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Abstract

The understanding of methane emission and methane absorption plays a central role both in the atmo-
sphere and on the surface of the Earth. Several important ecological processes, e.g., ebullition of methane
and its natural microergodicity request better designs for observations in order to decrease variability in
parameter estimation. Thus, a crucial fact, before the measurements are taken, is to give an optimal design
of the sites where observations should be collected in order to stabilize the variability of estimators. In this
paper we introduce a realistic parametric model of covariance and provide theoretical and numerical results
on optimal designs. For parameter estimation D-optimality, while for prediction integrated mean square
error and entropy criteria are used. We illustrate applicability of obtained benchmark designs for increas-
ing/measuring the efficiency of the engineering designs for estimation of methane rate in various temperature
ranges and under different correlation parameters. We show that in most situations these benchmark designs
have higher efficiency.
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1. Introduction

The understanding of methane emission and methane absorption plays a central role both in the atmo-
sphere (for troposphere see, e.g., [32]) and on the surface of the Earth (see, e.g., [20] regarding the methane
emissions from natural wetlands and references therein or [14] for efficient and robust model of the methane
emission from sedge-grass marsh in South Bohemia). Several important ecological processes, e.g., ebulli-
tion of methane and its natural microergodicity request better designs for observations in order to decrease
variability in parameter estimation [15]. In this context by a design we mean a set of locations where the in-
vestigated process is observed. Thus, a crucial fact, before the measurements are taken, is to give an optimal
design of the sites where observations should be collected. Rodŕıguez-Dı́az et al. [27] provided a comparison
of filling and D-optimal designs for a one-dimensional design variable, e.g., temperature. However, such a
model oversimplifies the important fact that variation of other variables, e.g., rates k1 of the considered
modified Arrhenius model, could disturb the efficiency of the learning process. The latter statement is also
in agreement with common sense in physical chemistry. In this paper the difficulties of modelling and design
are treated, mainly by allowing an Ornstein-Uhlenbeck (OU) sheet error model.

We concentrate on efficient estimation of the parameters of the modified Arrhenius model (model popular
in chemical kinetics), which is used by Vaghjiani and Ravishankara [32] as a flux model of methane in
troposphere. This generalized exponential (GE) model can be expressed as

Y = Axµe−Bx + ǫ = η(x, µ,B) + ǫ, (1.1)
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where A,B, µ ∈ R, A, B ≥ 0, are constants and ε is a random error term. In the case of correlated
errors such a model was studied by Rodŕıguez-Dı́az et al. [27], however, in that work error structures were
univariate stochastic processes. In [26] and [27] the authors concentrated on the Modified-Arrhenius (MA)
model, which is equivalent to the GE model through the change of variable x = 1/t. This model is useful
for chemical kinetic mainly because it is a generalization of Arrhenius model describing the influence of
temperature t on the rates of chemical processes, see, e.g., [18] for general discussion and [25] for optimal
designs. However, for specific setups, for instance, long temperature ranges, Arrhenius model is insufficient
and the Modified Arrhenius (or GE model) appears to be the good alternative [see for instance 11]. Other
applications of model (1.1) in chemistry are related to the transition state theory (TST) of chemical reactions
[13].

In practical chemical kinetics two steps are taken: first the rates k1 are estimated (typically with sym-
metric estimated error) and then modified Arrhenius model is fitted to the rates, i.e.,

k1 = A(1/t)µe−B/t + ε̃(t). (1.2)

Statistically correct would be to assess both steps by one optimal experimental planning. Rodŕıguez-Dı́az et
al. [27] concentrated on the second phase, i.e., what is the optimal distribution of temperature for obtaining
statistically efficient estimators of trend parameters A,B, µ and correlation parameters of the error term ε̃.
In this paper we provide designs both for rates and temperatures, and in this way substantially generalize
the previously studied model.

Correlation is the natural dependence measure fitting for elliptically symmetric distributions (e.g., Gaus-
sian). By taking s (this variable can play, for example, the role of atmospheric pressure, latitude or location
of the measuring balloon in troposphere, either vertically or horizontally) and temperature t to be variables
of covariance, our model (1.1) takes a form of a stationary process

Y (s, t) = k1 + ε(s, t), (1.3)

where the design points are taken from a compact design space X = [a1, b1] × [a2, b2], with b1 > a1 and
b2 > a2, and ε(s, t), s, t ∈ R, is a stationary OU sheet, that is a zero mean Gaussian process with covariance
structure

E ε(s1, t1)ε(s2, t2) =
σ̃2

4αβ
exp

(
− α|s1 − s2| − β|t1 − t2|

)
, (1.4)

where α > 0, β > 0, σ̃ > 0. We remark that ε(s, t) can also be represented as

ε(s, t) =
σ̃

2
√
αβ

e−αs−βtW
(
e2αs, e2βt

)
,

where W(s, t), s, t ∈ R, is a standard one-dimensional Brownian sheet [4, 5]. Covariance structure (1.4)
implies that for d = (d, δ), d ≥ 0, δ ≥ 0, the variogram 2γ(d) := Var

(
ε(s+ d, t+ δ)− ε(s, t)

)
equals

2γ(d) =
σ̃2

2αβ

(
1− e−αd−βδ

)

and the correlation between two measurements depends on the distance through the semivariogram γ(d).
As can be visible from relation (1.2) between rates and parameters A,µ and B of the modified Arrhenius

model, the second variable s is missing from trend since it is not chemically understood as driving mechanism
of chemical kinetics, however, in this context it is an environment variable.

