
Recent Innovations in Mechatronics (RIiM) Vol. 2. (2015). No. 1-2.

DOI: 10.17667/riim.2015.1-2/6.

1

Industrial robotics for ERP controlled smart

factories

Ferenc Tajti

MTA-ELTE Comparative Ethology Research Group (MTA:

01 031), Dpt of Mechatronics Optics and Engineering

Informatics, Faculty of Mechanical Engineering

Budapest University of Technology and Economics

Budapest, Hungary

tajti@mogi.bme.hu

Géza Szayer

Department of Mechatronics Optics and Engineering

Informatics, Faculty of Mechanical Engineering, Budapest

University of Technology and Economics

Budapest, Hungary

Bence Kovács

Department of Mechatronics Optics and Engineering

Informatics, Faculty of Mechanical Engineering, Budapest

University of Technology and Economics

Budapest, Hungary

Péter Korondi

Department of Mechatronics Optics and Engineering

Informatics, Faculty of Mechanical Engineering, Budapest

University of Technology and Economics

3MTA- BME Control Engineering Research Group

Budapest, Hungary

Abstract—At product manufacturing the time-to-market

factor, the profitability and the delivered value define the success

of an enterprise. The increasing number of modules in Enterprise

Resource Planning (ERP) programs is a facing problem, when

there is a margin between the manufacturing cells and the ERP.

Nowadays, the connection between the industrial machines and

the ERP is an important requirement especially at automated

warehouses and smart factories. Other concerns at

manufacturing are the maintenance schedules of the machines,

and flexible and easy reconfiguration of the production lines or

the production cells. Information technology provides solutions

and software environments to implement complex production

supervisor ERPs at smart factories. At a production line or an

automated warehouse several technical parameters and

information can influence the planning of the resources at the

enterprise, like maintenance, machine error, stockpile, product

ID, defective product ratios, etc. When there is machine

maintenance, the company needs to order the service parts, as

well as schedule the service time and the stop of the production

line. In case of a machine error, the system can estimate the

length of the service time from error messages, and reorganize

orders, transportation, or even maintenance schedules of other

machines. Our plug and play type robot and industrial

automation controller project gives a solution for these hardware

demanding needs.

Keywords— Intelligent systems; Robot control; Automation;

I. INTRODUCTION

Hardware solutions can be easily configured with any
industrial machine or automation cell, and developed to
LinuxCNC, which is an open source Linux software
environment. The core of the system is a PCI based motion

control card with several IOs and further RS485 and CAN
based modules. According to the open source structure, any
information of the system (like maintenance, machine error,
stockpile, or product ID) can be monitored, saved and
transmitted via telnet or other PC compatible communications.
In this paper we present the developed PCI driver and the
hardware environment around LinuxCNC. At automated
warehouses with product and product part IDs the error rate
and the cause of the problems can be investigated, and the
stockpiles can always be updated and compared to the
expected values [1, 2]. The ERP of a smart factory requires
special machine information. Even in the same factory and the
same machine the type of the information depends on the
application [3]. For example the tool abrasion, the tool
amortization and tool change can be also estimated and
scheduled. When an industrial robot is used for painting, the
required information is the amount of paint, but at a selection
scenario it can be the color of the parts. At a production line
the messages and the errors have different priorities. The
amount of the red and green colorized parts is not as important
as an error message. A robot servo fault error will stop the
whole machine, and in most of the cases the whole production
line. If a part is broken, that also generates error messages, but
it influences only the error rate, and it warns the system to
check the previous process or the supplier. At commercial
industrial robots the access to information of a machine is
limited, especially at PLC based production cells [4]. It is
usually enough for normal system requirements, but not for
special needs [5-8]. At the open source automation control
system different modules can be installed, implemented or
developed like at the ERPs [9, 10]. The development of
LinuxCNC was started from previous projects in the United
States Patent and Trademark Office. According to the open

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Debrecen Electronic Archive

https://core.ac.uk/display/161025077?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:tajti@mogi.bme.hu

Recent Innovations in Mechatronics (RIiM) Vol. 2. (2015). No. 1-2.

DOI: 10.17667/riim.2015.1-2/6.

