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ABSTRACT 

The major reservoir of human multipotent mesenchymal stem/stromal cells (MSC) is the bone 

marrow (BM) with the capability to control hematopoietic stem cell (HSC) development. The 

regenerative potential of MSC is associated with enhanced endogenous repair and healing 

mechanisms that modulate inflammatory responses. Our previous results revealed that MSC-

like (MSCl) cells derived from pluripotent human embryonic stem cells resemble BM-derived 

MSC in morphology, phenotype and differentiating potential. Here we investigated the effects 

of MSCl cells on the phenotype and functions of dendritic cells (DC). To assess how anti-

viral immune responses could be regulated by intracellular pattern recognition receptors 

(PRR) of DC in the presence of MSCl cells we activated DC with the specific ligands of 

retinoic acid-inducible gene I (RIG-I) helicases and found that activated DC co-cultured with 

MSCl cells exhibited reduced expression of CD1a and CD83 cell surface molecules serving as 

phenotypic indicators of DC differentiation and activation, respectively. However, RIG-I-

mediated stimulation of DC via specific ligands in the presence of MSCl cells resulted in 

significantly higher expression of the co-stimulatory molecules CD80 and CD86 than in the 

presence of BM-MSC. In line with these results the concentration of IL-6, IL-10 and CXCL8 

was increased in the supernatant of the DC-MSCl co-cultures, while the secretion of TNF-α, 

CXCL10, IL-12 and IFNγ was reduced. Furthermore, the concerted action of mechanisms 

involved in the regulation of DC migration resulted in the blockade of cell migration 

indicating altered DC functionality mediated by MSCl cell-derived signals and mechanisms 

resulting in a suppressive microenvironment. 
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INTRODUCTION 

 

Mesenchymal stromal cells (MSC) developing from multipotent hematopoietic stem cells 

(HSC) are preferentially localized to the bone marrow [1], but can also be obtained from 

umbilical cord, adipose tissue, placenta, muscle, vein wall, peripheral blood [2] and  corneal 

stroma[3]. The main functions of MSC involve the maintenance of the bone marrow niche via 

inhibiting the differentiation of HSC through direct cell-to-cell contacts [4] and the release of 

galectin-1, angiopoetin-1, osteopontin, thrombospondin-1 and 2 together with other factors to 

support tissue repair through regulating cell differentiation and immunomodulation [5]. Based 

on their wide spread physiological functions MSC were also considered in tissue engineering 

and the first successful therapy based on the intravenous infusion of haplo-identical MSC for 

treating graft vs host disease was published in 2004 [6-8]. The inhibitory effects of MSC on 

DC functional activities and antigen-specific T- and B-lymphocyte expansion through 

blocking G0/G1 transition to the S phase were also reported [9-12]. Recently, different 

approaches have been developed for using MSC in clinical trials [13] 

(www.clinicaltrials.gov). However, the establishment and the production of reproducible, 

stable and well characterized human MSC has remained a challenge hampered by the 

heterogeneity of tissue-derived MSC [14]. Other studies focused to the phenotypic and 

functional characterization of MSC-like cell lines derived from different human tissues [15] 

and to confirm pluripotency of human ES cell-derived MSC by generating un-limited 

numbers of early passage MSC of consistent quality and immune suppressive properties [16]. 

In the present study we used a previously characterized human MSCl cell line generated from 

pluripotent HUES9 embryonic stem cells. The phenotype, morphology and functional 

attributes of these cells have previously been described [17,18] and its stability up to 15 

passages has been verified. They expressed the typical cell surface markers of MSC including 

http://www.clinicaltrials.gov/
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CD44, CD73, CD90, CD105, but were negative for the hematopoietic markers CD34, CD14, 

CD133, CD45 and the embryonic markers Oct4, Nanog, ABCG2, PODXL and SSEA4. They 

were able to differentiate to osteogenic, chondrogenic and adipogenic cell lineages with 

similar potency as BM-derived MSC [17]. MSCl cells also had the capability to support the 

growth of undifferentiated human ESC via acting as feeder layer considered as an important 

MSC-associated property. Cells with potent self renewing capacity were also used as an in 

vitro model of human MSC to obtain high numbers of well characterized cells and for 

analyzing the immune suppressive potential and the mode of action in human primary 

monocyte-derived DC with both inflammatory and tolerogenic potential [19].  