In order to apply the usual notations of spatial modeling [17] we introduce σ := σ̃/(2
√
αβ) and instead

of (1.4) we investigate

E ε(s1, t1)ε(s2, t2) = σ2 exp
(
− α|s1 − s2| − β|t1 − t2|

)
, (1.5)

where σ is considered as a nuisance parameter.
We remark that in order to reduce the length of the paper proofs of all theorems presented here together

with calculations corresponding to Examples 2.8 and 3.5 are given in a separate Supplementary section
which is available on the website of the publisher. These details can also be found in [7].
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2. Benchmarking grid designs for the OU sheet with constant trend

In this section we derive several optimal design results for the case of constant trend and regular grids
resulting in a Kronecker product covariance structure. These theoretical contributions will serve as bench-
marks for optimal designs in a methane flux model. Thus we consider the stationary process

Y (s, t) = θ + ε(s, t) (2.1)

with the design points taken from a compact design space X = [a1, b1]× [a2, b2], where b1 > a1 and b2 > a2
and ε(s, t), s, t ∈ R, is a stationary Ornstein-Uhlenbeck sheet, i.e., a zero mean Gaussian process with
covariance structure (1.5).

2.1. D-optimality

As a first step we derive D-optimal designs, that is arrangements of design points that maximize the
objective function Φ(M) := det(M), whereM is the Fisher information matrix of observations of the random
field Y . This method, ”plugged” from the widely developed uncorrelated setup, is offering considerable
potential for automatic implementation, although further development is needed before it can be applied
routinely in practice. Theoretical justifications of using the Fisher information for D-optimal designing
under correlation can be found in [1, 24] and [31].

We investigate grid designs of the form
{
(si, tj) : i = 1, 2, . . . , n, j = 1, 2, . . . ,m

}
⊂ X = [a1, b1]×[a2, b2],

n,m ≥ 2, and without loss of generality we may assume a1 ≤ s1 < s2 < . . . < sn ≤ b1 and a2 ≤ t1 < t2 <
. . . < tm ≤ b2. Usually, the grid containing the design points can be arranged arbitrary in the design space
X , but we also consider restricted D-optimality, when s1 = a1, sn = b1 and t1 = a2, tm = b2, i.e., the
vertices of X are included in all designs.

2.1.1. Estimation of trend parameter only

Let us assume first that parameters α, β and σ of the covariance structure (1.5) of the OU sheet ε are
given and we are interested in estimation of the trend parameter θ. In this case the Fisher information on θ
based on observations

{
Y (si, tj), i = 1, 2, . . . , n, j = 1, 2, . . . ,m

}
equals Mθ(n,m) = 1⊤

nmC−1(n,m, r)1nm,
where 1k, k ∈ N, denotes the column vector of ones of length k, r = (α, β)⊤, and C(n,m, r) is the
covariance matrix of the observations [24, 33]. Further, let di := si+1 − si, i = 1, 2, . . . , n − 1, and
δj := tj+1 − tj , j = 1, 2, . . . ,m− 1, be the directional distances between two adjacent design points. With
the help of this representation one can prove the following theorem.

Theorem 2.1 Consider the OU model (2.1) with covariance structure (1.5) observed in points
{
(si, tj), i =

1, 2, . . . , n, j = 1, 2, . . . ,m
}
and assume that the only parameter of interest is the trend parameter θ. In this

case

Mθ(n,m) =

(
1 +

n−1∑

i=1

1− pi
1 + pi

)(
1 +

m−1∑

j=1

1− qj
1 + qj

)
, (2.2)

where pi := exp(−αdi), qj := exp(−βδj), i = 1, 2, . . . , n − 1, j = 1, 2, . . . ,m − 1, and the directionally
equidistant design d1 = d2 = . . . = dn−1 and δ1 = δ2 = . . . = δm−1 is optimal for estimation of θ.

2.1.2. Estimation of covariance parameters only

Assume now that we are interested only in the estimation of the parameters α and β of the Ornstein-
Uhlenbeck sheet. According to the results of Pázman [24] and Xia et al. [33] the Fisher information matrix
on r = (α, β)⊤ has the form

Mr(n,m) =

[
Mα(n,m) Mα,β(n,m)
Mα,β(n,m) Mβ(n,m)

]
, (2.3)
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where

Mα(n,m) :=
1

2
tr

{
C−1(n,m, r)

∂C(n,m, r)

∂α
C−1(n,m, r)

∂C(n,m, r)

∂α

}
,

Mβ(n,m) :=
1

2
tr

{
C−1(n,m, r)

∂C(n,m, r)

∂β
C−1(n,m, r)

∂C(n,m, r)

∂β

}
,

Mα,β(n,m) :=
1

2
tr

{
C−1(n,m, r)

∂C(n,m, r)

∂α
C−1(n,m, r)

∂C(n,m, r)

∂β

}
,

and C(n,m, r) is the covariance matrix of the observations
{
Y (si, tj), i=1, 2, . . . , n, j=1, 2, . . . ,m

}
. Note

that here Mα(n,m) and Mβ(n,m) are Fisher information on parameters α and β, respectively, taking the
other parameter as a nuisance.

The following theorem gives the exact form of Mr(n,m) for the model (2.1).

Theorem 2.2 Consider the OU model (2.1) with covariance structure (1.5) observed in points
{
(si, tj), i =

1, 2, . . . , n, j = 1, 2, . . . ,m
}
. Then

Mα(n,m) =m
n−1∑

i=1

d2i p
2
i (1 + p2i )

(1− p2i )
2

, Mβ(n,m) = n
m−1∑

j=1

δ2j q
2
j (1 + q2j )

(1− q2j )
2

, (2.4)

Mα,β(n,m) = 2

( n−1∑

i=1

dip
2
i

1− p2i

)(m−1∑

j=1

δjq
2
j

1− q2j

)
,

where di, δj and pi, qj denote the same quantities as before, that is, di := si+1 − si, δj := tj+1 − tj and
pi := exp(−αdi), qj := exp(−βδj), i = 1, 2, . . . , n− 1, j = 1, 2, . . . ,m− 1.

