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ABSTRACT 26 

-carotene (BC), a lipid-soluble tetraterpene precursor to vitamin A, widely distributed 27 

in plants, including many used in human diet, has well-known health-enhancing properties, 28 

including reducing risk of and treatment for certain diseases. Nevertheless, BC may also act to 29 

promote disease through the activity of BC derivatives that form in the presence of external 30 

toxicants such as cigarette smoke and endogenously-produced reactive oxygen species. The 31 

present investigation evaluates the dose-dependent cardioprotective and possibly harmful 32 

properties of BC in a rat model. Adult male rats, were gavage-fed BC for 4 weeks, at dosages 33 

of either 0, 30 or 150 mg/kg/day. Then hearts excised from the animals were mounted in a 34 

“working heart” apparatus and subjected to 30 minutes of global ischemia, followed by 120 35 

minutes of reperfusion. A panel of cardiac functional evaluations was conducted on each 36 

heart. Infarct size and total antioxidant capacity of the myocardium were assessed. Heart 37 

tissue content of heme oxygenase-1 (HO-1) by Western blot analysis; and potential direct 38 

cytotoxic effects of BC by MTT assay were evaluated. Hearts taken from rats receiving 30 39 

mg/kg/day BC exhibited significantly improved heart function at lower reperfusion times, but 40 

lost this protection at higher BC dosage and longer reperfusion times. Myocardial HO-1 41 

content was significantly elevated dose-responsively to both BC dosage. Finally, in vitro 42 

evaluation of BC on H9c2 cells showed that the agent significantly improved vitality of these 43 

cells in a dose range of 2.5-10 M. 44 

Although data presented here do not allow for a comprehensive mechanistic 45 

explanation for reduced cardioprotection at high dose BC, it is speculated that since Fe2+ 46 

produced as a metabolite of HO-1 activity, may determine whether BC acts as an antioxidant 47 

or prooxidant agent, the strong induction of this enzyme in response to ischemia/reperfusion-48 

induced oxidative stress may account for the high-dose BC loss of cardioprotection. 49 

 50 
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1. INTRODUCTION 54 

1.1 “Functional foods” in prevention of and management of chronic illness 55 

 Increasingly intensive efforts are currently being made to characterize properties of 56 

plant materials forming regular components of human diet and expand the range of their 57 

use in healthcare. Substantial ongoing increases in serious chronic diseases, particularly 58 

obesity- and lifestyle-related cardiovascular disorders and related co-morbidities, provide 59 

compelling incentive for use of natural products in healthcare – particularly in the form of 60 

“functional foods”, which are items in normal diet configured to prevent and/or mitigate 61 

disease. Such substances are increasingly attractive to healthcare providers, since they are 62 

reasonably priced compared to prescription drugs and other potentially traumatic 63 

interventions. Moreover, health-enhancing properties for many of these materials have 64 

evolved in tandem with vertebrates as mutual adaptive strategies, a process called 65 

“xenohormesis” [1]. Hence there is compelling incentive to encourage adoption of diets 66 

rich in fruits, seeds, vegetables, legumes, fish oil and other materials rich in compounds that 67 

strengthen and stabilize healthy homeostatic processes and reduce risk of cancers, 68 

cardiovascular diseases and many other chronic illnesses.  69 

 70 

-carotene: chemical and biological properties 71 

The present investigation explores the capacity of the vitamin A precursor -carotene 72 

(BC) to influence aspects of myocardial cell, tissue, and organ function that may will 73 

allow development of novel strategies for use of this compound in prevention and 74 

management of heart disease. This tetraterpene carotenoid is a 536 Da lipid-soluble plant 75 
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pigment, widely distributed in nature, including many plants regularly consumed by 76 

animals and humans [2]. It is intensely red-orange and is responsible for multi-hued 77 

coloration in many plant species; and is also used as a commercial food colorant. Many 78 

human foods contain the compound, notably yams, pumpkins and carrots. Some of its 79 

medical benefits are well established. For example, the compound has been demonstrated 80 

moderately effective as adjuvant treatment in erythropoietic protoporphyria and has 81 

additionally shown some promise also been used to reducing risk of age-related macular 82 

degeneration; and susceptibility to breast cancer risk in pre-menopausal women [3-5]. A 83 

significant cautionary note on clinical use of BC, is evidence that lung cancer risk is 84 

increased in smokers by high-dose consumption of the agent [6]. This effect is hypothesized 85 

to occur due to instability of the compound in the presence of tobacco smoke – causing its 86 

degradation to carcinogenic metabolites [7].  87 

 88 

1.3 Ischemia-reperfusion injury to cardiovascular tissue and antioxidant defense 89 

The present investigation, which evaluates cardiovascular effects of BC, is focused on 90 

processes underlying ischemia and reperfusion (I/R) injury to the myocardium. Heart disease 91 

and cardiac surgery frequently involve procedures that deprive heart tissue of oxygenated 92 

blood, resulting in ischemia, a disruption of normal tissue homeostasis. Further 93 