MSC are known to modulate immune responses via acting on multiple cell types such as DC, 

natural killer cells (NK), T- and B-lymphocytes [8,20] and were shown to suppress the 

differentiation, activation, migration and antigen presenting functions of conventional DC 

[20], a cell population essential for linking innate and adaptive immune mechanisms through 

presenting antigenic peptides to naive T-lymphocytes. This series of events can induce cell 

expansion and polarization of effector T-lymphocytes to Th1, Th2, Th17 and Treg directions 

[21]. It has also been demonstrated that BM-derived MSC can shift the differentiation of 

naive CD4+ T-cells to an anti-inflammatory Th2 direction [22] underpinning the relevance of 

this type of regulation for utilization in clinical settings, exemplified by bone marrow 

transplantation, contact allergy and autoimmune disorders [23]. Conventional DC 

continuously binding and internalizing antigens use a wide spectrum of pattern recognition 

receptors (PRR). Upon sensing endogenous and exogenous danger signals DC become 

activated and migrate into the draining lymph nodes where they present their antigenic cargo 

to naïve T-lymphocytes. Retinoic acid-inducible gene I (RIG-I) and melanoma differentiation-

associated protein 5 (MDA5) are cytoplasmic PRR expressed by a wide array of cell types 

and play essential roles in recognizing and eliminating viruses. DC activated by the specific 
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ligands (ssRNA, dsRNA or DNA) of the RIG-I receptors results in the secretion of pro-

inflammatory cytokines and chemokines [24]. RIG-I is also expressed and is functional in 

MSC and has an important role in supporting cell survival indicating its possible contribution 

to the regulation of MSC functional activities [25]. Human MSC express several TLR, which 

are involved in the regulation of cell migration and the production of immune modulatory 

factors. The functional properties of human MSC was suggested to depend on the type of 

TLR as TLR4-primed MSC gave rise to inflammatory MSC1, while TLR3-induced MSC to 

suppressive MSC2 cell populations [26]. 

Encounter of conventional DC with naïve T-lymphocytes depends on the timely migration of 

activated DC to the draining lymph nodes [27,28] driven by the CCR7 chemokine receptor 

expressed by stimulated DC, as well as by the expression of the CCR7 chemokine receptor 

ligands CCL19 and/or CCL21 [28]. This receptor-ligand interaction up-regulates the 

expression of matrix metalloproteinases (MMP), responsible for the degradation and 

remodelling of the extracellular matrix upon cell migration [29], while the proteolytic activity 

of MMP is regulated by the tissue inhibitors of MMP enzymes (TIMP). Maintaining the 

balance between these opposing activities MMP and TIMP are crucial for preventing 

uncontrolled enzymatic degradation of the extracellular matrix known to contribute to the 

initiation of inflammation, autoimmune disorders and cancer metastasis [30].  

In a previous work we have characterized the expression patterns of MMP enzymes and 

TIMP inhibitors in monocytes and monocyte-derived DC subpopulations [31] and discovered 

that the chemokine driven migration of activated DC is regulated by the expression of the 

voltage gated sodium channel Nav1.7 [32]. Based on these findings in this study we aimed to 

investigate the effects of MSCl cells on DC activation triggered by ligand-specific RIG-I 

stimulation. Our results demonstrated for the first time that MSCl cells are able to modify the 

activation status of DC, the secretion level of cytokines and chemokines as well as the 
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outcome of DC-mediated T-cell polarization suggesting its profound impact on the outcome 

of DC functionality. We also propose that MSCl cells could be used as a feasible model for 

human in vitro studies by offering means for developing novel MSC-based strategies to 

design directed immune suppressive cellular therapies.  

 

MATERIALS AND METHODS 

Generation of monocyte-derived dendritic cells 

Monocytes were separated from peripheral blood mononuclear cells (PBMC) of healthy blood 

donors drawn at the Regional Blood Center of the Hungarian National Blood Transfusion 

Service in accordance with the written approval of the Director of the National Blood 

Transfusion Service according to the directives of the European Union. PBMC were separated 

by Ficoll Pacque Plus (GE Healthcare Bio-Sciences AB, Uppsala, Sweden) gradient 

centrifugation followed by positive selection of CD14+ monocytes by using anti-CD14 coated 

magnetic beads (Miltenyi Biotec, Bergisch Gladbach, Germany). Monocytes were plated at 

2x106 cell/ml concentration in RPMI (Hyclone, South Logan, Utah) supplemented by10% 

FCS (Gibco, Paisley, Scotland) and 1% antibiotic/antimycotic solution (Hyclone, South 

Logan, Utah) in the presence of 100 ng/ml IL-4 and 75 ng/ml GM-CSF (Peprotech EC, 

London, UK) added on days 0 and 2. 