Remark 2.3 Observe that Fisher information on a single parameter (α or β) depends only on the design
points corresponding to that particular parameter, e.g., Mα(n,m) = mMα(n), where Mα(n) is the Fisher
information corresponding to the covariance parameter α of a stationary OU process observed in design
points {si, i = 1, 2, . . . , n} of the interval [a1, b1].

Now, with the help of Theorem 2.2 one can formulate a result on the restricted D-optimal design for the
parameters of the covariance structure of the OU sheet.

Theorem 2.4 The restricted design which is D-optimal for estimation of the covariance parameters α, β
does not exist within the class of admissible designs.

From the point of view of a chemometrician, Theorem 2.4 points out that microergodicity should be
added to the model in order to obtain regular designs. Several ways are possible, for instance, nugget effect
or compounding [see, e.g., 23].

Example 2.5 Without loss of generality one may assume that the design space is X = [0, 1]2. Let
α = 0.6, β = 1, and consider the case n = m = 3 where s1 = t1 = 0, s2 := d, t2 := δ, s3 = t3 = 1. For this
particular restricted design we obviously have d1 = d, d2 = 1 − d, δ1 = δ, δ2 = 1 − δ. In Figure 1, where
det
(
Mr(3, 3)

)
is plotted as function of d and δ, one can clearly see that the maximal information is gained

at the frontier points, when either d ∈ {0, 1} or δ ∈ {0, 1}.

Now, let us have a look at the free boundary directionally equidistant designs, that is at designs where
d1 = d2 = . . . = dn−1 =: d and δ1 = δ2 = . . . = δm−1 =: δ. In this case a D-optimal design is specified by
directional distances d and δ which maximize

det
(
Mr(n,m)

)
=

(n− 1)(m− 1)d2δ2
(
e2αd − 1

)2(
e2βδ − 1

)2
(
nm
(
e2αd + 1

)(
e2βδ + 1

)
− 4(n− 1)(m− 1)

)
. (2.5)
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Figure 1: Fisher information on correlation parameters (α, β) for n = m = 3 as function of d = d1 and δ = δ1 for α = 0.6, β = 1.

In case of OU processes this question does not appear, since for processes Fisher information on covariance
parameter based on n equidistant design points depends linearly on the two-point design Fisher information
[17].

Theorem 2.6 If nm ≥ 2(n− 1)(m− 1) then det
(
Mr(n,m)

)
is strictly monotone decreasing both in d and

δ, so its maximum is reached at d = δ = 0. If nm < 2(n− 1)(m− 1) then for fixed and small enough d (δ),
function det

(
Mr(n,m)

)
has a single maximum in δ (d).

Remark 2.7 Observe that for 1 < n = m ∈ N, condition nm ≥ 2(n − 1)(m − 1) is equivalent to n ≤ 3.
Further, if nm ≤ 2(n − 1)(m − 1) then the statement of Theorem 2.6 does not imply the existence of a
D-optimal design. Figure 2 shows that the extremal point of det

(
Mr(n,m)

)
can be a saddle point and the

maximum is reached when either d = 0 or δ = 0.

2.1.3. Estimation of all parameters

Consider now the most general case, when both α, β and θ are unknown and the Fisher information
matrix on these parameters equals

M(n,m) =

[
Mθ(n,m) 0

0 Mr(n,m)

]
,

where Mθ(n,m) and Mr(n,m) are Fisher information matrices on θ and r = (α, β)⊤, respectively, see (2.2)
and (2.3). Thus, the objective function to be maximized is det

(
M(n,m)

)
= Mθ(n,m) det

(
Mr(n,m)

)
.

Example 2.8 Consider the nine-point restricted design of Example 2.5, that is X = [0, 1]2, n = m = 3
and s1 = t1 = 0, s2 := d, t2 := δ, s3 = t3 = 1, implying d1 = d, d2 = 1− d, δ1 = δ, δ2 = 1− δ. In this case
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Figure 2: Fisher information of boundary free design on correlation parameters (α, β) for n = m = 5 and α = 1, β = 1.

from (2.2) and (2.4) we have

det
(
M(3, 3)

)
=

(
1 +

eαd − 1

eαd + 1
+

eα(1−d) − 1

eα(1−d) + 1

)(
1 +

eβδ − 1

eβδ + 1
+

eβ(1−δ) − 1

eβ(1−δ) + 1

)

×
(
9

(
d2
(
e2αd + 1

)
(
e2αd − 1

)2 +
(1− d)2

(
e2α(1−d) + 1

)
(
e2α(1−d) − 1

)2
)(

δ2
(
e2βδ + 1

)
(
e2βδ − 1

)2 +
(1− δ)2

(
e2β(1−δ) + 1

)
(
e2β(1−δ) − 1

)2
)

(2.6)

− 4

(
d

e2αd − 1
+

1− d

e2α(1−d) − 1

)2(
δ

e2βδ − 1
+

1− δ

e2β(1−δ) − 1

)2
)
.

Tedious calculations show that det
(
M(3, 3)

)
has a single global minimum at d = δ = 1/2, while the

maximum is reached at the four vertices of X , namely at (0, 0), (0, 1), (1, 0) and (1, 1). In this way a
restricted D-optimal design does not exist.

Again, let us also have a look at the free boundary directionally equidistant designs with directional
distances d and δ. The objective function to be maximized in order to get the D-optimal design is

det
(
M(n,m)

)
=

(n− 1)(m− 1)d2δ2
(
e2αd − 1

)2(
e2βδ − 1

)2(
eαd + 1

)(
eβδ + 1

)
(
n(eαd − 1) + 2

)(
m(eβδ − 1) + 2

)
(2.7)

×
(
nm
(
e2αd + 1

)(
e2βδ + 1

)
− 4(n− 1)(m− 1)

)
.

For simplicity assume n = m.

