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Abstract

Aims: The molecular mechanisms of the vasoconstrictor responses evoked by hydrogen peroxide (H2O2) have not been
clearly elucidated in skeletal muscle arterioles.

Methods and Results: Changes in diameter of isolated, cannulated and pressurized gracilis muscle arterioles (GAs) of
Wistar-Kyoto rats were determined under various test conditions. H2O2 (10–100 mM) evoked concentration-dependent
constrictions in the GAs, which were inhibited by endothelium removal, or by antagonists of phospholipase A (PLA; 100 mM
7,7-dimethyl-(5Z,8Z)-eicosadienoic acid), protein kinase C (PKC; 10 mM chelerythrine), phospholipase C (PLC; 10 mM U-
73122), or Src family tyrosine kinase (Src kinase; 1 mM Src Inhibitor-1). Antagonists of thromboxane A2 (TXA2; 1 mM SQ-
29548) or the non-specific cyclooxygenase (COX) inhibitor indomethacin (10 mM) converted constrictions to dilations. The
COX-1 inhibitor (SC-560, 1 mM) demonstrated a greater reduction in constriction and conversion to dilation than that of
COX-2 (celecoxib, 3 mM). H2O2 did not elicit significant changes in arteriolar Ca2+ levels measured with Fura-2.

Conclusions: These data suggest that H2O2 activates the endothelial Src kinase/PLC/PKC/PLA pathway, ultimately leading to
the synthesis and release of TXA2 by COX-1, thereby increasing the Ca2+ sensitivity of the vascular smooth muscle cells and
eliciting constriction in rat skeletal muscle arterioles.
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Introduction

Among its many important roles, H2O2 is involved as a

signalling molecule in the physiological regulation of the vascular

diameter. Moreover, H2O2 can contribute to the development of a

vascular dysfunction in hypertension [1,2], diabetes [3,4] and

atherosclerosis [5]. Nevertheless, the vascular signalling pathways

mobilized by H2O2 have not been fully elucidated.

H2O2 can be produced by endothelial cells, smooth muscle cells

and fibroblasts [6,7], under both physiological and pathological

conditions. Moreover, significant amounts of H2O2 are released by

activated leukocytes under inflammatory conditions [8]. Numer-

ous enzyme systems, including NAD(P)H oxidase [9,10], the

mitochondrial respiratory chain, xanthine oxidase, uncoupled

endothelial nitric oxide (NO) synthase, cytochrome P-450

enzymes, lipoxygenase and the cyclooxigenases [11–16], can

generate the superoxide anion (O2
2), which is then reduced to

H2O2. There can be a great variation in the extracellular

concentration of H2O2, but it can probably reach 0.3 mM

[8,17,18].

H2O2 has been shown to act as an endothelium-derived

hyperpolarizing factor (EDHF) in several vascular beds, including

porcine coronary arterioles, mouse mesenteric arterioles, rat

ophthalmic arteries and rat coronary arterioles [19–23]. It has

been proposed that, as an EDHF, H2O2 contributes to the

development of functional hyperaemia in human coronary and

mesenteric arterioles [24,25]. Another important role ascribed to

H2O2 is the mediation of flow-induced dilation in human coronary

arterioles [26,27] and as such it may provide an important back-up

dilator mechanism when levels of NO are reduced [28]. In

contrast, H2O2 results in vasoconstriction in the rat aorta [29,30]

and renal artery [31], the rabbit pulmonary artery [32] and the

canine basilar arterioles [33,34]. Surprisingly, H2O2 has also been

shown to exert a concentration-dependent biphasic effect (i.e.
vasoconstriction followed by vasodilation) in the skeletal muscle

and mesenteric arterioles of the rat [8,35].

Previous studies have revealed certain fragments of the

signalling cascades responsible for the H2O2-evoked vascular

constrictions and dilations in various species and preparations.
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Thus, H2O2 has been shown to evoke vasodilation by activation of

arachidonic acid (AA) metabolism and subsequent cyclic adeno-

sine monophosphate production in canine cerebral arteries [36].