2

source and modular software environment we could
implement a PCI driver, that monitors all of the variables in
the embedded system and at the RS485 and CAN modules as
well. The PCI motion control card is an FPGA and PCI-bridge
based ASIC (Application Specified Integrated Circuit) for
interfacing with the most possible system elements that can be
found in an automated robotic cell.

II. SOFTWARE

A. Interface between ERP solutions and manufacturing

As the PCI card can be installed to any general purpose PC
or industrial PC solutions as well, it can be connected to ERP
servers via all conventional protocols, like Ethernet or wireless
network. For a ready to use solution, the LinuxCNC kernel
can communicate on Telnet interface via Ethernet of WiFi
[11-13]. (See Figure 1).

Figure 1 The block diagram of the ERP system with our robot

controller concept

B. System description

In the software engineering sense the core of the system is
the LinuxCNC (the Enhanced Machine Controller), an open-
source software environment for computer control of
industrial machines like milling machines, robots and lathes.
The user can integrate self-developed software modules into
the LinuxCNC, like a PCI card driver, direct, inverse
kinematics, and communication frames via any PC-based
communication interfaces and any other software modules.
For example during a machine control with CAN bus and
RS485, the PCI card handles the OSI L1-L3 layers of machine
specific CAN and RS485 communication, while the
LinuxCNC driver handles PCI communication and all the
higher OSI Layers of machine interfaces.

C. LinuxCNC

As mentioned in the introduction, the development of
LinuxCNC was started from previous projects in the United
States Patent and Trademark Office. Source code is hosted by
open source community using GIT version control system.
The open source community motivates, and provides support
for developers to add thousands of lines of new code and
many new modules to LinuxCNC every month. LinuxCNC
integrators may configure which modules to use and how to
connect them. After a software development period is closed,
all modifications are approved and tested, and the active and

supportive community publishes the next main version on the
official website with the additional functions, modules and
documentation.

LinuxCNC software modules can be set up and configured
based on the Hardware Abstraction Layer concept, like many
operating systems. In this model, all software modules have
well-defined inputs, outputs and functions. These software
modules are compiled, but not connected in compile time.
LinuxCNC integrators define connections and configure
module parameters in HAL files. HAL files are loaded every
time the program starts, so integrators do not need to compile
software. The LinuxCNC has different software modules like
kinematics, HAL files, user interfaces, scopes, ladder
diagrams, etc. These software parts can be added and
connected with each other. For example the following HAL
software modules will be configured or implemented in the
case of an industrial CNC machine with automatic work piece
handling: kinematics, touch screen optimized user friendly
GUI (see Figure 2), computer vision system and the ladder
diagram for some PLC functions. This open and highly
modular concept enables LinuxCNC to control many different
physical systems [14]. and LinuxCNC can be controlled on
higher level by ERP.

Figure 2 The touch-screen-optimized GUI of the Linux CNC

interfaces.

D. Custom PCI driver

LinuxCNC runs on Real-Time Linux kernel (Linux RTAI).

A new kernel module was developed to control custom PCI

cards, as well as to interface custom robots and other industrial

machines to LinuxCNC software environment. It remains as a

challenge of the software and hardware specification to

support new machine interfaces, like CAN or Ethernet based

field buses, but it supports conventional robotics and

automation interfaces as well, like incremental pulse motion

reference signals.

In case of incremental position reference, the step signals

and ramp functions at the system are generated by the PCI

Recent Innovations in Mechatronics (RIiM) Vol. 2. (2015). No. 1-2.

DOI: 10.17667/riim.2015.1-2/6.

3

card. The most interesting implementation is the step

generation, but the methods below are used at least partly at

the analogue, Ethernet based, and other CAN based references

and control methods, like CAN-Open or Device-Net. (See

Figure 3)

Linux CNC HAL

PCI Card

PCI Card Driver

...