Theorem 2.9 If n = 2 then det
(
M(n, n)

)
is strictly monotone decreasing both in d and δ, so its maximum

is reached at d = δ = 0. If n ≥ 3 then det
(
M(n, n)

)
has a global maximum at (d∗, δ∗) which solves

n2
(
e2βδ + 1

)
g1(αd, n) = 4(n− 1)2g2(2αd, n), n2

(
e2αd + 1

)
g1(βδ, n) = 4(n− 1)2g2(βδ, n), (2.8)
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Figure 3: Fisher information of boundary free design on all parameters for n = m = 6 and α = 1, β = 1.

where

g1(x, n) := e5xn(1− x) + e4x(2nx− 3x− n+ 2) + e3xx(1− 4n) + e2xx(4n− 7) + ex(x− n− nx) + n− 2,

g2(x, n) := e3xn(1− 2x) + e2x(3nx− 5x+ 2− n) + ex(x− n− nx) + n− 2. (2.9)

Theorem 2.9 shows that the situation here completely differs from the case when only covariance pa-
rameters are estimated and an optimal free boundary directionally equidistant design does exist. This can
clearly be observed on Figure 3 showing det

(
M(6, 6)

)
for α = 1, β = 1. Further, simulation results show

that for all n ≥ 3 objective function det
(
M(n, n)

)
has a unique maximal point (system (2.8) has a unique

solution), however, a rigorous proof of this fact have not been found yet.

2.2. Optimal design with respect to IMSPE criterion

As before, suppose we have observations
{
Y (si, tj), i = 1, 2, . . . , n, j = 1, 2, . . . ,m

}
. The main aim

of the kriging technique consists of the prediction of the output of the simulator on the experimental
region. For any untried location (x1, x2) ∈ X the estimation procedure is focused on the best linear un-

biased estimator of Y (x1, x2) given by Ŷ (x1, x2) = θ̂ + R⊤(x1, x2)C
−1(n,m, r)(Y − 1nmθ̂), where Y =(

Y (s1, t1), Y (s1, t2), . . . , Y (sn, tm)
)⊤

is the vector of observations, θ̂ is the generalized least squares estima-

tor of θ, that is θ̂ =
(
1⊤

nmC−1(n,m, r)1nm

)−1
1⊤

nmC−1(n,m, r)Y, and R(x1, x2) is the vector of correlations

between Y (x1, x2) and vector Y, which has the form R(x1, x2) =
(
̺(x1, x2, s1, t1), . . . , ̺(x1, x2, si, tj), . . . ,

̺(x1, x2, sn, tm)
)⊤

, where ̺(x1, x2, si, tj) := ̺1(x1, si)̺2(x2, tj) with components ̺1(x1, si) := exp
(
−α|x1−

si|
)
and ̺2(x2, tj) := exp

(
− β|x2 − tj |

)
. Usually, correlation parameters α, β are unknown and will be

estimated by maximum likelihood method. Thus, the kriging predictor is obtained by substituting the max-
imum likelihood estimators (MLE) (α̂, β̂) for (α, β) and in such a case Ŷ (x1, x2) is called the MLE-empirical
best linear unbiased predictor [29].

In this way a natural criterion of optimality will minimize suitable functionals of the Mean Squared

7



Prediction Error (MSPE) given by

MSPE
(
Ŷ (x1, x2)

)
:= σ2

[
1−

(
1, R⊤(x1, x2)

)
[

0 1⊤

nm

1nm C(n,m, r)

]−1 (
1, R⊤(x1, x2)

)⊤
]
. (2.10)

Since the prediction accuracy is often related to the entire prediction region X , the design criterion
IMSPE is given by

IMSPE
(
Ŷ
)
:= σ−2

∫∫

X

MSPE
(
Ŷ (x1, x2)

)
dx1 dx2.

Theorem 2.10 Let us assume that the design space X = [0, 1]2 and since extrapolative prediction is not
advisable in kriging, we can set s1 = t1 = 0 and sn = tm = 1.

MSPE
(
Ŷ (x1, x2)

)
= σ2

[
1−
(
̺21(x1, sn) +

n−1∑

i=1

(
̺1(x1, si)− ̺1(x1, si+1)pi

)2

1− p2i

)

×
(
̺22(x2, tm) +

m−1∑

j=1

(
̺2(x2, tj)− ̺2(x2, tj+1)qj

)2

1− q2j

)
(2.11)

+

(
1 +

n−1∑

i=1

1− pi
1 + pi

)−1(
1 +

m−1∑

j=1

1− qj
1 + qj

)−1
(
1−

(
̺1(x1, sn) +

n−1∑

i=1

̺1(x1, si)− ̺1(x1, si+1)pi
1 + pi

)

×
(
̺2(x2, tm) +

m−1∑

j=1

̺2(x2, tj)− ̺2(x2, tj+1)qj
1 + qj

))2]
,

where again pi := exp(−αdi), qj := exp(−βδj) with di := si+1 − si and δj := tj+1 − tj , i = 1, 2, . . . , n− 1,
j = 1, 2, . . . ,m− 1. Further,

IMSPE
(
Ŷ
)
=1−

(
n− 1

α
− 2

n−1∑

i=1

dip
2
i

1− p2i

)(
m− 1

β
− 2

m−1∑

j=1

δjq
2
j

1− q2j

)
(2.12)

+

(
1 +

n−1∑

i=1

1− pi
1 + pi

)−1(
1 +

m−1∑

j=1

1− qj
1 + qj

)−1
[
1− 8

αβ

( n−1∑

i=1

1− pi
1 + pi

)(m−1∑

j=1

1− qj
1 + qj

)

+

( n−1∑

i=1

1− p2i + 2αdipi
α(1 + pi)2

)(m−1∑

j=1

1− q2j + 2βδjqj

β(1 + qj)2

)]
.