Moreover, H2O2 has been claimed to activate the NO/cyclic

guanosine monophosphate pathway in rat skeletal muscle arteri-

oles and in the rabbit aorta [8,37]. Increased cGMP levels lead to

the release of endothelium-derived dilator prostaglandins in

porcine coronary arterioles [38], whereas the endothelium-

independent relaxation to H2O2 in porcine coronary arterioles

involves the activation of K+ channels [39–42]. Similarly to the

above vasodilatory mechanisms, it is hypothesized that in different

vessel types/species several distinct signalling molecules can

contribute to the H2O2-evoked constrictor effects, including

COX products [8,29,30,43], tyrosine kinases [29,34] and mito-

gen-activated protein kinase [34,44,45]. Moreover, these pathways

may mobilize intracellular Ca2+-dependent mechanisms in vascu-

lar smooth muscle cells to evoke vasoconstriction [29,34], although

the activation of Ca2+-independent alternative pathways cannot be

excluded [46].

Taken together, H2O2 apparently activates complex second

messenger systems in the vascular endothelium and smooth muscle

cells to evoke vasoconstriction, although the exact signalling

pathway and its ability to change intracellular Ca2+ concentrations

are not well understood. In the present study, therefore, we

investigated the acute effects of H2O2 on the diameter of arterioles

isolated from rat skeletal muscle and rat coronaries, the signal

transduction pathway initiating H2O2-evoked vasoconstriction,

and the changes in vascular smooth muscle intracellular Ca2+

concentrations induced by H2O2.

Methods

Ethical statement
All procedures employed in this work conformed to strictly

Directive 2010/63/EU of the European Parliament and were

approved by the Ethical Committee of the University of Debrecen.

Animals, anaesthesia and tissue dissection
Experiments were performed on male Wistar rats (approxi-

mately 10 weeks of age, weighing 250–350 g, obtained from Toxi-

Coop Toxicological Research Centre, Dunakeszi, Hungary). The

animals were fed a standard chow and drank tap water ad libitum.

For the study, animals were anaesthetized with an intraperitoneal

injection of sodium pentobarbital (150 mg/kg). All efforts were

Figure 1. Effects of H2O2 on arterioles isolated from skeletal muscle and heart. H2O2 (1 mM–10 mM) was added to isolated, cannulated,
skeletal muscle (initial diameter (id: 191617 mm, n = 6 arterioles from 6 different animals) or coronary arterioles (id: 110618 mm, n = 7 arterioles from
7 different animals) with intact endothelium. The arteriolar diameter was recorded and concentration-response (cumulative application) relationships
were determined (panel A). Changes in relative arteriolar diameter are shown. Relative diameter changes during vasodilations were expressed as
percentages of the difference between the maximum passive diameter (maximum dilation: 100%, determined in the absence of extracellular Ca2+)
and initial diameter with positive values, while during constrictions they were expressed relative to the initial diameter (illustrated at 0% on the y axis)
with negative values. Asterisks denote significant differences from the initial values. The kinetics of H2O2-evoked responses was studied in isolated
skeletal muscle arterioles (panel B; means6SEM with solid and dashed lines, respectively). The effects of the indicated concentrations of H2O2 were
recorded for 600 s in the continuous presence of H2O2 (n = 3–5 arterioles at each concentration from 11 different animals). The positions of maximum
constrictions and dilations are illustrated by arrows.
doi:10.1371/journal.pone.0103858.g001
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made to minimize the suffering of the animals. The gracilis muscle

and the heart were removed and placed in silicone-coated petri

dishes containing cold (0–4uC) Krebs solution (in mM: 110 NaCl,

5.0 KCl, 2.5 CaCl2, 1.0 MgSO4, 1.0 KH2PO4, 5.0 glucose and

24.0 NaHCO3) equilibrated with a gaseous mixture of 5% CO2,

10% O2 and 85% N2 at pH 7.4.

Materials and drugs
The TXA2 agonist (U46619) was obtained from Calbiochem

(Billerica, MA, USA), and the TXA2 inhibitor (SQ-29548) from

BioMarker Kft. (Gödöllő, Hungary). All other chemicals were

from Sigma-Aldrich (St. Louis, MO, USA) and were kept under

the conditions prescribed by the manufacturer. All reported

concentrations are the final concentrations in the organ chamber.