 

Generation of mesenchymal stromal cell-like cells  

Mesenchymal stromal cell-like cells derived from the human embryonic stem cell lines 

HUES9 and HUES1 were kindly provided by Douglas Melton, HHMI. MSCl cells were used 

according to the ethical permission 6681/2012/EHR. The cells were cultured on mitotically 

inactivated mouse embryonic fibroblast (MEF) to form embryonic  bodies (EB) followed by 

trypsinization to obtain single cell cultures, which were further cultured on gelatin covered 10 
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cm plates in DMEM containing 10% FBS [18]. Cells of the confluent cultures exhibited 

fibroblast like morphology and were further characterized in a collaborative study with the 

laboratory of Balázs Sarkadi, Membrane Research Group of the Hungarian Academy of 

Sciences, Semmelweis University and National Blood Service, Budapest, Hungary [17]. 

MSCl cell passages in opto-mechanical-treated polystyrene flasks (TPP, Trasadingen, 

Switzerland) provided coherent cell layers in the presence of L-glutamine, 10% FCS and 1% 

anti-mycoticum/anti-bioticum solution (Hyclone, South Logan, Utah) in low glucose DMEM. 

(Hyclone, South Logan, Utah). The cultured MSCl cells were used after 10 passages. 

 

Co-cultures of DC and MSCl cells 

MSCl cells were collected by using 0.05 –0.02% Trypsin/EDTA solution in Dulbecco’s PBS 

(DPBS), washed and cultured at a cell density of 4x105 cells in opto-mechanical treated six 

well plates for optimal cell growth on a 8.9 cm2/well area (TPP, Trasadingen, Switzerland). 

To achieve confluent cell layers the MSCl cells were cultured in 2.5 ml RPMI supplemented 

with 10% FCS containing 1% antimycotic/antibiotic solution (Hyclone, South Logan, Utah) 

for minimum 6 hours. 2x106 freshly isolated monocytes were placed directly on the top of the 

adherent MSCl cells and the co-cultured DC were differentiated in the presence of GM-CSF 

and IL-4 at the same concentration as used for DC differentiation. 

 

Activation of DC by inflammatory stimuli  

On day 5 of in vitro DC differentiation the cells were activated by different inflammatory 

stimuli in the presence or absence of MSCl cells. These involved inflammatory cocktail 

containing 10 ng/ml TNF-α, 5 ng/ml IL-1β, 75 ng/ml GM-CSF, 20 ng/ml IL-6 and 1 g/ml 

PGE2 (Peprotech EC, London, UK), the RIG-I ligand poly(I:C) used at 25 g/ml, or with 1 

g/ml 5’ppp-dsRNA introduced by the Lyovec transfection reagent (Invivogen, San Diego, 
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CA, USA). 24h after activation DC expressing CD209/DC-SIGN on the cell surface were 

separated by magnetic beads (Miltenyi Biotec). 

 

Phenotypic characterization of DC differentiated in the presence or absence of MSCl cells 

The phenotypic characterization of resting and activated DC was performed by flow 

cytomerty on day 6 of in vitro cell differentiation and was compared to cells co-cultured with 

MSCl cells (BD Biosciences, Franklin Lakes, NJ, USA), and the data were analyzed by the 

FlowJo software (Tree Star, Ashland, OR, USA). MSCl cells were identified by the 

expression of CD105, whereas DC were captured by CD209/DC-SIGN (BioLegend, San 

Diego, CA, USA). To measure changes in the expression levels of the CD80, CD83, CD86 

and CD1a cell surface markers fluorochrome-labeled antibodies were used along with the 

respective isotype matched control antibodies (BD Pharmingen, San Diego, CA, USA). 

 

RNA isolation, cDNA synthesis and quantitative RT-PCR 

Total RNA was isolated by using TRIzol reagent (MRC, Cincinnati, OH USA). 2 μg of RNA 

was reverse-transcribed at 37°C for 120 minutes using the High Capacity cDNA Archive Kit 

(Appied Biosystems, Foster City, CA) and oligo-(dT) primers (Promega, Madison, WI, USA). 

