhibits
polymorphism and some degree of disorder [63]. Fuzziness is likely
required for simultaneous interactions of MBP with actin and the
myelin membrane as well as a series of signaling proteins.

1.5. Viral fuzzy complexes

Interaction between nucleoprotein (N) encapsidating viral RNA
and the viral polymerase phosphoprotein (P) initiates transcription
and replication of viral genomes. N-P complexes have been exten-
sively characterized in Measles [64], Hendra [65,66] and Nipah
[65,67] viruses. N is anchored to P via an a-helical element, which
is located within the disordered NTAIL. In the context of the full
Measles virus nucleocapsid, regions connecting the molecular
recognition element (MoRE) of NTAIL to the globular domain (90
AA) remain largely dynamic [68]. The disordered character of
NTAIL facilitates transient interactions between the MoRE and the
capsid surface, which provides spatial constraints for polymerase
interactions. A series of experimental evidence support conforma-
tional heterogeneity of NTAIL in complex with P [65]. Hydrophobic
residues in fuzzy regions of Measles virus NTAIL establish transient
interactions with the target and contribute to binding affinity [69].
Highly dynamic character of NTAIL was consistent with Hendra [66]
and Nipah virus [67] P interactions. These were proposed to
facilitate the access of the polymerase without major rearrange-
ments of the nucleocapsid.

The hepatitis C virus (HCV) core protein only partially under-
goes disorder to order transition upon multimerization, i.e. forma-
tion of the nucleocapsid. The fuzzy regions are required for a
repertoire of dynamic interactions with viral RNA, membranes as
well as with protein components of the viral replication machinery
and of various cellular pathways [70]. HCV core functions are
tightly regulated and fuzziness contributes to promiscuous inter-
actions of this protein.

Viral motif-mimicry often involves multivalent, ambiguous
interactions. The PxxP motifs of HCV non-structural protein 5A
(NS5A) are recognized by SH3 domains of the Src kinase family.
In addition to the canonical binding site, NS5A embeds multiple
low-affinity motifs, which can interact with SH3 domains in a
mutually exclusive manner [71]. Upon interacting with Bin1
SH3 domain, for example conformational heterogeneity of the
non-canonical motifs increases, which provides positive entropic
contribution and results in 2–3-fold increase in binding affinity.
Alternative interaction patterns by multiple motifs can also help
to alleviate functional constraints owing to the small genome size
of the virus. The preS1 domain of hepatitis B virus (HBV) estab-
lishes multivalent, variable contacts with the cell-surface recep-
tor c2-adaptin, but remains largely disordered in the complex
[72].

1.6. Fuzziness in enzymes

Intrinsic disorder is abundant in regulatory proteins, but gener-
ally devoid of proteins with metabolic functions. Although
enzymes usually require a well-defined structure for efficient
catalysis, conformational heterogeneity has been observed in a
few enzyme–substrate complexes. In case of cellulase E two cat-
alytic modules are connected by an 88 residue disordered linker,
which dimensions can vary from 10 to 80 Å. Plasticity of the linker
enables the catalytic modules to act independently for more effi-
cient hydrolysis of cellulose [73]. Once hydrolysis has completed,
the catalytic module can diffuse away from the substrate, while
the other module still remains attached to the cellulose fiber.
This results in a caterpillar-like motion, which is propelled by the
dynamism of the linker region.

Thymine DNA glycosylase (TDG) removes GT and GU mis-
matches in the base excision repair (BER) pathway. TDG has two
catalytic states (‘open’ and ‘closed’ form), which correspond to dif-
ferent activities. The regulatory domain (RD) of the NTD estab-
lishes dynamic interactions with the catalytic domain in the
‘closed’ form and non-specific, competitive interactions with
double-stranded DNA in the ‘open’ form [74]. The RD is disordered
in both the free and substrate-bound states and controls the tran-
sition between the ‘open’ and ‘closed’ conformations thereby regu-
lating the GT and GU repair activities. In addition, the fluctuating
C-terminal domain provides a steric hindrance in the complex
and imparts length-dependent regulation on substrate-binding
affinity.

Anhydrin is a fully intrinsically disordered plant protein, which
has been identified as a novel endonuclease [75]. It was shown to
remain unfolded when bound to DNA, albeit the molecular mech-
anism of how fuzziness contributes to DNA cleavage has not been
revealed yet. Anhydrin also has a chaperone like activity, which
protects aggregation of client proteins upon dehydration stress.

We must also note that modern enzymology studies are also
consistent with conformational heterogeneity of enzymes. In case
of chorismate mutase for example, the shallow folding landscape
corresponds to alternative pathways with comparable reorganiza-
tion energies [76].
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1.7. Fuzzy complexes can affect protein half-life

Intrinsically disordered regions could be degraded ‘by default’
in a ubiquitin-independent pathway by the 20S proteasome [77].
Accordingly, the presence of long intrinsically disordered regions
were shown to decrease protein half-life [78]. Furthermore, varia-
tions in the length and number of disordered segments can be uti-
lized in evolution to generate phenotypes with different protein
turnover. These results raise the question of how ID proteins can
survive in vivo. A plausible mechanism is provided by the ‘nanny’
model, when interacting partners protect newly synthesized ID
proteins by masking the disordered regions [79]. A key point of
the proposal is that nannies are not chaperones as they do not fold
ID proteins. Instead, disordered regions remain dynamic in
nanny-client interactions.