Isolation of arterioles and measurement of vascular
diameter

Arterioles were isolated and cannulated as described previously

[47]. Briefly, gracilis muscle arterioles and the second branch of

the septal coronary artery (both ,1.5 mm long) running

intramuscularly were isolated through the use of microsurgical

instruments and an operating microscope and transferred into an

organ chamber containing two glass micropipettes filled with

Krebs solution. The arterioles were cannulated at both ends and

the micropipettes were connected via silicone tubing to a pressure

servo control system (Living Systems Instrumentation, St. Albans,

VT, USA) to set the intraluminal pressure at 80 mmHg. The

temperature was maintained at 37uC by a temperature controller.

Changes in internal arteriolar diameter were recorded continu-

ously with a video microscope system (Topica CCD camera).

Experimental protocols
In response to the intraluminal pressure of 80 mmHg the

isolated arterioles spontaneously developed a substantial myogenic

tone without the use of any exogenous constrictor agents (a

decrease from an initial diameter of 20565 mm to 14965 mm
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Figure 2. H2O2-induced vasoconstrictions are mediated by the
endothelium in skeletal muscle arterioles. H2O2 concentration-
response relationships were determined (as given in Fig. 1A) in intact
(control, closed symbols, n = 6 from 6 different animals) and endothe-
lium-denuded arterioles (id: 131610 mm, open symbols, n = 5 arterioles
from 5 different animals). The asterisk denotes a significant difference
from the control.
doi:10.1371/journal.pone.0103858.g002
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(n = 99 arterioles from 82 different animals) and from 170614 mm

to 10767 mm (n = 17 arterioles from 17 different animals) in the

skeletal and coronary arterioles of the rat, respectively).

Cumulative concentrations of acetylcholine (1 nM–10 mM) were

used to test the vasomotor function of the endothelium. The

smooth muscle function was tested with norepinephrine (skeletal

muscle artery) or serotonin (coronary artery, 1 nM–10 mM). H2O2

solutions were prepared immediately before the experiments and

were stored on ice. In the first series of experiments, cumulative

concentrations of H2O2 (1 mM–10 mM) were added to the skeletal

muscle arterioles (n = 6 arterioles from 6 different animals) or

coronary arterioles (n = 7 arterioles from 7 different animals) and

the responses to the H2O2 were determined and diameters were

recorded 60 s after the application of each H2O2 concentration.

During measurements, the changes in the pH of the chamber

containing H2O2 were also checked. The pH of the control

solutions did not vary significantly with the final concentration of

H2O2 (pH 7.5260.03 in the absence of H2O2, pH 7.5860.03 in

the presence of 10 mM H2O2, n = 3). To study the kinetics of

diameter changes, various concentrations of H2O2 (10, 30, 100

and 300 mM) were used (600 s treatment duration, diameter

measured every 10 s, n = 3–5 arterioles from 11 different animals

at each concentration). In some groups of experiments, the

endothelium was removed by air perfusion of the arterioles

Figure 3. Endothelial mechanisms of H2O2-evoked vasoconstriction of skeletal muscle arterioles. Arteriolar diameter was recorded in
response to H2O2 without pretreatment (control, as given in Fig. 1A, closed symbols) or after test incubations (open symbols) for at least 15 min in the
presence of PLA inhibitor 7,7-dimethyl-(5Z,8Z)-eicosadienoic acid (100 mM, n = 5 arterioles from 5 different animals, id:130611 mm; panel A), or in the
presence of PKC inhibitor chelerythrine (10 mM, n = 5 arterioles from 5 different animals, id: 164611 mm; panel B), or in the presence of PLC inhibitor
U-73122 (10 mM, n = 4 arterioles from 4 different animals, id: 126610 mm; panel C), or in the presence of Src kinase inhibitor Src inhibitor-1 (5 mM,
n = 5 arterioles from 5 different animals, id: 143612 mm; panel D). Asterisks denote significant differences from the control.
doi:10.1371/journal.pone.0103858.g003

Mechanism of H2O2-Evoked Arteriolar Constrictions
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(denudation, n = 6 arterioles from 6 different animals). Successful

endothelium denudation was verified by the loss of dilation in

response to acetylcholine (9665% dilation before and 0.360.2%

after endothelium removal), whereas a maintained smooth muscle

function was confirmed through the use of norepinephrine

(6266% constriction before and 5566% after endothelium

removal).