Quantitative real-time PCR was performed by using gene-specific TaqMan assays (Applied 

Biosystems, Foster City, CA, USA), DreamTaq DNA polymerase (Fermentas St. Leon-Rot, 

Germany) in a final volume of 12.5 μl and in ABI StepOnePlus real-time PCR instrument 

(Applied Biosystems). The housekeeping gene h36B4 was used for data normalization. Cycle 

thresholds were determined by using the StepOne Software v2.1 (Applied Biosystems). 

 

Cytokine measurements 
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Concentration of the pro-inflammatory cytokines IL-1β, TNF-α, IL-6, the chemokines 

CXCL8 and CXCL10, and that of the T-cell polarizing cytokines IL-12, IL-10 and IFNγ was 

measured in the supernatants of cell cultures by ELISA kits (BD Biosciences) following the 

manufacturer’s instructions. Optical densities were determined by microplate reader (Biotek, 

Winooski, VT, USA). 

 

ELISPOT assay 

Activated DC previously co-cultured or not with MSCl cells were cultured with allogeneic T-

cells in serum-free RPMI medium for 3 days at 37°C. The number of IFNγ secreting T-cells 

was detected by the avidin-HRP system (NatuTec, GmbH, Germany) and the results were 

analyzed by the ImmunoScan plate Reader (CTL, Shaker Heights OH, USA). 

Migration assays 

Migration of the differentiated DC co-cultured or not with MSCl cells was tested in a 

Transwell system of 6.5 mm diameter and 5μm pore size (Corning Inc., Glendale, Arizona, 

USA). DCs were co-cultured with MSCl cells for 6 days and were activated by PolyI:C or 

5’ppp-RNA for 24h followed by the separation of DCs from the MSCl cells by using 

CD209/DC-SIGN magnetic beads. 106 isolated DC were added to the upper chamber of the 

transwell plate and the migration of DC was measured in the presence or absence of 

200ng/ml CCL19 chemokine placed to the lower chamber. After 24h incubation at 37° the 

migrated cells from the lower chamber were collected and counted by flow cytometry using 

poly-styrene beads as controls (Fluka St. Gallen, Switzerland). 

 

Statistical analysis 
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Statistical analyses were performed by the one-way ANOVA with Bonferroni post-hoc test using the 

GraphPad Prism v.6 software (GraphPad Software Inc. La Jolla, CA, USA). Differences were 

considered to be statistically significant at *P < 0.05; **P < 0.01; ***P < 0.005. 

 

RESULTS 

 

MSCl cells inhibit the differentiation and activation of monocyte-derived dendritic cells 

Freshly isolated CD14+ monocytes were cultured in the presence of GM-CSF and IL-4 for 5 

days to generate competent DC used as control. Another fraction of DC was differentiated at 

similar conditions together with MSCl cells added at 5:1 monocyte to MSCl ratio present 

throughout the differentiation process. On day 5 both the control DC and the DC co-cultured 

with MSCl cells were activated with poly(I:C), 5’pppRNA or with an inflammatory cytokine 

cocktail containing GM-CSF, IL-1β, TNF-α, IL-6 and PGE2. On day 6 the activated DC were 

separated from the MSCl cells by the positive selection of CD209/DC-SIGN expressing cells 

and their proportion was measured in both the control and the MSCl-DC co-cultures. This 

procedure resulted in cell populations with >90+5% DC in both the in vitro differentiated and 

the MSCl co-cultured cells indicating complete DC differentiation in both cases (data not 

shown). Cell surface expression of the CD1a (Figure 1A) and CD83 (Figure 1B) membrane 

proteins, used as indicators of DC activation, showed significant decrease when the DC were 

co-cultured with MSCl cells irrespective of the mode of activation induced by poly(I:C), 

5’pppRNA or the inflammatory cocktail. Interestingly, stimulation of cells in the DC-MSCl 

co-cultures by the specific RIG-I ligand 5’pppRNA resulted in significant up-regulation of the 

co-stimulatory molecules CD80 (Figure 1C) and CD86 (Figure 1D) on the DC surface as 

compared to DC cultured without MSCl cells, whereas the presence of MSCl cells did not 

affect the expression levels of these markers in DC stimulated by the inflammatory cocktail or 
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by poly(I:C) (Figure 1 C, D). These results indicated the potential of MSCl cells to modulate 

DC activation and consequently its other functional activities.  