Fuzziness of ID protein-nanny complexes is also supported by
experimental data. Free IjBa is rapidly degraded via a
ubiquitin-independent pathway and its half-life is less than
10 min. Binding to NFjB results in a high-affinity (picomolar) com-
plex and increases the IjBa half-life to many hours [80]. These
interactions inhibit nuclear localization of NFjB and its transcrip-
tional activity. IjBa has 6 ankyrin repeats (ARs), out of which AR1
provides major contribution (�8 kcal/mol) to binding, while
retains its dynamic character with fluctuations on the millisecond
timescale [81]. AR1 dynamics is required for the tight control of the
NFjB interactions, as fluctuations enable ubiquitination and subse-
quent degradation of IjBa and thus the NFjB release for nuclear
translocation.

The C-terminal region (134–164 amino acids) of p21WAF1/CIP1

interacts with the C8 subunit of the 20S proteasomes and promotes
its degradation via ubiquitin-independent mechanism [82]. This
segment overlaps with residues that interact with PCNA, binding
to which results in 2 h increase in half-life of p21WAF1/CIP1. PCNA
thus masks the degradation signal for the 20S proteasome and
increase stability of p21WAF1/CIP1. In the high-affinity complex with
PCNA (PDB code: 1axc) however the N-terminal region of the
p21WAF1/CIP1 peptide remains to be disordered [83]. The recognition
motif for Cdk2-cyclin complex has also been proposed to inhibit
proteasome binding to the degron and hence contribute to protect-
ing p21WAF1/CIP1.

Fuzzy complexes can also rescue ID proteins from ubiquitina-
tion and decrease turnover. The c-Myc oncoprotein has a short
half-life of 20–30 min, which is tightly regulated by phosphoryla-
tion of TAD residues S62 and T58 [84]. S62 phosphorylation tran-
siently increases cellular stability of c-Myc and stabilizes its
active state. Dephosphorylation of S62 recruits SCF-Fbwx7 ubiqui-
tin ligase and induces degradation of c-Myc. Bin1 is a negative reg-
ulator of c-Myc, which preferably binds to the S62
unphosphorylated state. The 1–88 TAD of c-Myc was shown to
be dynamically disordered in complex with Bin1, which enables
efficient screening of both S62 and T58 phosphorylation states
and facilitates rapid dissociation of c-Myc [48].

In contrast to c-Myc, p27Kip1 turnover is increased upon binding
to Cdk2/cyclin. In this case however, enzymatic function of Cdk2
promotes phosphorylation of T187 p27Kip1, which serves as a
recognition signal for SCFSKP2 ubiquitin ligase [85]. Indeed, a
p27Kip1 variant which is disabled to interact with the Cdk2/cyclin
has an increased half-life. Dynamics of the 100 AA C-terminal
region of the bound p27Kip1 (in complex with Cdk2/cyclin) is
required for phosphorylation of T187, as it was described above
[60]. Thus in this case Cdk2/cyclin facilitates
ubiquitin-dependent degradation of p27Kip1 rather than serving
as a ‘nanny’ to protect from the degradation by the 20S
proteasome.
2. Conclusion

A variety of examples illustrate that structural ambiguity can be
maintained in protein complexes resulting in alternative, often
transient interactions. Despite the central dogma – specificity
requires a unique set of interactions – ambiguity in interaction pat-
terns can still result in specific complexes. Furthermore, ambigu-
ous interactions could provide manifold benefits for a range of
biological functions. Alternative contacts at the binding interface
improve binding entropy and thereby increase affinity [58].
Additional transient interactions, which are established by more
distant regions can contribute to specificity [74]. Albeit protein dis-
order has recently been concluded to reduce changes in binding
free energy as compared to ordered protein complexes [86], vari-
ous experimental examples demonstrate that the presence of fuzzy
regions increases selectivity in vivo [44,87]. In addition to modu-
lating affinity, transient buttressing interactions often improve
kinetics by serving as non-specific anchors to the target [88].
Multivalent interactions may also impart dynamisms on recogni-
tion [89], for example multisite electrostatic and aromatic interac-
tions can drive liquid–liquid phase separation [90], formation of
protein-dense droplets or hydrogels [91]. These simple interaction
patterns – similarly to what was seen in sequence-independent
binding of transcription factors or histone tails – can result in reg-
ulated, membraneless organelles in the cell [25], which are respon-
sive to different cellular conditions. Taken together, the utmost
benefit of fuzzy regions is the ease of regulation, by shifting the
conformational equilibrium according to different environmental
conditions or signals.

The concept of fuzziness is used in various fields (e.g. mathe-
matics [92], computer science, linguistics, psychology, economy,
sociology [9]) to describe that the boundaries of an application
vary according to the conditions [8]. In case of disordered proteins,
the degree of disorder and the propensity of different conforma-
tions can be altered in context-specific manner. Thus fuzziness,
e.g. disorder in protein complexes gains a definite meaning when
the context is specified. Fuzzy regions for example can be used to
fine-tune affinity or alter specificity e.g. via posttranslational mod-
ifications (on/off switches or rheostats), or via alternative splicing
to change the length of fuzzy regions or the embedded motifs
resulting in tissue-specificity [93]. Fuzzy regions also enable com-
binatorial usage of motifs and thereby initiating different path-
ways upon different inputs. Experimental characterization of
fuzzy complexes have uncovered various mechanisms by which
transient interactions are mediated by bound disordered regions
and how they impact biological outputs of the complex. We are
however just at the beginning to explore these regime of molecular
interactions, which open numerous new opportunities to interfere
with functionalities of protein complexes.
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