derangement of tissue function may occur as a result of re-oxygenation by restoration of 94 

blood flow (reperfusion), a process that triggers a burst expression in physiologic 95 

production of highly reactive oxygen-containing species during the first 5 minutes of 96 

blood reflow [8]. These compounds greatly increase oxidative stress on reperfused tissues 97 

and effects that typically include oxidation of myocardial membrane lipids resulting in 98 

impairment of cell membrane function. This oxidative stress increase is a primary cause of 99 

reperfusion-induced damage [9]. Adverse effects on cardiovascular function caused by 100 
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these processes may be counteracted by antioxidant compounds capable of scavenging 101 

oxygen-containing free radicals that are the primary agents of oxidative stress-mediated 102 

damage. Such cytoprotective agents of (mainly) plant origin produce carotenoids, notably 103 

BC, along with polyphenolic compounds and other phytochemicals such as flavonoids, 104 

anthocyanidins, proanthocyanidins and other carotenoids which have well documented 105 

benefits to cardiovascular health [10-14]. 106 

 107 

-carotene: a double-edged sword in health maintenance 108 

The effects of BC have been intensively studied and both beneficial and potentially 109 

harmful effects of the compound have been noted [6,7]. In addition to its ability to affect 110 

risk and pathogenesis of cancer, BC has been considered for use in management of heart 111 

disease based on its free radical scavenging capacities, with the cautionary note that it may 112 

also act as a tissue-damaging prooxidant – depending on the physiologic environment 113 

[15,16]. Several clinical studies can be found having investigated the cardiovascular 114 

effects of BC, but all these results are rather controversial. Most of these studies found 115 

that BC had no any benefit and may have had adverse effects on the risk of death from 116 

cardiovascular diseases mainly among smokers [17-19]. The cardioprotective value of 117 

beta carotene also appears to vary among individuals based on genetic factors. This effect 118 

is illustrated by an intriguing April 2015 report demonstrating that healthy Korean women 119 

bearing single nucleotide polymorphisms that correlate with arterial stiffening, were 120 

differentially protected by dietary supplementation with BC, along with folate and vitamin 121 

E [20]. A primary mechanism by which BC counteracts pathogenesis of cardiovascular 122 

disease, has recently been shown to result from the compound`s ability to abate 123 

atherogenic processes by inhibition of peroxidation of cardiac-associated lipids [21]. 124 
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The investigation described in the present report was undertaken to evaluate the effects 125 

of BC administration in a rat model, segregated into groups administered two different BC 126 

dosages during a 4-week period. One test group, defined as “low dose” (LD) was fed 30 127 

mg/kg/day; and a second, “high dose” (HD) group received 150 mg/kg/day, with a cohort 128 

of control (C) rats given hydroxyethyl cellulose-water vehicle. Following sacrifice at the 129 

end of the 4-week dosing period, hearts surgically excised and mounted in a “working-130 

heart” apparatus were evaluated for cardiac function parameters and tissue biomarker 131 

correlates of physiological regulation of heart activity. Potentially toxic effects of BC on 132 

cardiomyocyte function was conducted by in vitro studies of BC dosage effect on H9c2 133 

cells. The comparison of outcomes in hearts from animals treated with low-dose, high-134 

dose BC and vehicle, provided a clear perspective into how this compound affected 135 

features of heart function relevant to maintenance of healthy heart activity and treatment 136 

of disease. 137 

 138 

2. MATERIALS AND METHODS 139 

2.1 Animals 140 

The experiments were accomplished using adult male rats (Charles River 141 

Laboratories), with a body weight range of 350-400 grams. All animals received humane 142 

care in compliance with the “Principles of Laboratory Animal Care” (formulated by the 143 

U.S. National Society for Medical Research, as described in U.S. National Institutes of 144 

Health publication No. 86-23, revised 1996) and the “Guide for the Care and Use of 145 

Laboratory Animals”. Maintenance and treatment of animals used in the present study 146 

was additionally approved by the Institutional Animal Care and Use Committee of the 147 

University of Debrecen, Debrecen, Hungary. The animals were housed in wire-bottomed 148 
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cages (three rats per cage) throughout the study and were maintained on a 12:12-h light-149 

dark cycle; and provided with laboratory rodent chow pellets, and water ad libitum.  150 

 151 

2.2 Groups and administration of -carotene 152 

Rats used in the present study were segregated into 3 groups and gavage-administered 153 

the following agents: hydroxyethyl cellulose-water (1:4) vehicle control (C); LD-BC (30 154 

mg/kg/day) and HD-BC (150 mg/kg/day) suspended in hydroxyethyl cellulose-water, 155 

respectively. BC was obtained from Sigma-Aldrich Kft. (Budapest, Hungary). 156 

 157 

2.3 Ischemia-reperfusion and isolated working hearts 158 

Following 4-week treatment with vehicle or BC, the rats were anesthetized with 159 

intraperitoneal injections of ketamine-xylazine (75/10 mg/kg), with heparin anticoagulant 160 

administered intraperitoneally (1000 IU/kg). After thoracotomy, the hearts were excised 161 

and placed in ice-cold modified Krebs-Henseleit bicarbonate buffer (118.5 NaCl, 4.7 162 