 

MSCl cells modulate the cytokine secretion of activated DC 

To further analyse the functional cross-talk of DC and MSCl cells the specific RIG-I ligands 

poly(I:C) and 5’pppRNA were added to the DC-MSCl co-cultures and the secretion levels of 

the pro-inflammatory cytokines IL-6 and TNF-α, the chemokines CXCL8 and CXCL10, as 

well as the T-lymphocyte polarizing cytokines IL-12 and IL-10 were measured in the 

supernatants of the activated DC, MSCl cells and DC-MSCl co-cultures. We found that both 

RIG-I ligands could up-regulate the secretion of IL-6 (Figure 2A), CXCL8 (Figure 2C) and 

IL-10 (Figure 2E) in the DC-MSCl co-cultures as compared to activated DC and MSCl cells 

cultured separately. Although IL-10 was present in the supernatants of both resting and 

activated DC at low but measurable levels, we could not detect IL-10 in the supernatants of 

activated MSCl cells (Figure 2E). However, the enhanced level of IL-10 in the supernatant of 

the co-cultured and stimulated cells suggest that IL-10 could contribute to the anti-

inflammatory effects of MSCl cells presumably via inhibiting the secretion of pro-

inflammatory cytokines.  

Our results also revealed that the concomitant secretion of TNF-α (Figure 2B) and CXCL10 

(Figure 2D) did not induce a synergistic inflammatory effect but could efficiently be inhibited 

by MSCl cells indicating their potent anti-inflammatory activity. In this experimental system 

the production of IL-12, a key Th1 polarizing cytokine was also dramatically decreased in the 

presence of MSCl cells (Figure 2F) likely owing to its potential to induce clonal expansion 

and differentiation of IFNγ-producing CD4+ T-lymphocytes. Moreover, IL-12 was able to 

stimulate the production of other inflammatory cytokines such as TNF-α, IFNγ and the 

interferon-induced chemokine CXCL10 to multiply the inflammatory response.  
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In line with these results the production of IL-6 (Figure 2A) and CXCL8 (Figure 2C), both 

acting as important mediators of tissue repair and angiogenesis, were detected in the 

supernatants of DC co-cultured with MSCl cells at increased levels suggesting that they may 

contribute to create a local anti-inflammatory milieu in response to inflammatory signals. 

These observations also imply that beside direct cell-to-cell contacts cytokines and 

chemokines could also contribute to the regulatory functions of MSCl cells. 

 

MSCl cells interfere with dendritic cell-mediated allogeneic T-lymphocyte activation and 

polarization  

To further analyse the outcome of DC-mediated functional activities in the presence of MSCl 

cells we sought to measure the secretion of IFNγ directly by ELISA and also as a result of 

DC-mediated allogeneic T-lymphocyte polarization by using ELISPOT assays. Our results 

demonstrated that IFNγ secretion of DC could be induced by both poly(I:C) and 5’pppRNA, 

however the presence of MSCl cells decreased its secretion significantly (Figure 3A). The 

potential of poly(I:C) or 5’pppRNA-stimulated DC to drive allogeneic T-lymphocyte 

polarization confirmed that MSCl cells are able to interfere with this translational event 

through exerting potent anti-inflammatory effects on DC activation (Figure 3B). These 

results altogether demonstrate that DC, upon interacting with MSCl cells, can create an anti-

inflammatory local environment. 

 

The effect of MSCl cells on DC migration 

Previous results demonstrated that efficient presentation of peptide antigens to naive T-

lymphocytes critically depends on the migration of tissue resident DC to the draining lymph 

nodes [33-35]. As a novel finding our previous studies demonstrated that the low expression 

level of the Nav1.7 ion channel, in combination with the high expression of CCR7, is the pre-
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requisite of DC migration from the site of inflammation to the lymph nodes [32]. Based on 

this information we used a transwell system to study the effects of MSCl cells on the 

migratory potential of DC in the presence or absence of MSCl cells. In this experimental 

setting the upper chamber contained resting DC or DC stimulated either with poly(I:C) or the 

inflammatory cytokine cocktail in the presence or absence of MSCl cells. The lower chamber 

was filled with fresh medium containing 0.5% BSA and the chemokine CCL19/MIP-3β, a 

strong inducer of activated DC migration guided by the membrane bound chemokine receptor 

CCR7. The upper and lower chambers were connected by a membrane of 5 μm pore size to 

allow chemokine driven migration of DC towards CCL19 gradients. The migrated cells were 

collected from the lower chamber and after 24h the number of migrating cells was counted by 

flow cytometry. In correlation with the level of CCR7 chemokine expression in the presence 

of MSCl cells a statistically significant decrease in the number of migratory cells was 

observed (Figure 4A, B). 