For any sample size the directionally equidistant design d1 = d2 = . . . = dn−1 and δ1 = δ2 = . . . = δm−1 is
optimal with respect to the IMSPE criterion.

Remark 2.11 We remark that (2.12) is an extension of the IMSPE criterion for the classical OU pro-
cess given by Baldi Antognini and Zagoraiou [3, Proposition 4.1], while the optimality result generalizes
Proposition 4.2 of [3].

2.3. Optimal design with respect to entropy criterion

Another possible approach to optimal design is to find locations which maximize the amount of obtained
information. Following the ideas of Shewry and Wynn [30] one has to maximize the entropy Ent(Y) of
the observations corresponding to the chosen design, which in the Gaussian case form an nm-dimensional
normal vector with covariance matrix σ2 C(n,m, r), that is

Ent(Y) =
nm

2

(
1 + ln(2πσ2)

)
+

1

2
ln detC(n,m, r).
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Theorem 2.12 In our setup entropy Ent(Y) has the form

Ent(Y) =
nm

2

(
1 + ln(2πσ2)

)
+

m

2

n−1∑

i=1

ln
(
1− p2i

)
+

n

2

m−1∑

j=1

ln
(
1− q2j

)
. (2.13)

For any sample size the directionally equidistant design d1 = d2 = . . . = dn−1 and δ1 = δ2 = . . . = δm−1 is
optimal with respect to the entropy criterion.

3. D-optimal designs for the Arrhenius model with OU error

In the present section we derive objective functions for D-optimal designs for estimating parameters of
the Arrhenius model (1.1). We consider the stationary process

Y (s, t) =
(
A/tµ

)
e−B/t + ε(s, t), (3.1)

observed on a compact design space X = [a1, b1]× [a2, b2], where b1 > a1 and b2 > a2 and ε(s, t), s, t ∈ R, is
again a stationary Ornstein-Uhlenbeck sheet, that is a zero mean Gaussian process with covariance structure
(1.5). Since parameter A is usually known, without loss of generality we may assume A = 1 and consider
model (3.1) with trend function η(s, t;µ,B) :=

(
1/tµ

)
e−B/t.

From the point of view of applications we distinguish two important cases.

• Rate µ is known, which is an assumption made by several authors, see, e.g., [12]. The uncorrelated
case has already been studied by Rodŕıguez-Dı́az and Santos-Mart́ın [26], where the authors proved
that for approximated designs a two-point design is optimal.

• Rate µ is unknown and one has to estimate it together with B. For this model the uncorrelated case
has also been studied, Rodŕıguez-Dı́az et al. [27] considered both equidistant and general designs.

3.1. Estimation of trend

Assume that covariance parameters α, β and σ of the OU sheet and rate µ of the Arrhenius model
are given and we are interested in estimation of the trend parameter B. The Fisher information on B
based on observations

{
Y (si, tj), i = 1, 2, . . . , n, j = 1, 2, . . . ,m

}
of the process (3.1) equals MB(n,m) =

F⊤(n,m,B)C−1(n,m, r)F⊤(n,m,B), where

F (n,m,B) :=

(
η(s1, t1;µ,B)

∂B
,
η(s1, t2;µ,B)

∂B
, . . . ,

η(sn, tm;µ,B)

∂B

)⊤

.

Theorem 3.1 In our setup

MB(n,m) =

(
1 +

n−1∑

i=1

1− pi
1 + pi

)(
κ2
m +

m−1∑

j=1

(κj − κj+1qj)
2

1− q2j

)
, (3.2)

where κj := − exp
(
−B/tj

)
/tµ+1

j if tj 6= 0, and κj := 0, otherwise.

In case one has to estimate both µ and B, the objective function to be maximized in order to get the D-
optimal design is det

(
Mµ,B(n,m)

)
, where again Mµ,B(n,m) = G⊤(n,m, µ,B)C−1(n,m, r)G⊤(n,m, µ,B)

with

G(n,m, µ,B) :=

[
η(s1,t1;µ,B)

∂µ
η(s1,t2;µ,B)

∂µ . . . η(sn,tm;µ,B)
∂µ

η(s1,t1;µ,B)
∂B

η(s1,t2;µ,B)
∂B . . . η(sn,tm;µ,B)

∂B

]⊤
.
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Theorem 3.2 In our setup

Mµ,B(n,m) =

(
1 +

n−1∑

i=1

1− pi
1 + pi

)
(3.3)

×


 λ2

m +
∑m−1

j=1
(λj−λj+1qj)

2

1−q2
j

λmκm +
∑m−1

j=1
(λj−λj+1qj)(κj−κj+1qj)

1−q2
j

λmκm +
∑m−1

j=1
(λj−λj+1qj)(κj−κj+1qj)

1−q2
j

κ2
m +

∑m−1
j=1

(κj−κj+1qj)
2

1−q2
j


 ,

where κj is the same quantity as in Theorem 3.1, while λj := − log(tj) exp
(
− B/tj

)
/tµj if tj 6= 0, and

λj := 0, otherwise.

Theorems 3.1 and 3.2 show that for estimating merely the trend parameters one can treat the two
coordinate directions separately. Hence, in the first coordinate direction the maximum is reached with the
equidistant design d1 = d2 = . . . = dn−1, while in the second direction one can consider, for instance, the
results of Rodŕıguez-Dı́az et al. [27] for the classical OU process.

Example 3.3 Consider a four point grid design, i.e., n = m = 2. Without loss of generality we may assume
s1 = t1 = 0 implying s2 = d and t2 = δ. In this case the Fisher information (3.2) on B equals

MB(2, 2) =
2

1− exp(−αd)

exp(−2B/δ)(
1− exp(−2βδ)

)
δ2(µ+1)

,

which function is monotone increasing in its first variable d. Further, short calculation shows that if µ > −1
then the maximum in δ is attained at the unique solution of the equation

(
B − (µ+ 1)δ

)(
exp(2βδ)− 1

)
= βδ2.