KCl, 2.5 CaCl2 x H2O, 25 NaHCO3, 1.2 KH2PO4, 1.2 MgSO4, and 10.0 glucose (in mM)), 163 

then cannulated through the aorta and perfused in a Langendorff apparatus in “non-164 

working” mode (100 cm of water) for 5 minutes to flush blood out from the hearts. 165 

Subsequently, Langendorff perfusion was conducted using a cannulated pulmonary vein, 166 

during which the isolated heart preparatum was switched to working mode (at a filling 167 

pressure of 17 cm of the buffer). After 10 minutes of working perfusion, 30 minutes of 168 

global ischemia (ISA) was initiated for each procedure, by clamping the pulmonary 169 

inflow and the aortic outflow. At the end of the ischemic period, 120 minutes of 170 

reperfusion (REP) was initiated by unclamping the inflow and outflow lines. The first 10 171 
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minutes of REP was conducted in Langendorff mode to avoid the fatal ventricular 172 

arrhythmias as described [22]. 173 

 174 

2.4 Cardiac function measurements 175 

Baseline assessment of cardiac function for each isolated heart was made following 176 

10 minutes of working perfusion. To examine the recovery of the left ventricle, these 177 

parameters were measured after 30, 60, and 120 minutes of REP. Cardiac function 178 

evaluation for each experiment was conducted as previously described [22]. Briefly, heart 179 

rate (HR) was measured using a computer acquisition system (ADInstruments, 180 

PowerLab, Castle Hill, Australia); coronary flow (CF) values were obtained by timed 181 

collection of effluent draining from each heart; aortic flow (AF) measurements were 182 

made using a calibrated flow meter; cardiac output (CO) was generated as the sum of AF 183 

and CF. Stroke volume (SV) was calculated as the quotient of CO/HR [23]; and alteration 184 

in SV values, as a function of treatments, were calculated as the ratio of SV at reperfusion 185 

divided by baseline SV and multiplied by 100. 186 

 187 

2.5 Infarct size determination 188 

Estimations of infarct size (IS) were conducted using the triphenyl tetrazolium 189 

chloride (TTC) staining method as previously described [22]. Briefly, following each 30-190 

minute ISA/120-minute REP period, hearts were perfused with 50 ml 1 % (w/v) solution 191 

of TTC in phosphate buffer (pH 7.4), and the samples were stored at -70 °C for 192 

subsequent analysis. The frozen samples were sectioned, weighted, and blotted dry. The 193 

dried sections were scanned on an Epson J232D flat-bed scanner. The infarcted area 194 

(white coloration) and the risk area (entire scanned section) were measured using 195 
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planimetry software (Image J, National Institute of Health, Bethesda, Maryland, USA). 196 

Estimates of infarcted zone magnitude were subsequently obtained by multiplying 197 

infarcted areas by weight of each slice. The resulting numbers represent weight of the risk 198 

zone and the infarcted zone. Infarct size was expressed as percentage of the weight of 199 

infarcted tissue and the weight of risk zone (whole heart) [13]. 200 

 201 

2.6 Western blot analysis of heart tissue 202 

Content of HO-1 protein in the myocardium were obtained by Western blot as 203 

previously described [22]. Briefly, approximately 300 mg of left ventricular myocardial 204 

tissue were homogenized on ice using a tissue homogenizer (IKA T10 basic ULTRA-205 

TURRAX®) in isolating buffer (25 mM Tris-HCl, 25 mM NaCl, 1 mM orthovanadate, 10 206 

mM NaF, 10 mM pyrophosphate, 10 mM okadaic acid, 0.5 mM EDTA, 1 mM PMSF, 207 

and 1x protease inhibitor cocktail) and centrifuged at 2000 rpm at 4 °C for 10 minutes. 208 

The supernatants were transferred to fresh tubes and centrifuged at 10,000 rpm at 4 °C for 209 

20 minutes, after which the resulting supernatant was used as cytosolic fraction. The 210 

protein concentration was measured by ND-1000 Nano drop spectrophotometer with 211 

BCA Protein Assay Kit (Thermo Scientific, Rockford, IL). Thirty µg of protein in each 212 

sample were loaded in 10 % polyacrylamide gel and resolved using SDS-PAGE 213 

electrophoresis and then transferred to 0.45 µm pore size nitrocellulose membrane to 214 

concentrate the samples. After blocking the membranes with 7 % nonfat dry milk in 215 

TBST, membranes were incubated overnight with primary antibody solution in 1 % of 216 

nonfat dry milk in TBST (GAPDH 1/40000, antibody was obtained from Cell Signaling 217 

Technology, Boston, MA; and HO-1 1/50 was ordered from Sigma-Aldrich Kft. 218 

Budapest, Hungary) at 4 °C. Then, the membranes were washed 3 times, each for 10 219 

minutes, in TBST and incubated with horseradish peroxidase-conjugated secondary 220 
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antibody solution (Cell Signaling Technology) containing 1 % of nonfat dry milk in 221 