Card 0. Axis Connector 0. 1,3,4

(Encoder) Pins

0
/3

,3
 V

FPGA

PLX

fl
o

a
t

gm.0.position-fb.0

Card 0. Axis Connector 0. 7,8

(STEP/DIR) Pins

0
/3

,3
 V

FPGA

PLX

fl
o

a
t

gm.0.stepgen.0.pos-cmd

Stepgen Components

0.position-cmd

0.step

0.dir

1.position-cmd

PCI Components

Axis.0.Dir gm.0.stepgen.0.dir

Axis.0.Step

2.position-cmd

0.position-fb

1.step

1.dir

1.position-fb

2.step

2.dir

2.position-fb

STEP

DIR

gm.0.stepgen.0.step

...

...

Servo communication

Cyclic buffer

Error handling

CAN Components

...

Motion components

Trajectory planner Fb.

Ref.

PCI

Figure 3 The block diagram of the HAL layer

The input of the step generator (in line with the constant

variables) is the position reference, and the outputs are the step

and the dir signals. The basic principle of this speed control

based interpolation is that the interpolator runs at a fixed

period interrupt, and calculates the required speed for the

motor in every time step, following the required motion

profile. To start and stop the motor in a smooth way without

steady state position error or position overshoot, control of the

acceleration and deceleration is needed. The relation between

(angular) acceleration (see equation 1), speed (see equation 2)

and position (see equation 3) is the derivation. (See figure 4).

 (1)

 (2)

 (3)

Recent Innovations in Mechatronics (RIiM) Vol. 2. (2015). No. 1-2.

DOI: 10.17667/riim.2015.1-2/6.

4

The position error (see equation 4) is calculated by the

subtraction of the actual position from the reference position,

or “position command”.

 (4)

Figure 4 Position, speed and acceleration time functions

Initially, the speed has to be calculated from the position error

constrained by the given maximum deceleration that drives the

motor exactly to the target position. In other words, the speed

has to be limited for preventing position overshoot. For this,

we have to express the speed from the position and speed

motion equations (see equation 5).

 (5)

The second constraint is the calculated speed which doesn’t

cause position overshoot, and has to be limited to a maximum

value that the motor can follow. The last constraint that has to

be considered is the maximum acceleration that can decrease

the actual speed output of the interpolator. (See Figure 5) The

requested acceleration can be calculated by numeric

derivation, by subtracting the last calculated speed from the

actually calculated one. Then it can be saturated by simple

branches. If the required acceleration is higher, the new speed

output will be equal to the last speed output incremented by

the maximum acceleration.

S
p

e
e

d

t

M
ax. deceleration

Max. speed

M
ax.

acc
.

Figure 5 The ramp function

The calculated speed in step/s has to be converted to timer

count period for evaluating the step generation (see equation

6).

 (6)

The period can be calculated only if the speed output is non-

zero. Another variable has to indicate if the motor has to be

stopped. Hence the period does not include the direction

information; the direction has to be stored in another logic

variable, the value of which depends on the sign of the speed.

The timer compare registers value has to be calculated for the

next step in each interrupt. The period variable is given in

timer counts. So the next compare value can be calculated by

adding the period to the last compare value, but the register

and the timer overflow have to be handled. If the period

exceeds the timer top value, and overflow counter has to be set

depending on the number of overflows. There is no step

generation in every interrupt request in this case, only when

the overflow counter is zero again. The software is composed

from a fixed and a variable period timer interrupts. The fixed

step interrupt is practically executed in between 1~10 ms. The

position error, the speed, the timer period and the direction are

calculated in order in this interrupt. First, the timer compare

registers next value is calculated in the variable period (step

generation) timer interrupt. Then one step should be

generated, if the Run flag is active. After a step, the actual

position has to be updated for giving position feedback for the

interpolator. The speed is calculated in the fixed period

interrupt, and during deceleration, the zero speed should be

given when the position error is zero. But in most cases, more

than one step is generated in the variable period timer interrupt

with the last speed command; hence position overshoot and

oscillation occur. (See Figure 6)

Recent Innovations in Mechatronics (RIiM) Vol. 2. (2015). No. 1-2.

DOI: 10.17667/riim.2015.1-2/6.