Considering that the expression of matrix metalloproteinase enzymes (MMP) and their 

specific inhibitors (TIMP) play important roles in regulating DC migration, we also assessed 

the contribution of these enzymes to the regulation of MSCl cell-mediated inhibitory 

functions. Expression of the MMP9, MMP12, TIMP1 and TIMP2 genes, which could be 

induced by the interaction of the CCR7 receptor with its specific ligand CCL19, was 

monitored in both resting and activated DC in the presence or absence of MSCl cells. We 

showed that the expression of MMP9 was up-regulated (Figure 4C), whereas that of MMP12 

was down regulated (Figure 4D). The relative gene expression levels of TIMP1 and TIMP2 

were higher in CD1a- DC than in its inflammatory CD1a+ counterpart [32] and could be 

associated with a DC phenotye similar to cells co-cultured with MSCl cells (Figure 4E, F).  

Another regulatory mechanism that might be involved in regulating MSCl cell-related 

functions could be associated with the activity of the Nav1.7 ion channel. We have previously 
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shown that functionally active Nav1.7 is predominantly expressed in resting DC but its 

expression is decreased in parallel with DC activation thus providing a sensitive tool for 

correlating the state of DC activation to Nav1.7 channel activity [32]. When the expression of 

Nav1.7 was measured in activated DC without MSCl cells, the level of Nav1.7 expression 

decreased, even when the cells were stimulated by the inflammatory cocktail or by poly (I:C), 

but it was increased in DC suppressed by MSCl cells (Figure 4G). These changes are in good 

accordance with the low/undetectable numbers of inflammatory CD1a+ DC detected in these 

cultures as compared to the tolerogenic CD1a- DC subset [36,37]. 

 

MSCl cells inhibit the expression of RIG-like receptor family members 

Our results summarized in Figure 1 and 2 show that MSCl cells are potent inhibitors of DC 

functionality induced by the specific ligands poly(I:C) and 5’pppRNA of the cytosolic RIG-

like receptors RIG-I, MDA5 and LGP-2 recognizing dsRNA, ssRNA or DNA [24]. Taking a 

step further we hypothesized that co-culturing DC with MSCl cells might have a direct 

inhibitory effect on the expression of intracellular RIG-I receptors. Indeed, our Q-PCR results 

revealed that mRNA expression of the RIG-I, MDA-5 and LGP-2 receptors belonging to the 

RLR family of cytosolic pattern recognition receptors is up-regulated upon stimulation by 

specific ligands but in the presence of MSCl cells this induction does not occur likely due to 

the inhibited expression of these receptors (Figure 5A-C) accompanied by the decreased 

production of IFNβ (Figure 5D). Based on these data we conclude that in the presence of 

MSCl cells the specific ligands of RIG-I could not be recognized by DC due to the down 

modulation of RLR receptor expression by MSCl cells.  

 

DISCUSSION 
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The unique capability of MSC of different origin is to modulate the outcome of allogeneic 

bone marrow transplantation that has been pioneered by Le Blanc and her group in humans 

and was confirmed in several mice models [9,38]. These results also revealed the potential of 

MSC to exert multiple effects on other cell types through regulatory, anti-inflammatory and 

by stander effects and via targeting injured tissues as described in several diseases, such as 

grade IV severe acute graft versus host disease (GVHD) of the gut and liver [6] and steroid 

resistant severe acute GVHD [39]. The utility of MSC also involves the prevention of 

transplanted skin graft rejection [40], treatment of osteogenesis imperfecta by mismatched 

allogeneic liver-derived MSC in immune competent fetus [41], autoimmune 

encephalomyelitis [42], diabetes mellitus [43] and collagen-induced arthritis [44]. Further 

studies also demonstrated that the anti-inflammatory cytokine environment created by the 

transplanted MSC at the site of inflammation was able to improve the outcome of acute renal, 

neural and lung injury [42,45,46]. Thus in the past years MSC became clinically important 

cell types due to their regenerative potential that can be utilized in cell therapies aimed to treat 

inflammatory and autoimmune disorders or apply them for tissue engineering. This approach 

is also supported by the unique capability of MSC to bypass MHC compatibility for inducing 

immune suppression [47]. It is well established that MSCl cells can be stimulated by TLRs 