In case µ < −1, that is in particular interesting for chemometricians, one can employ the maximin
approach (see, e.g., [16]), which seeks designs maximizing the minimum of the design criterion. In our case
this means maximization of

min
α,β>0

MB(2, 2) = 2 exp(−2Bδ)δ−2(µ+1). (3.4)

Obviously, if µ < −1 then the maximum of (3.4) is reached at δ∗ = −(µ+1)/B. Although the maximization
of (3.4) is pretty easy, one should take care about the interpretation of such a result as, for example, the
optimal design does not depend on d.

Maximin approach, anyhow, cannot be automatized without further considerations since, for instance,
maximin designs are of no relevance for criteria, where design distances are multiplied by some nuisance
parameters, see, e.g., (2.2).

Remark 3.4 Under the conditions of Example 3.3 (s1 = t1 = 0) we have det
(
Mµ,B(2, 2)

)
= 0, that is the

four point grid design does not provide information on trend parameters µ and B.

3.2. Estimation of all parameters

Assume first that the rate µ is known and one has to estimate trend parameter B and covariance
parameters (α, β). Obviously, the Fisher information matrix on these parameters based on observations{
Y (si, tj), i = 1, 2, . . . , n, j = 1, 2, . . . ,m

}
of the process (3.1) equals

M(n,m) =

[
MB(n,m) 0

0 Mr(n,m)

]
,

where MB(n,m) and Mr(n,m) are defined by (3.2) and (2.3), respectively. Hence, in order to obtain a
D-optimal design one has to maximize det

(
M(n,m)

)
= MB(n,m) det

(
Mr(n,m)

)
.
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Example 3.5 Consider again the settings of Example 3.3, that is a four point grid design (n = m = 2)
under the assumption s1 = t1 = 0. In this case we have

M(2, 2) =
8d2 exp(−2B/δ) exp(−2βδ) exp(−2αd)

(
1 + exp(−2αd) + exp(−2βδ)

)

δ2µ
(
1− exp(−2βδ)

)3(
1− exp(−2αd)

)2(
1 + exp(−αd)

) , d, δ ≥ 0.

Tedious calculations show that for d, δ ≥ 0 function M(2, 2) is monotone decreasing in d, while in δ it has
a maximum at the unique solution of the equation

βδ2 − µδ +B + e2βδ
(
2β(2 + p2)δ2 + (B − µδ)p2

)
+ e4βδ(1 + p2)

(
βδ2 + µδ −B

)
= 0.

Hence, the optimal four point grid design collapses in its first coordinate.

If rate µ is also unknown, the Fisher information matrix on (µ,B, α, β) based on
{
Y (si, tj), i =

1, 2, . . . , n, j = 1, 2, . . . ,m
}
equals

M(n,m) =

[
Mµ,B(n,m) 0

0 Mr(n,m)

]
,

where Mµ,B(n,m) and Mr(n,m) are defined by (3.3) and (2.3), respectively. In this case the D-optimal
design maximizes objective function det

(
M(n,m)

)
= det

(
Mµ,B(n,m)

)
det
(
Mr(n,m)

)
.

4. Comparisons of designs

Methane emissions compose a very complicated ecological process which contains both stochastic and
chaos parts (see, e.g., [2, 28]). Thus, fitting of a two dimensional OU sheet could be a remedy to several
problems which occurred in univariate settings [27]. In this section we provide efficiency comparisons for
selected important methane kinetic reactions, both in standard (Earth) and non-standard (troposphere)
temperature conditions. From this point of view, the current work is the first comprehensive comparison
of the statistical information of designs for OU sheets, which gives its novelty both methodologically and
from the point of view of applications.

4.1. Comparisons of designs for tropospheric methane measurements

As discussed by Lelieveld [19], tropospheric methane measurements are fundamental for climate change
models. Vaghjiani and Ravishankara [32] utilized a 62 point design to measure the tropospheric methane
flux. In Theorem 2.1 the exact form of Mθ(n,m) is derived only for restricted regular designs. One might
ask what is the relative efficiency of the optimal value of the Fisher information Mθ(n · m) on θ based
on observations forming monotonic sets of n × m design points (see [8]), compared to the Mθ(n,m) of a
rectangular grid with the same number of points. Monotonic sets provide natural designs reflecting essential
temperature non-reversibility in short time periods. Since the designs for methane used in [32] typically
have around 62 points, we should consider a 64 point design comparison of e.g. a 8 × 8 regular grid
with a 64 points monotonic set for covariance parameters α, β ∈ {0.001, 0.01, 0.1, 1, 10} and design space

α = 0.001, β = 0.01 α = 0.1, β = 1 α = 1, β = 1 α = 1, β = 10
monotonic 1.3118 29.8651 61.2545 63.9937

D − opt. rectangular 1.3328 57.4388 63.7483 64.00
rel. eff. (%) 98.43 51.99 96.09 99.99
monotonic -33.0446 86.1318 90.7964 90.8121

Ent. rectangular -51.1507 90.7111 90.8119 90.8121
rel. eff. (%) 64.60 94.95 99.98 100

Table 1: Mθ(n,m) and entropy values corresponding to the optimal monotonic and to the rectangular grid design and relative
efficiency of the optimal monotonic design.
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Figure 4: Fisher information on θ as functions of correlation parameters (α, β) for n = 8 and m = 8.