5

S
p
e

e
d

t

Fixed period

interrupt

Figure 6 The overshoot function

To avoid this situation, the conditions of the final stop have to

be handled in the variable period timer interrupt in case of all

steps. (See Figure 7) The conditions are as follows: If the

position error is zero, and the speed is under a low speed

threshold, then do not generate any more steps (red point in

Figure 7). Practically, a low speed flag should be set or cleared

in the fixed period interrupt, for improving the execution

efficiency (flsf (Speed)). The comparison of the signed 16 bit

values is done in the fixed period interrupt. And only the low

speed flag is checked for every step in the variable period

(high speed) interrupt.

Fixed period interrupt:

Interpolator

Variable period timer interrupt:

Step generation

Calculate position error:

s = ReferencePos - ActualPos

Calculate speed [step/sec] concerning

s (s ~ „brake distance”):

Speed = fbrake(s)

Saturate speed to maximum:

Speed = fmaxspeed(Speed, MaxSpd)

Limit speed concerning acceleration:

Speed = fmaxacc(Speed, LastSpeed,

MaxAcc)

Calculate step period from Speed:

TimerPeriod = fperiod(Speed)

&

Speed == 0 -> Run = 0

&

Calculate direction from sign of Speed:

Dir = fdir(Speed)

&

Calculate low speed flag:

LowSpeed = flsf(Speed)

Global variables:

TimerPeriod,

Run,

Dir,

LowSpeed

Calculate next timer

compare register value:

Compare = fcomp(Period)

if(LowSpeed)

{

 If(ReferencePos - ActualPos == 0)

 Run=0;

}

Generate one step with

direction if (Run== 1)

Calculate actual position:

Increment/decrement with

one step

Global variable:

Actual Position

Reference

position

Figure 7 The detailed block diagram of the step generation

Recent Innovations in Mechatronics (RIiM) Vol. 2. (2015). No. 1-2.

DOI: 10.17667/riim.2015.1-2/6.

6

III. HARDWARE

A. System description

The system can be configured with different servo
applications and PLC functions. The center of the controller is
the PCI based motion control card. The main goal of the
development is to follow the newest paradigms in the view of
robot control theory, what means that the system should be
open source and plug and play. At the integration of a
manufacturing cell at a production line, different kind of signs
and information of the robot may need to be observed at a
smart factory system [15]. At a normal industrial robot control
system just the typical information can be monitored, like the
position and the orientation of the robot, the joint coordinates
and the number of the working cycles etc. At an open source
and plug and play type automation controller all of the
parameters, variables and signs can be monitored during the
manufacturing or the storage process. The PCI card can be
used in a normal PC with a real-time Linux OS. Teach
pendant with VGA, touch interface with USB, Ethernet,
camera vision system and other PC based or custom
informatics devices can be used with the machine in the view
of information science and ERP-s.

In the view of robot control theory the card has a PLX
controller with PCI based communication, and it is connected

to a Xilinxs Spartan III FPGA via a 32 bit parallel bus. (See
Figure 8) The FPGA and the PCI driver handle the connection
between the hardware and the software layer. Most of the
robot controllers cannot handle PLC functions and cannot be
connected to a network as flexible as a normal real-time Linux
based PC. The analog and digital RS485 IOs can be controlled
by a normal C code or the ladder diagram editor of the
software environment like at normal PLC-s. With the different
isolator, differential line driver, IO, and breakout modules at a
production line most of the elements can be controlled
including the production specific special machines like a five
axis milling machine, which produces tooth implants for
dentists. In these cases the machine is designed by mechanical
engineers and it cannot be integrated into a manufacturing cell
without a controller. The system can be connected to these
specialized machines without any long time demanding
software and electrical engineering development [16]. The
CAN based, analog or incremental servo amplifiers of the
machine can be connected to the PCI card directly or via opto-
isolated and differential driver modules. Six axes can be
interpolated with one card and the LinuxCNC software
environment can handle two cards and can interpolate up to
nine axes. The RS485 bus can handle 16 modules (relay
output, opto-isolated input, ADC and DAC, Teach Pendant)
with one card. (See Figure 9)

CONTROLLER CASE

PCI card

FPGA

Xilinx Spartan III

(TQFP208)

32-bit

parallel bus

PCI- bus

Fault

Enabled

Encoder

(A,B,Z)