[26] and upon stimulation they migrate to damaged tissues driven by cytokines, chemokines 

and secreted extracellular matrix (ECM) proteins [48]. Beside the secretion of soluble factors 

the direct contact of MSC with immune cells seems to be essential for creating a supportive 

local milieu [49]. However, application of these cells for therapeutic interventions is limited 

due to the low number of MSC available. To overcome this restriction several groups 

explored new strategies for identifying cell lines with immune suppressive properties [50]. In 

a previous collaborative study we described the phenotypic, some functional as well as the 

differentiating capability of a cell line of embryonic origin with MSC-like phenotype and 
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compared its functional activities with BM-MSC and a human foreskin fibroblast cell line 

(HFF) [17]. This analysis demonstrated similar morphology, phenotype and functional 

attributes resembling BM-derived MSC and offered us to exploit the further functional 

characterization of these cells in terms of their immune suppressive potential. The present 

study provided evidence for the potent immune suppressive nature of the MSCl cell line 

characterized by its profound effects on multiple functional properties of resting and activated 

monocyte-derived DC. In a recent report the immune suppressive effects of human ESC-

derived MA07 cells on CD83 expression and IL-12p70 secretion by IFNγ and LPS activated 

DC was observed that was associated with enhanced IL-2 induced expansion of regulatory T-

cells [16].  

Our results performed with human primary monocyte-derived DC also revealed that MSCl 

cells could affect the maturation, activation and a wide array of functional activities in a 

similar manner as human BM-MSC. As a consequence, the phenotype of DC was modified in 

the presence of MSCl cells resulting in decreased expression of the CD1a and CD83 

activation markers on the surface of activated DC induced by an inflammatory cytokine 

cocktail or by specific ligands of the RIG-I receptors. A similar effect was described in LPS-

induced activation of mice in the presence of BM-MSCs [51] and TNF-α induced stimulation 

of umbilical cord blood or bone marrow derived MSC [52]. In contrast, the expression of the 

CD80 and CD86 co-stimulatory molecules was up-regulated in the human DC-MSC co-

cultures, while in mice the expression of these molecules was decreased in the presence of 

both murine and human BM-MSC [53,54] indicating species related differences in the 

inhibitory function of MSC. 

The secretion of CXCL8 and IL-6 by MSC1 and CXCL10 by MSC2 cells suggested the 

induction of different cytokine combinations induced by these MSC subsets [26] similar to 

our results showing increased secretion of IL-6, CXCL8 and CXC10 by MSCl cells activated 
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by poly(I:C). However, no detectable changes could be observed when the RIG-I specific 

5’pppRNA ligand was used for DC activation. In contrast, the activation of co-cultured DC 

and MSC resulted in dramatic changes in the secretion of cytokines and chemokines. Even 

though changes in cytokine secretion by DC have been demonstrated in the presence of MSC 

of various origins the mechanistic background of this regulation has not been explored.      

It was also shown that MSC, isolated from mouse embryonic fibroblasts could induce the 

generation of IL-10 dependent regulatory DC via SOCS3 activation leading to increased 

secretion of anti-inflammatory IL-10 [55]. The cytokines IL-6 and CXCL8 have been 

considered as important mediators of tissue repair and angiogenesis. In LPS stimulated DC 

the presence of MSC increased the secretion of IL-6 and CXCL8 [56,57] and in response to 

poly(I:C) or 5’pppRNA the increased secretion of IL-6, IL-10 and CXCL8 was also detected 

opposing the significantly decreased levels of IL-12 and TNF-α in the supernatant of the DC-

MSCl co-cultures. These results suggest that the contact and/or the communication of cells 

and soluble factors may trigger anti-inflammatory and/or healing mechanisms that shift the 

balance of the immune response to tissue regeneration and changes in cytokine and 

chemokine secretion.  