TBST, for two hours at room temperature. The membranes were treated with Western 222 

blot Enhanced Chemiluminescent HRP substrate (Millipore, Billerica, MA) to visualize 223 

the bands. After the Enhanced Chemiluminescent treatment, the membranes were 224 

exposed on x-ray films (Agfa, Mortsel, Belgium). The films were then digitalized by flat-225 

bed scanner (Epson J232D) and analyzed using ImageJ program and normalized the HO-226 

1 band intensities to GAPDH. 227 

 228 

2.7 MTT cell viability assays for -carotene cytotoxicity 229 

Evaluation of BC cytotoxicity on cellular survival was accomplished using the 3-(4,5-230 

dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay as previously 231 

described [24]. Briefly, H9c2 cells (ATCC, CRL-1446, LGC Standards GmbH, Wesel 232 

Germany) dissociated by trituration in medium (Dulbecco’s modified eagle’s medium 233 

from Sigma with 10% FBS, 1% penicillin-streptomycin), were seeded into 96 well plates 234 

at a density of 3000 cells/well and cultured for 1 day to establish adhesion of the wells. 235 

BC containing medium was prepared as described by Wertz et al. for keratinocyte 236 

cultures with some modifications [25]. Cells were treated with 0, 2.5, 5, 10 and 20 M 237 

BC for 4 hours, respectively. Next, following a 30-minute incubation period, half of the 238 

wells were treated with 125 µM H2O2. Four hours later addition of 20 µl MTT solution (5 239 

mg/ml in PBS) to each well and an additional 3 hours incubation at 37 °C to allow 240 

mitochondrial uptake, the medium were removed and cells were lysed by addition of 150 241 

µl of isopropanol, incubated for 15 minutes followed by measurement of absorbance at 242 

570 and 690 nm using a plate reader (FLUOstar OPTIMA, BMG Labtech). Within each 243 

experiment, absorbance values were averaged across 4 replicate wells and repeated 3 244 

times. BC cytotoxic effect assessments were estimated based on linear correlation of 245 
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absorbance values with MTT-associated H9c2 viability and reported as percentage of 246 

cells surviving 4 hours of BC exposure relative to control cells not exposed to BC. 247 

 248 

2.8 Tissue antioxidant capacity (TAC) 249 

TAC of heart tissue was measured using the CS0790-1KT antioxidant assay kit 250 

(Sigma-Aldrich Kft., BP., Hungary). Briefly, at the end of reperfusion, the hearts were 251 

frozen and stored at -70 °C until analysis. Approximately 100 mg of left ventricular 252 

myocardial tissue from each heart were homogenized in 0.5 ml of 1x Assay buffer, 253 

centrifuged at 12000 rpm, for 15 min at 4 °C and the supernatants collected for assay. 254 

Following sample preparation according to manufacturer’s instructions, the absorbance 255 

was measured at 405 nm using a plate reader (FLUOstar OPTIMA, BMG Labtech). TAC 256 

values for each heart was derived from absorbance values and expressed as Trolox 257 

equivalent (M). 258 

 259 

2.9 Statistical analysis 260 

Statistical analyses were performed using GraphPad Prism 5 software. The data are 261 

expressed as mean +/- SEM. One-way ANOVA followed by Bonferroni post-test was 262 

carried out for heart function data analysis. MTT data were compared by t-test. For 263 

Western blot and TAC data outcomes, repeated measures of one-way ANOVA followed 264 

by Tukey’s post-test was conducted. Differences were considered significant at values of 265 

P<0.05. 266 

 267 

3. RESULTS 268 

-carotene dose effects on cardiac function in isolated hearts subjected to I/R 269 
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Figure 1 shows the dose-responsive influence of 0, 30 or 150 mg/kg/day BC gavage-270 

administered to rats during a 4-week period on cardiac function in hearts isolated from 271 

the animals and subjected to 30 minutes of global ISA and 120 minutes of REP in a 272 

“working-heart” apparatus. No BC-mediated effects on AF were observed in hearts not 273 

subjected to REP, however, relative to hearts from vehicle-treated control animals, hearts 274 

from animals subjected to 30 min of ISA followed by 30 and 60 min of REP exhibited 275 

significantly increased AF when taken from rats treated with LD-BC; but interestingly, 276 

not which were subjected to 120 min of REP or from those fed with HD-BC (Figure 1A). 277 

No significant BC dosage effects on CF were observed in non-reperfused hearts, or in 278 

hearts from animals subjected to 30 min of I/R (Figure 1B). Furthermore, HD-BC 279 

treatment resulted in a significant increase on CF values after 60 and 120 min of REP 280 

relative to organs from non-BC-treated controls (P<0.05). Likewise CO in non-ISA/REP 281 

hearts and those subjected to 120 minutes of REP did not vary significantly as a result of 282 