Step/Dir,

CW/CCW,

A/B, CAN,

±10V

PC - Realtime Linux

Open Source Robotic

Plaform: Linux CNC

PLX PCI-bus

interface

(TQFP176)

IN-OUT MODULES:

Relay output module

Opto-isolated input

module

ADC/DAC module

IN
T

E
R

F
A

C
E

M
O

D
U

L
E

S

SERVO

MODULES

(Position,

speed or

current

modes)

CUSTOM

TOOLS/

DEVICES

Ex.: Kinect 3D

camera,

i-Space, Motion

capture,

RT-Middleware

components

TEACH

PENDANT

Touch-screen,

Joystick, other

UI elements

CAN-Open/Device Net

Ethernet

EtherCAT

RS485-bus

Figure 8 The detailed block diagram of the system

Recent Innovations in Mechatronics (RIiM) Vol. 2. (2015). No. 1-2.

DOI: 10.17667/riim.2015.1-2/6.

7

Figure 9 The block diagram of a sample robot controller

B. PCI card

As it is detailed below the card has a PLX-Xilinx
embedded system and it can be implemented in a production
line without hardware engineering development. This
advantage comes from the modularity, the fact that the
software environment is open source, and the peripheries of
the PCI card (see Figure 10). The main hardware elements for
the peripheries are the parts of the card, like the isolated CAN,
the RS485 transceivers, the opto-couplers of the machine
specific pins, the monitoring LEDs, six axes connectors, and
four connectors for general purpose IO pins. The RS485,
CAN, incremental servo, axis DAC and other modules can be
connected directly to the card.

Figure 10 The PCI card

Some of the registers can be written to (like step variables)

and some of the registers can be read (like encoder variables).

At discrete control (series of coordinates) for the robot we

only calculate the next point (position, joint coordinate), and

the path is not prescribed between the current and the next

position. At continuous control the interpolator of the system

makes continuous calculations to get path points frequently

and create a smooth motion between the start and the end

position and orientation. The software environment writes the

joint coordinates of these positions and orientations to the

corresponding registers during the motion. The motion control

card and the PCI driver generate the physical form of the data

like step signs for the incremental servo amplifiers. The

position or speed controllers are calculated on the servo

amplifiers. In case of an old analogue system the position and

speed control methods can be calculated on the PCI card. This

method can handle decentralized motion controls. In case of a

centralized motion control we can implement the inverse

dynamical equations of the machine so torque (current)

references can be given to the servo amplifiers. Some of the

control methods and parameters are calculated on the PCI card

even for decentralized motion control. For example at a step

signal generation we can define the maximal acceleration, the

maximal speed and the maximal deceleration, what describes

the definition of the velocity-time function of an axis. The

length of the steps, the direction delay, the length of the step

spaces and the step/unit can also be adjusted. The ramp

function generates the step signals between two discrete time

steps during the motion control.

C. Servo applications

The servo motors of the industrial robots are usually PMSM or
BLDCs and at older robots are brushed DC motors. The servos
amplifiers are usually sold in pair with the motors, which can
get position, velocity, or torque references via incremental,
CAN based, or analog signal references.
The following typical example connections can be easily made
between the PCI card and the servo amplifiers with the
developed modules of the system:

Analogue system with encoder feedback

 Incremental digital system with encoder feedback and
differential output

Recent Innovations in Mechatronics (RIiM) Vol. 2. (2015). No. 1-2.

DOI: 10.17667/riim.2015.1-2/6.

8

 Incremental digital system with encoder feedback and
TTL output (see Figure 11)

 Incremental digital system with differential output

 Incremental digital system with TTL output

 Absolute digital (CAN based: CAN-Open) system (see
Figure 12)

 Absolute digital (CAN based: CAN-Open) system with
conventional (A/B/I) encoder feedback

Each of the servo connections has a detailed block
diagram. In each application the signals between the servo
amplifiers and the PCI card are isolated, and position feedback
can be made to monitor the tracking errors of the TCP or the
joints in the LinuxCNC. At the implementation of the system,
during the tuning phase of the control methods (usually PI,
PD, PID, or PID with anti windup) at the servo amplifiers, the
step response can be monitored with the scope module of the
LinuxCNC. The hardware parameters like the encoder CPR,
the step/radian or step/mm, etc. can be defined in the HAL
(Hardware Abstraction Layer) files at the configuration of the
system. (See below in section 3.)