α=0.001, β=0.01 α=0.1, β=0.01 α=0.1, β=1 α=1, β=1 α=1, β=10
Bonard et al. [9] 3.1261 8.7785 8.9904 9.0000 9.0000

D − opt. mon., n = 9 3.2067 8.9107 9.0000 9.0000 9.0000
3× 3 r.grid 3.0305 7.6660 9.0000 9.0000 9.0000

Bonard et al. [9] 9.8567 12.7665 12.7704 12.7704 12.7704
Ent. mon., n = 9 11.2150 12.7703 12.7704 12.7704 12.7704

3× 3 r.grid 9.2225 12.7231 12.7704 12.7704 12.7704
IMSPE Bonard et al. [9] 6.3624× 104 1.6246× 105 1.7220× 105 1.7231× 105 1.7231× 105

3× 3 r.grid 9.3642× 104 1.6895× 105 1.7224× 105 1.7231× 105 1.7231× 105

Table 2: Mθ(n,m) and entropy values corresponding to the optimal monotonic and to the rectangular grid design, IMSPE of
the optimal regular grid design, together with values of optimality criteria for measurements given in Bonard et al. [9, Table
1].

[223, 420]× [0.84, 43.51]. Table 1 gives the optimal values of Mθ(64) on monotonic sets, Mθ(8, 8) values for
regular designs and the relative efficiencies of the optimal Mθ(64) values on monotonic sets for different
combinations of parameters (α, β). Observe, that for α = 0.1, β = 1 the optimal monotonic design gives
much lower values of Fisher information on θ than the regular grid, while for the other combinations of
parameters the relative efficiency is slightly below 100%. For the entropy criterion we obtain the same
results. In Figure 4 the optimal value of Fisher information on θ is plotted as a function of correlation
parameters (α, β) for n = 8 and m = 8.

4.2. Comparisons of designs for the rate of methane reactions with OH

The growth rate of tropospheric methane is determined by the balance between surface emissions and
photo-chemical destruction by the hydroxyl radical OH, the major atmospheric oxidant. Such reaction can
happen at various temperature modes, for instance, Bonard et al. [9] measured the rate constants of the
reactions of OH radicals with methane in the temperature range 295− 618K.

Tables 2–5 provide efficiency of original designs of [9] together with efficiencies of monotonic and regular
grid designs 3 × 3, 2 × 5, 5 × 2, 3 × 4, 4 × 3, 3 × 2 and 2 × 3, respectively. Tables 2–5 utilize the setups
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α=0.001, β=0.01 α=0.1, β=0.01 α=0.1, β=1 α=1, β=1 α=1, β=10
Bonard et al. [9] 1.1853 6.9087 7.0855 8.7813 9.2477

D − opt. mon., n = 10 1.1858 9.5186 9.7151 10.0000 10.0000
2× 5 r.grid 1.1884 2.0487 6.3460 6.3460 9.9999
5× 2 r.grid 1.1897 5.1192 9.9189 9.9239 10.0000

Bonard et al. [9] -0.8169 11.9268 12.5103 14.0660 14.1336
Ent. mon., n = 10 2.7830 14.1860 14.1882 14.1894 14.1894

2× 5 r.grid -2.5767 -0.7201 13.8227 13.8227 14.1894
5× 2 r.grid 0.6346 8.2463 14.1892 14.1892 14.1894

Bonard et al. [9] 71.7031 1387 1700.6 1714.8 1742
IMSPE 2× 5 r.grid 174.02 2221 1769 1815.7 1729.6

5× 2 r.grid 67.17 1574.8 1664.2 1724.8 1729.6

Table 3: Mθ(n,m) and entropy values corresponding to the optimal monotonic and to the rectangular grid design, IMSPE of
the optimal regular grid design, together with values of optimality criteria for measurements given in Bonard et al. [9, Table
2].

α=0.001, β=0.01 α=0.1, β=0.01 α=0.1, β=1 α=1, β=1 α=1, β=10
Bonard et al. [9] 1.1816 6.7348 6.9218 7.6265 9.0242

D − opt. mon., n = 12 1.1818 10.8570 11.2215 12.0000 12.0000
3× 4 r.grid 1.1850 3.0669 8.6804 8.6804 12.0000
4× 3 r.grid 1.1852 4.0890 10.4462 10.4466 12.0000

Bonard et al. [9] -5.7821 3.0845 12.3312 12.9532 16.4642
Ent. mon., n = 12 1.9060 17.0107 17.0199 17.0273 17.0273

3× 4 r.grid -4.0505 1.1408 16.7911 16.7911 17.0273
4× 3 r.grid -2.9378 4.4983 16.9807 16.9807 17.0273

Bonard et al. [9] 61.60 1266.5 1535.5 1599.7 1579.2
IMSPE 3× 4 r.grid 82.20 1710.6 1508.8 1578.9 1540.4

4× 3 r.grid 60.63 1539.7 1471.9 1550.2 1540.7

Table 4: Mθ(n,m) and entropy values corresponding to the optimal monotonic and to the rectangular grid design, IMSPE of
the optimal regular grid design, together with values of optimality criteria for measurements given in Bonard et al. [9, Table
3].

α=0.001, β=0.01 α=0.1, β=0.01 α=0.1, β=1 α=1, β=1 α=1, β=10
Bonard et al. [9], n = 7 1.0057 1.1531 1.5630 2.2240 4.5042
Bonard et al. [9], n = 6 1.0057 1.1531 1.5630 2.2240 4.4850

D − opt. mon.,n = 7 1.0057 1.1542 1.5683 2.8570 5.4387
mon.,n = 6 1.0057 1.1542 1.5675 2.8309 5.0721
2× 3 r.grid 1.0057 1.1537 1.6244 2.6938 5.6029
3× 2 r.grid 1.0057 1.1545 1.6061 3.1714 4.5396

Bonard et al. [9], n = 7 -8.3075 -6.4357 4.9754 5.1821 8.9398
Bonard et al. [9], n = 6 -5.4333 -3.5616 5.5473 5.7539 8.3806