BC treatment, whereas significant CO increases in these hearts relative to organs from 283 

non-BC-treated controls were observed in those sustaining reperfusion periods of 30 284 

minutes (P<0.05) and 60 minutes (P<0.05) from rats receiving 30 mg/kg/day BC, but not 285 

150 mg/kg/day of the agent (Figure 1C). Treatment of animals with 150 mg/kg/day BC 286 

resulted in significant increase in HR for I/R hearts (P<0.05) (Figure 1D). Evaluation of 287 

the effects of BC on heart SV, revealed no significant BC effect on this variable in non-288 

I/R hearts, or organs subjected to I/R. It was further noted that SV values in hearts 289 

receiving 30 and 60 minutes of REP from animals treated with 150 mg/kg/day BC were 290 

reduced, however it was not significant, relative to those from rats receiving low BC dose 291 

(Figure 1E). This apparent loss of cardioprotection at elevated BC dosage was further 292 

confirmed by measurement of stroke volume decline (dSV). These results demonstrated 293 

that relative to non-I/R hearts, hearts subjected to 30 and 60, but not 120 minutes of REP 294 
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exhibited lesser declines in stroke volume when taken from animals treated with 30 295 

mg/kg/day BC than from rats receiving 0 or 150 mg/kg/day BC, however it did not reach 296 

the significant level. (Figure 1F). 297 

Hearts were isolated from 3 groups of rats (n = 6 per group). Rats in each test group 298 

received hydroxyethyl cellulose-water (1:4) vehicle control (white bars); BC 30 299 

mg/kg/day (black-shaded bars); and BC 150 mg/kg/day (gray-shaded bars) and sacrificed 300 

following a 4-week time period of BC treatment. Hearts isolated from each rat were 301 

subjected to 30 minutes of global ISA followed by either 120 minutes of REP in an 302 

isolated “working-heart” apparatus to induce I/R-induced injury and evaluated for 303 

selected cardiac functions. Results are shown as average values from each group of 304 

animals ± SEM of AF (1A); CF (1B); CO (1C); HR (1D); SV (1E); and dSV (1F). 305 

*P<0.05 for comparison of the magnitude of each cardiac function measured in each test 306 

group receiving BC, relative to hearts from vehicle-treated control animals. #P<0.05 for 307 

comparison of the magnitude of cardiac function measured in LD-BC relative to hearts 308 

from HD-BC treated animals. 309 

 310 

-carotene dose effects on I/R-induced infarct zone extent and tissue antioxidant 311 

capacity 312 

The influence of BC on the extent of I/R injury-associated infarct zones is shown 313 

in Figure 2A. Macroscopic analysis of TTC solution-perfused heart sections from rats 314 

subjected to 30 minutes of global ISA followed by 120 minutes of REP in a “working-315 

heart” apparatus revealed that LD-BC treatment, correlated with significant reduction of 316 

the extent of infarcted myocardium relative to the control values (*P<0.05). This 317 

protective effect is abolished in hearts taken from animals treated with high-dose BC 318 
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(#P<0.05), moreover, the average extent of I/R-induced infarcted zones of hearts of these 319 

animals was non-significantly increased relative to hearts from rats administered vehicle 320 

only. 321 

The phenomenon of diminished BC-mediated protective effect on cardiac physiology was 322 

also dramatically illustrated in outcomes of experiments to assess contribution of the 323 

agent to tissue antioxidant capacity (TAC), a process that has evolved as a homeostatic 324 

countermeasure to oxidative stress. As shown in Figure 2B, isolated, I/R-injured working 325 

hearts taken from rats administered LD-BC, exhibited TAC values significantly in excess 326 

of vehicle-treated controls (*P<0.05) and hearts isolated from HD-BC treated animals 327 

(#P<0.05). Nevertheless, TAC values measured in hearts from animals received HD-BC 328 

were not significantly higher that hearts from control rats received vehicle. 329 

Infarct size was measured in hearts (n=4) following 120 min of REP by perfusion with 330 

triphenyl tetrazolium (TTC) solution, followed by macroscopic analysis of transverse 331 

sections of each heart. Average sizes of infarct zone for hearts in each group ±SEM are 332 

shown for each treatment group. TAC values for each tissue sample is expressed as 333 

Trolox equivalent (M) ±SEM are shown for each treatment group. *P<0.05 for 334 

comparison relative to values for hearts from vehicle-treated control (C) animals. #P<0.05 335 

for comparison relative to values for hearts from HD-BC treated animals. 336 

 337 

-carotene effects on heme oxygenase-1 (HO-1) protein expression 338 

Myocardial tissue levels of HO-1, which is a major mediator of cardiac homeostasis, 339 

were determined by Western blot analysis. As shown in Figure 3., the presence of HO-1 340 

protein was evaluated in isolated working hearts taken from control rats administered 341 

hydroxyethyl cellulose-water vehicle (C), over 4 weeks; a second test group given LD-342 
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BC; and a third group, fed with HD-BC. Hearts excised from these animals were either 343 

sham-treated (BL-baseline) (Figure 3. panel A), or I/R-injured (I/R) (Figure 3. panel B) 344 

by 30 minutes of global ISA and 120 minutes of REP. The results show that in control 345 

hearts which were not subjected to I/R (C-BL) HO-1 expression was not significantly 346 

different from non-injured hearts removed from rats receiving LD-BC (LD-BL), while 347 

high dose treatment (HD-BL) resulted in significantly increased HO-1 level (*P<0.05) 348 