PCI Card/

Axis connector
RJ50

TTL

TTL

Isolator

RJ50

RJ50

RJ45

SK2P5V in

SERVO &

Encoder Enc.

Drive

SERVO

MODUL

Step/Dir

CW/CCW

A/B Drive

Enc.
RS-422

Diff.

EncoderBreakout

RJ45

SK10P
RJ50

Differential

Line Driver
RJ50

SK10P

Figure 11 The block diagram of the differential axis control example

PCI Card/

Axis connector
RJ50

CAN

SERVO

MODUL
CAN

Drive

Enc.

SERVO &

Encoder

Drive

Enc.

Figure 12 The block diagram of a CAN-based axis control example

D. RS485 modules

The PLC functions, tool magazines, conveyor belts,
capacitive or infrared sensors can be handled by the developed
RS485 modules of the system. In most of the machines one
PCI card and one real-time Linux based PC are enough for the
control of the servo modules and the peripheries. All of the
modules are isolated, and have double connectors to create
from module to module wires, with the PCI card at the start of
the bus, and with end resistors at the end of the bus (See
Figure 13). The system's IO capability is flexible: One input
module can handle 8 isolated inputs, and a relay output
module has 8 outputs. The analogue module has 4 DAC and 8
ADC channels. One card can handle 16 modules, so a
complex CNC can be controlled even if it requires 50 relays to
handle all of the peripheries. The variables of the RS485
modules (the values of the inputs and outputs) can be
connected at the HAL files with any parts of the LinuxCNC
software, for example with a button at the touch interface or
the telnet module for further data handling.

The communication is a 9 bit RS485, where every module
has a 4 bit address and a 4 bit command and the 9th bit
indicates if it is a data message or an address/command
message. The end of the communication there is a checksum.
At the open source PCI driver, custom RS495 (and CAN)
based communication protocol can be also defined by the user.
It allows for the use products from different distributors or

even self designed modules to optimize the manufacturing cell
in the engineering sense.

First Node

BUS

powered

side

(12V)

Optical

isolation

B

U

S

2
4
V

 i
n

Field

powered

side

Enviroment

Last Node

BUS

powered

side

(12V)

Optical

isolation

2
4

V
 i
n

Field

powered

side

Enviroment

...

R
J
1

2
R

J
1

2

PCI Card

/

RS485 connector

RJ12

End

Resistors

Figure 13 The block diagram of the RS485 modules

IV. DISCUSSION

The development of this open source controller started in
2009, with the goal to create a traditional but easy to integrate,
plug & play controller which can be customized for specific

Recent Innovations in Mechatronics (RIiM) Vol. 2. (2015). No. 1-2.

DOI: 10.17667/riim.2015.1-2/6.

9

needs. The experience of the last four years showed us an
ongoing paradigm shift in the integration of industrial
controllers into the ERP network of the smart factories. Due to
the open source property, these controllers become a good
platform for developing novel functions such as ERP
integration.

V. CONCLUSION

In the past years, two of the first custom CNC controllers
are integrated into a custom ERP system which was developed
for automated dental milling cells. These controllers get their
manufacturing information from a higher level management
and resource planner system which handles the orders, work
pieces, CAD/CAM files. And during manufacturing they send
process and diagnostic feedback information for reporting and
real-time monitoring.

Acknowledgment
This research was funded by the Hungarian Academy of

Sciences (MTA 01 031). The authors wish to thank the
support to the Hungarian Research Fund (OTKA K100951).

References
[1] Anke J., Kabitzsch K., “Cost-based Deployment Planning for

Components in Smart Item Environments”, in Emerging Technologies
and Factory Automation, ISBN: 0-7803-9758-4, pp. 1238-1245, Prague,
September 2006.

[2] Péter Tamás, Norbert Szakály, “Decision help system supported data-
mining method”, in Biomechanica Hungarics, ISSN: 2060-0305, Paper
A0023, 2013.