Ent. mon., n = 7 -6.7914 2.9548 6.4778 8.9552 9.8647
mon., n = 6 -4.9681 3.1294 6.0021 7.9077 8.4873
2× 3 r.grid -8.7323 -2.2476 6.1896 7.3797 8.5095
3× 2 r.grid -9.2498 -0.3290 5.5038 8.1021 8.4115

Bonard et al. [9] 0.006 0.2562 0.5962 2.2074 2.6327
IMSPE 2× 3 r.grid 0.006 0.2538 0.5654 1.9861 2.5682

3× 2 r.grid 0.0083 0.1325 0.7726 1.5183 2.7306

Table 5: Mθ(n,m) and entropy values corresponding to the optimal monotonic and to the rectangular grid design, IMSPE of
the optimal regular grid design, together with values of optimality criteria for measurements given in Bonard et al. [9, Table
4].

described in Tables 1–4 of [9]. These results show that in most of the situations monotonic and regular grid
designs outperform the original designs.

Dunlop and Tully [10] measured absolute rate coefficients for the reactions of OH radical with CH4 (k1)
and perdeuterated methane d4 (k2.) Authors characterized k1 and k2 over the temperature range 293−800K.
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α=0.001, β=0.01 α=0.1, β=0.01 α=0.1, β=1 α=1, β=1 α=1, β=10
Dunlop and Tully [10] 4.5728 9.4857 9.9959 10.0000 10.0000

D − opt. mon., n = 10 4.7604 9.9721 10.0000 10.0000 10.0000
2× 5 r.grid 4.9144 7.8743 10.0000 10.0000 10.0000
5× 2 r.grid 2.5049 9.9944 9.9999 10.0000 10.0000

Dunlop and Tully [10] 12.2328 14.1366 14.1894 14.1894 14.1894
Ent. mon., n = 10 13.3584 14.1894 14.1894 14.1894 14.1894

2× 5 r.grid 12.9678 14.0944 14.1894 14.1894 14.1894
5× 2 r.grid 8.2035 14.1894 14.1894 14.1894 14.1894

Dunlop and Tully [10] 1.9903× 105 4.0788× 105 4.1836× 105 4.1848× 105 4.1849× 105

IMSPE 2× 5 r.grid 2.3148× 105 4.2273× 105 4.1842× 105 4.1848× 105 4.1849× 105

5× 2 r.grid 4.2333× 105 4.1171× 105 4.1842× 105 4.1848× 105 4.1849× 105

Table 6: Mθ(n,m) and entropy values corresponding to the optimal monotonic and to the rectangular grid design, IMSPE of
the optimal regular grid design, together with values of optimality criteria for k1 measurements given in Dunlop and Tully [10,
Table 1].

α=0.001, β=0.01 α=0.1, β=0.01 α=0.1, β=1 α=1, β=1 α=1, β=10
Dunlop and Tully [10] 3.0778 11.7720 11.9798 12.0000 12.0000

D − opt. mon., n = 12 3.1465 11.8465 12.0000 12.0000 12.0000
3× 4 r.grid 3.3749 8.0858 12.0000 12.0000 12.0000
4× 3 r.grid 3.1184 9.9557 12.0000 12.0000 12.0000

Dunlop and Tully [10] 11.2608 17.0260 17.0272 17.0273 17.0273
Ent. mon., n = 12 13.7036 17.0270 17.0273 17.0273 17.0273

3× 4 r.grid 12.9774 16.6656 17.0273 17.0273 17.0273
4× 3 r.grid 11.3202 16.9405 17.0273 17.0273 17.0273

Dunlop and Tully [10] 1.9924× 105 1.9924× 105 2.1087× 105 2.1099× 105 2.1100× 105

IMSPE 3× 4 r.grid 8.6341× 104 2.1154× 105 2.1097× 105 2.1100× 105 2.1101× 105

4× 3 r.grid 1.1094× 105 2.0596× 105 2.1091× 105 2.1100× 105 2.1101× 105

Table 7: Mθ(n,m) and entropy values corresponding to the optimal monotonic and to the rectangular grid design, IMSPE of
the optimal regular grid design, together with values of optimality criterion for k2 measurements given in Dunlop and Tully
[10, Table 2].

Finally, they found an excellent agreement of their results with determinations of k1 at lower temperatures
of [32]. Now, let us consider rates k1 and k2 of Table 1 of [10]. We obtain the following comparisons (Table
6–7) of efficiencies of the monotonic and 2 × 5 and 5 × 2 regular grid designs with the original designs of
[10]. As we can see, in most of the cases, the monotonic and regular grid designs are more efficient than
the original one. This is in line with the fact that monotonic designs are natural for modelling temperature
non-reversibility in short time intervals. Several implementations of Latin Hypercube designs can be an
alternative to regular grid designs, however, they do not reflect non-reversibility of chemical processes and
for small design sizes are outperformed by monotonic grid designs (see [8]).

5. Conclusions

Both Kyoto protocol [19] and recent Scandinavian and Polish summits in 2013 pointed out necessity
to develop precise statistical modelling of climate change. This, in particular should be addressed by
developing of optimal, or at least benchmarking designs for complex climatic models. The current work
aims to contribute here for the case of methane modelling in troposphere, lowest part of atmosphere. As can
be well seen in the paper, optimal designs for univariate case (OU process, see [27]) and planar OU sheets
differ. Obviously, planar OU sheet is much more precise, since it allows variability both in temperature (main
chemically understood driver of chemical kinetics) and in a second variable, which can be either atmospheric
pressure or any other relevant quantity. Temperature itself is also regressor, i.e., variable entering into trend
parameter k1. One valuable further research direction, enabled by the second variable “s” will be direct
modelling of reaction kinetics. The optimal design for spatial process of methane flux can be helpful for

14



better understanding the emerging issues of paleoclimatology [22], which in major part relates to large
variability.
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