(Figure 3.A). Furthermore, in hearts from non-treated animals and subjected to I/R (C-349 

I/R) we detected mild but non-significant increase of HO-1 compared to non-ischemic 350 

baseline hearts (C-BL) (Figure 3.B) while, production of HO-1 protein in I/R injured 351 

hearts from rats fed with either low-dose (LD-I/R) or high-dose BC (HD-I/R), was 352 

significantly higher compared to non-treated non-injured (C-BL) group (*P<0.05) (Figure 353 

3.B). Moreover, HO-1 expression in hearts removed from vehicle treated animals and 354 

subjected to I/R (C-I/R) was not significantly different from hearts excised from rats 355 

receiving LD-BC and subjected to I/R (LD-I/R), however, hearts from high-dose treated 356 

animals expressed significantly elevated levels of HO-1 protein relative to corresponding 357 

levels measured in vehicle-treated controls (C-I/R) (#P<0.05) (Figure 3.B). 358 

Expression of HO-1 protein in rat myocardium was measured in homogenized 359 

cardiac tissue samples from vehicle or BC treated hearts, with or without I/R injury. 360 

Western blot analyses were conducted on each tissue homogenate in triplicate and the 361 

signal intensity of resulting bands corresponding to HO-1 protein was measured using the 362 

Scion for Windows Densitometry Image program. Tissue content of each protein is 363 

shown as a ratio of arbitrary units for HO-1 protein to GAPDH signal. Data are expressed 364 

as mean ± SEM of 6 different blots. *P<0.05 for comparison of average levels of HO-1 in 365 

ventricular myocardium from BC-treated animals, versus non-ischemic control (C-BL) 366 
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hearts. # P<0.05 for comparison of average levels of HO-1 in ventricular myocardium 367 

from BC-treated animals subjected to I/R, versus I/R-injured control (C-I/R) hearts. 368 

 369 

3.4 MTT assay-based evaluation of -carotene cytotoxicity 370 

To determine if the significant loss of cardioprotective capacity of BC when 371 

administered at the levels defined as “high-dose” in the present study, experiments were 372 

carried out to evaluate cytotoxicity of the agent in rat H9c2 cardiomyoblasts, an in vitro 373 

model, which along with the MTT cell viability assay, has proven to be a highly versatile 374 

tool for use in cardiovascular pharmacology [26]. As shown in Figure 4., significant 375 

increases in H9c2 cell viability was observed in cultures of these cells grown 24 hours in 376 

Dulbecco’s medium supplemented with 2.5, 5 and 10 M BC, relative to cells grown 377 

with no BC added (*P<0.05). Furthermore, this protective effect was not observed in 378 

cells treated with 20 M of BC. 379 

Evaluation of BC cytotoxicity on cellular survival was accomplished using the MTT 380 

assay. H9c2 cells grown 24 hours in Dulbecco’s modified eagle’s medium and treated 381 

with 0, 2.5, 5, 10 and 20 M BC, were followed by 4-hour treatments with 125 µM H2O2 382 

and 5 mg/ml MTT reagent, lysis of cells and measurement of absorbance was at 570- and 383 

690 nm. Absorbance values were averaged across 4 replicate wells, and repeated 3 times. 384 

Outcomes are shown as average percentage of cell viability for each BC dosage level, 385 

relative to control cultures not BC-treated. *P<0.05 for comparison of average % viability 386 

versus non BC-treated cultures. 387 

 388 

4. DISCUSSION 389 
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Outcomes of the present study contribute to emerging insight into how widely 390 

available plant materials may be used to enhance strategies for maintenance of 391 

cardiovascular health and develop novel therapeutic approaches. Here, the capacity of -392 

carotene is evaluated for its ability to alter processes resulting in reduced tissue 393 

oxygenation, leading to ischemic injury to the heart and with strong relevance to the 394 

kidneys, brain and many other organs [27]. A major finding reported here, is that 395 

increasing BC dosage of may not add to any cardiovascular benefits. Moreover, the agent 396 

may mediate – and indeed, may exacerbate existing pathological mechanisms. 397 

The efficiency and vigor with which a heart is able to maintain healthy circulation may 398 

be quantitatively described by cardiac functional measurements, in particular, AF, CF, 399 

CO, SV and dSV [28] and the ability of agents that enhance antioxidant signaling to 400 

improve these functions in isolated ischemic/reperfused rat hearts has previously been 401 

demonstrated [29]. Accordingly, the significant LD-BC-mediated improvement in AF 402 