[3] Yi Wu, Fengping Wu, “Researches on SAP-CRM's application in
cigarette manufacturing factory”, in Artificial Intelligence, Management
Science and Electronic Commerce (AIMSEC), ISBN: 978-1-4577-0535-
9, pp. 4762-4765, August, 2011.

[4] Mahir Dursun, Semih Özden, “PC-based data acquisition system for
PLC-controlled linear switched reluctance motor”, in Tuskish Journal of
Electrical Engineering & Computer Sciences, 2013/21, doi:10.3906/elk-
1105-24, pp. 71-80, January, 2013.

[5] Wolf B., Herzig P., Behrens I., Majumdar A., “Data stream processing in
factory automation”, in Emerging Technologies and Factory Automation
(ETFA), ISBN: 978-1-4244-6848-5, pp. 1-8, Bilbao, 2010.

[6] Savio D., Karnoukskos S., Morieira Sa de Souza L., Trifa V., “Reactive
business processes for factory automation”, in Industrial Informatics
Conference, ISBN: 978-1-4244-3759-7, pp. 620-625, Cardiff, Wales,
June, 2009.

[7] Rashid M.A., Riaz Z., Turan E., Haskilic V., Sunje A., Khan N., “Smart
factory: E-business perspective of enhanced ERP in aircraft
manufacturing industry”, in Technology Management for Emerging
Technologies (PICMET), ISBN: 978-1-4673-2853-1, pp. 3262-3275,
Vancouver, BC, August, 2012.

[8] van Putten, B.-J., Kuestner, M., Rosjat, M., “The Future Factory Initiative
at SAP Research”, in Emerging Technologies & Factory Automation,
ISBN: 978-1-4244-2727-7, pp. 1-4, Mallorca, September, 2009.

[9] Ding Lijie, Tang Hao, Zhou Lei, “The Application of Peer to Peer SAP-
based Q-Learning in Task Assignment to Multiple Robots”, in Control
Conference, ISBN: 978-7-81124-055-9, pp. 536-539, Hunan, June, 2007.

[10] Hameed B., Khan I., Durr F., Rothermel K., “An RFID based consistency
management framework for production monitoring in a smart real-time
factory”, in Internet of Things, ISBN: 978-1-4244-7413-4, pp. 1-8,
Tokyo, December 2010.

[11] Zubia J.G., Parra I.T., “WEB 2.0 control architecture for industrial
robots”, in Emerging Technologies and Factory Automation (ETFA),
ISBN: 978-1-4244-6848-5, pp. 1-8, Bilbao, September, 2010.

[12] Alvares A.J., de Souza J.L.N., Teixeira E.L.S., Ferreira J.C.E., “A
methodology for web-based manufacturing management and control”, in
Automation Science and Engineering, ISBN: 978-1-4244-2022-3, pp.
668-673, Arlington, VA, August, 2008.

[13] Behrouz Shahgholi Ghahfarokhi, Naser Movahedinia, “Contect gathering
and management for centralized context-aware handover in heterogenous
mobile networks”, in Tuskish Journal of Electrical Engineering &
Computer Sciences, 2012/6, doi:10.3906/elk-1101-1042, pp. 914-933,
June, 2012.

[14] Erwinski, K. Paprocki, M. ; Grzesiak, L.M. ; Karwowski, K. ; Wawrzak,
A. “Application of Ethernet Powerlink for Communication in a Linux
RTAI Open CNC system” in IEEE Transaction on industrial electronics,
ISSN: 0278-0046, pp. 628-636, February, 2013.

[15] Tyrin I., Vylegzhanin A., Kozhevnikov S., Kuznetsov O., Skobelev P.,
Kolbova E., Shepilov Y., “Multi-agent system “Smart Factory” for real-
time workshop management: Results of design & implementation for
Izhevsk Axion-Holding Factory”, in Emerging Technologies & Factory
Automation (ETFA), ISBN: 978-1-4673-4735-8, pp. 1-4, Krakow,
September, 2012.

[16] Mesnil P.C., Ulmer C., Gomez L., “Web based communication between
embedded systems and an ERP”, in Industrial Informatics (INDIN),
ISBN: 978-1-4244-3759-7, pp. 551-556, Cardiff, Wales, June, 2009.