The CCL19 chemokine is expressed in the thymus and lymph nodes and its secretion is 

essential for the migration of CCR7high DC to the draining lymph nodes where they interact 

with naive T-lymphocytes [33]. However, the expression of CCR7 and the migration of DC 

derived from the DC-MSCl co-cultures exhibited significantly decreased migration as 

compared to DC cultured in the absence of MSCl cells. One of the mechanisms involved in 

this complex regulation was discovered recently [32] showing the contribution of the voltage 

gated membrane channel Nav1.7, which regulates intracellular Ca2+ concentration in DC and 

also acts as a master regulator of the cell cycle. High intracellular Ca2+ concentration was 

shown to be essential for DC activation and was associated with down regulated Nav1.7 
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expression. As anticipated, the expression of the voltage gated sodium channel Nav1.7 was 

also dramatically down modulated and could be used as a sensitive indicator of the DC 

activation state [32]. On the contrary, Nav1.7 expression was maintained in the presence of 

MSCl cells, which may indicate either dysregulation of the Ca2+ signal accompanying DC 

activation or an alternative pathway for the regulation of Nav1.7 expression. Either 

way, MSCl cells interfere with DC activation thereby identifying this sodium channel as a 

novel marker of suppressed DC. Overall, these data indicate that in the presence of MSCl 

cells the generation of DC results in ’semi-activated’, Nav1.7high and CCR7low cells, which 

express high amounts of active MMP9 enzyme and also TIMP with inhibitory potential to 

induce dramatically reduced migratory potential of DCs. 

Up-regulation of CXCL8 chemokine was shown to support the expression of MMP-2 and 

MMP-9 in trophoblast cells [58]. The balance of MMP and TIMP is also known to have an 

impact on cell migration, homeostasis, survival and other functional activities of immune cells 

via regulating the cleavage of extracellular matrix components (ECM) to generate soluble 

cytokines, chemokines and growth factors together with their matching receptors [59]. 

Considering that the regulation of the MMP-TIMP axis is also involved in the triggering of 

signal transduction pathways connected to DC functions, we provoked DC migration with an 

inflammatory cocktail or with poly(I:C) and could increase the expression level of MMP-9 

and MMP-12 in DC accompanied by decreased TIMP-1 and TIMP-2 expression showing a 

tight control of the inflammatory response [31]. However, in the presence of MSCl cells, the 

expression level of TIMP was dramatically up-regulated and resulted in inhibited DC 

migration via blocking ECM degradation. More importantly, these effects could also modify 

the regulatory capacity of MMP by the secretion and proteolytic cleavage of cytokines and 

chemokines. Based on these results we conclude that MSCl cells are able to modulate the 

expression of key molecules involved in DC migration. Moreover, the presence of MSCl cells 
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may also have an impact on the level and activity of secreted cytokines and chemokines, and 

can affect the expression of their receptors for fine tuning DC activities in the actual 

inflammatory environment.  

In vivo studies have revealed the inhibition of antigen-specific effector T-cell functions in the 

course of mouse allograft rejection [40], in graft versus host disease [60], autoimmune 

encephalomyelitis [42] and collagen induced arthritis [44]. In a murine model DC conditioned 

by allogeneic MSC could inhibit MHC class I and II expression and antigen presentation by 

DC while decreased CD69 expression on CD8+ T-cells. In a human system, the presence of 

activated DC co-cultured with BM-MSC was shown to decrease the secretion of IFNγ by T- 

cells [61]. In the present study, the inhibited secretion of IFNγ could be detected by a 

sensitive ELISPOT assay. In this experimental setting human allogeneic T-lymphocytes, 

primed by activated DC and co-cultured with MSCl cells were able to down regulate T-cell 

polarization to the Th1 direction to a similar extent as DC co-cultured with BM-MSC. In our 

human in vitro studies MSC also could alter DC functions significantly, and together with our 

previous studies confirmed the potential of MSCl cells to exert inhibitory signals on antigen-

specific T-cell responses.  

In this contex however, the expression of RIG-like receptors has not been investigated. We 

hypothesized that the functional changes induced by the RLR ligand poly(I:C) are the 

consequence of decreased RLR expression. Our results indeed demonstrated that in the 

presence of MSCl cells the expression of RIG-I, MDA-5 and LGP-2 in DC was dramatically 

impaired. Referring to the previously described partially activated DC with tolerogenic and 

immune suppressive properties [62] MSCl cells may assist the maintenance of DC in a ’semi-

mature’ suppressive state [63]. Our results obtained in a human system suggest that MSCl 

cells with unlimited proliferating capacity could be harnessed as a reliable model for 

inhibiting DC activation by MSC-mediated immune suppression. 
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