(Figure 1A), CO (Figure 1C), were not unexpected. Nevertheless, the apparent abolition 403 

or mitigation of these protective effects against I/R injury in rats treated with BC at the 404 

higher dose is intriguing. 405 

The rat model was selected for the present investigation based on the well-known 406 

features of this animal`s physiology its widespread use in cardiovascular research [30] , 407 

and extensive use of these animals in previous cardiac-related drug discovery and basic 408 

scientific work by authors of this report [10,11,13,22,31,32]. The experiments described 409 

here, were nevertheless undertaken in the context of known limitations on the 410 

translational value of carotenoid research using rat data. A significant consideration in 411 

studies such as the present one, is that although rats and mice readily convert BC to 412 

vitamin A, bioavailability of carotenoids through gut absorption is very low, requiring 413 

administration of supraphysiologic BC dosages – greatly in excess of levels from any 414 
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natural source [33]. The experiments were designed to partly offset this limitation by 415 

administration of BC in a high dose range for all conditions. Accordingly, use of these 416 

outcomes and findings in design of improved human healthcare strategies must be made 417 

conservatively, taking into account experimental versus normal dietary or therapeutic 418 

dose ranges. In the present study, even the lowest dose of BC administered to rats is very 419 

high, equivalent to more than 2 g/day/70 kg man. On a daily basis, a normal human diet 420 

may contain 3 orders of magnitude less BC [34]. The degree of translational value that 421 

these findings have for managing cardiovascular disease, will require human nutritional 422 

studies – for which the present study provides a guide to major outcomes that might be 423 

evaluated. Here it is important to emphasize the value of human, versus extended animal 424 

studies. No single animal model completely replicates BC absorption and metabolism of 425 

humans [33]. Moreover, since the present study was designed to obtain mostly qualitative 426 

evaluations of low-, versus high-dose BC effects on major cardiac parameters, no attempt 427 

was made to determine precise rat-to-human dose equivalents. Thus, human clinical 428 

evaluations of the effects described here, constitute appropriate and easily accomplished 429 

follow-on studies. 430 

Although data presented here do not allow a comprehensive mechanistic analysis, the 431 

observation that low-dose-mediated improvement of AF and CO observed at 30 and 60, 432 

but not 120 minutes of post-ischemic REP suggest that BC at the lower dosage is 433 

effectively quenching oxidative stress-promoting prooxidant compounds produced by 434 

cardiac tissue as a consequence of inflammatory reactions triggered by I/R-induced 435 

damage and/or otherwise counteracting adverse effect of these metabolites. If this is the 436 

case, then it is reasonable to predict that the higher levels of oxidative stress present with 437 

longer reperfusion periods, might overwhelm the quenching ability of BC, significantly 438 

diminishing the beneficial effects of the 150 mg/kg/day treatments. The relative ability of 439 
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BC to quench prooxidant molecules may also account for differences in magnitudes of 440 

myocardial infarct zones and tissue antioxidant capacity shown in Figure 2. The 441 

significantly reduced average infarct size observed in I/R-injured hearts of animals 442 

treated with LD-BC, relative those not administered the agent, is consistent with previous 443 

work by authors of the present report, demonstrating that the extent of myocardial infarct 444 

zones in I/R-injured hearts may be diminished with agents that reduce oxidative stress 445 

[13,22,35]. Accordingly, the significant LD-BC-mediated reduction of infarct size 446 

(Figure 2A) and increased TAC (Figure 2B), were not surprising. Moreover, abolition of 447 

these effects in hearts of animals treated with 150 mg/kg/day BC, would be expected if 448 

the quenching ability of the molecule were suppressed at a higher dose, allowing a more 449 

prooxidant cardiac tissue environment at the higher dosage. The dose-responsively 450 

increased expression of HO-1 by myocardial tissue observed for both BC and duration of 451 

REP shown in Figure 3., further supports the possibility that BC loses quenching 452 

potential and may become prooxidant as dosage increases. HO-1 is an ubiqutous 453 

antioxidant response to a wide variety of oxidative stressors, hence it is expected that its 454 

expression would increase as a result of I/R injury [27]. 455 

It is further expected that BC acting as a protective antioxidant would not be 456 

diminished by BC also acting as a quenching agent and contributor to TAC, as shown in 457 

Figure 2B. However, if this model is accurate, BC at the elevated dose, acting to promote 458 

prooxidant tissue environments is expected to stimulate HO-1 production – which is what 459 

was observed (Figure 3.). The possibility of such a mechanism is additionally validated, 460 

by the observation that HO-1 expression in I/R-injured hearts of rats treated with high-461 

dose BC (HD-I/R) was elevated relative to production of the enzyme by hearts from rats 462 

treated with high dose BC, but not subjected to I/R injury (HD-BL) (Figure 3.), since 463 
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elevated HO-1 expression would be an expected consequence of significantly higher 464 

levels of oxidative stress present in I/R-injured tissue. 465 

This analysis is supported, albeit to a minor extent by outcomes of the in vitro assays 466 

for BC cytotoxicity on H9c2 rat myocardial cells. Outcomes of these experiments (Fig. 467 

4.) show that viability of these cells is significantly enhanced in comparison to 468 

unstimulated control cultures, by addition of BC at 2.5, 5 and 10 M, with a loss of this 469 

effect at 20 M. Although these data are insufficient on which to base definitive 470 

conclusions, the results suggest that as BC dosage is increased, the protective effect of the 471 

compound is diminished and may include deleterious properties. 472 

An explanation for apparent cardioprotective effect of BC at one selected dosage and 473 

mitigation or elimination of that protection at a higher dose is speculative based on the 474 

outcomes presented here. This notwithstanding, previous studies provide some clues as to 475 

the mechanisms that may underlie the observations in this report. It is known that free 476 

radical species of the kind responsible for oxidative stress in vertebrate tissues, react with 477 

BC to produce prooxidant degradation products, such as apo-8'-beta-carotenal, that are 478 

particularly damaging to subcellular organelles, particularly mitochondria, resulting in 479 

further disruption of the redox balance of myocardial cells, oxidation of critical proteins 480 

and exacerbation of damage caused by ischemia-reperfusion injury [15,16]. Ironically, 481 

the HO-1 expression response to oxidative stressors may also contribute to loss of 482 

cardioprotection at elevated BC dosage. This is a possibility because heme oxygenases, 483 

including HO-1, reduce oxidative stress by degrading heme produced in the tissue by red 484 

blood cell turnover to produce metabolites with cytoprotective qualities, principally 485 

biliverdin (converted rapidly into bilirubin) and subtoxic levels of carbon monoxide, 486 

which is promotes antioxidant signaling. Interestingly, although ferrous iron (Fe2+) also 487 

produced by normal HO-1 activity is a benign metabolite and readily cleared, its presence 488 
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under some physical settings determines whether BC acts as an antioxidant or prooxidant 489 

compound [36]. This property has potential consequences that are paradoxical in the 490 

context of the putative role of HO-1. Normally, increased activity of this enzyme reduces 491 

oxidative stress and protects tissues from toxic insult. In the present study, I/R injury to 492 

cardiac tissue, strongly activated HO-1, resulting in elevated levels of its metabolic 493 

products, including Fe2+. Since, as described by Andersen et al., Fe2+ enhances the 494 

prooxidant properties of BC, influences that elevate HO-1 in the presence of high BC 495 

levels, potentially overwhelm the cytoprotective effects of HO-1 and increase oxidative 496 

stress on a tissue. This conclusion is speculative and will require further analysis of BC 497 

cardiovascular effects. Such a mechanism is nevertheless consistent with the known 498 

behavior of BC in the presence of Fe2+ - and if valid, accounts for the results shown in 499 

Figure 4. Potential relevance of this finding to management of cardiovascular disease is 500 

provided by an observation that an inducer of HO-1 administered orally to human 501 

patients significantly altered serum levels of transferrin, which is the physiologic 502 

transport molecule for Fe2+ [37] indicating that aspects of iron metabolism that may also 503 

impact BC utilization may be modulated by drugs that affect HO-1 activity and possibly 504 

selective chelators of Fe2+. 505 

CONCLUSIONS: The findings described above, suggest that the level of HO-1 activity 506 

in response to I/R injury may be a critical determinant for the role of BC as either a 507 

protective agent against I/R-induced heart damage, or as a contributor to I/R-related 508 

syndromes through activation of its prooxidant properties. Validity of this model depends 509 

on the degree to which redox activities of BC may be influenced in either direction by 510 

presence of Fe2+ - which has been identified as a primary factor. Ongoing characterization 511 

of these processes is continuing by this laboratory. A particularly valuable outcome 512 

anticipated for this ongoing research initiative, is the potential for combining use of BC 513 
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with HO-1 inducers, such as the sour cherry seed extracts described by Csiki et al [37], in 514 

modulation of the clinical effects of BC. 515 

FUTURE DIRECTIONS: Current efforts by authors of this report to mitigate the 516 

cardiotoxic effects of -carotene, while retaining the cardioprotective value of this 517 

compound and also HO-1 activity, are focused on development of a novel functional food 518 

class containing whole leaf extract of Tamarindus indica L. (tamarind), which in March 519 

2015 was reported to chelate ferrous iron, with a binding constant of 1.085 mol L-1 [38]. 520 

It is predicted that Fe2+ chelation in this potency range will augment transferrin activity to 521 

the extent that the capacity of endogenous HO-1 to reduce oxidative stress will be 522 

retained, while simultaneously counteracting BC toxicity by removal of Fe2+. This 523 

conclusion is currently speculative and await outcome of ongoing studies. 524 
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Figure 1.: -carotene effects on cardiac function in isolated working hearts. 650 
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 658 

Figure 2.: Effect of -carotene on infarcted zone magnitude (A) and tissue 659 

antioxidant capacity (B). 660 

 661 

 662 

Figure 3.: Western blot analysis for cardiac expression of heme oxygenase-1 (HO-1) 663 

protein. 664 
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 665 

Figure 4.: In vitro (MTT) assays for -carotene cytotoxicity on H9c2 cells. 666 
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