The effects of H2O2 on the diameter of the arterioles were also

measured in the presence (15–30-min preincubation) of a PKC

inhibitor (chelerythrine, 10 mM, n = 5 arterioles from 5 different

animals), a PLC inhibitor (U73122, 10 mM, n = 4 arterioles from 4

different animals), a PLA inhibitor (7,7-dimethyl-(5Z,8Z)-eicosa-

dienoic acid, 100 mM, n = 5 arterioles from 5 different animals), a

Src kinase inhibitor (Src inhibitor-1, 5 mM, n = 5 arterioles from 5

different animals), a COX-1 and COX-2 inhibitor (indomethacin,

10 mM, n = 5 arterioles from 4 different animals), a COX-1-

selective inhibitor (SC-560, 1 mM, n = 5 arterioles from 3 different

animals), a COX-2- selective inhibitor (celecoxib, 3 mM, n = 4

arterioles from 4 different animals), another COX-2-selective

inhibitor (NS-398, 10 mM, n = 3 arterioles from 3 different

animals) and a TXA2 receptor inhibitor (SQ-29548, 1 mM,

n = 10 arterioles from 10 different animals). The inhibitors were

dissolved in dimethyl sulphoxide (DMSO), ethanol or in water.

The maximum concentration of non-aqueous solvent (DMSO or

ethanol) in the organ chamber was 0.1%. The solvents alone had

no vascular effects.

At the end of the experiments, the maximum (passive) arteriolar

diameter was determined in the absence of extracellular Ca2+ at an

intraluminal pressure of 80 mmHg.

Parallel measurement of vascular diameter and
intracellular Ca2+ concentrations

Simultaneous measurements of intracellular Ca2+ and arteriolar

diameter were performed as described previously [48,49]. Briefly,

isolated and cannulated arterioles (n = 9 arterioles from 6 animals)

were incubated for 60 min in the presence of physiological buffer

solution containing 1% bovine serum albumin and 5 mM Fura-

2AM fluorescent Ca2+ indicator dye. Intracellular Ca2+ concen-

trations were measured with an Incyte IM system (Intracellular

Imaging Inc, Cincinnati, OH, USA). Fura-2 fluorescence (record-

ed every 2–5 s) was excited alternately by 340 and 380 nm light,

while the emitted fluorescence was detected at 510 nm by selecting

at least 1000 pixels within the arteriolar wall. Arteriolar Ca2+

concentrations were assessed via the Fura-2 fluorescence ratio

(F340/380), and in these assays the outer arteriolar diameters were

determined for each recorded image. The exact dimensions of the

sampling region depended on the ongoing treatment: and it was

variable in different vessels. The average dimensions of the

sampling region were 285615 mm610566 mm.

Data analysis and statistical procedures
The diameters of arterioles are shown as means6SEM.

Arteriolar constriction was expressed as the change in the baseline

initial diameter (id, immediately before the addition of H2O2) as a

percentage of the baseline diameter measured at an intraluminal

pressure of 80 mmHg. Arteriolar dilation was calculated as the

percentage change from the baseline id (immediately before the

addition of H2O2) to the ‘‘passive’’ diameter in the absence of

extracellular Ca2+. Statistical analyses were performed with

GraphPad Prism 5.0 Software (La Jolla, CA, USA) by the

Student’s t-test and by ANOVA (Dunnett’s post hoc test). P,0.05

was considered statistically significant.

Results

H2O2-induced arteriolar responses
Increasing concentrations of H2O2 evoked a concentration-

dependent biphasic effect in the skeletal muscle arterioles: lower

concentrations (10–100 mM) of H2O2 produced vasoconstriction

(maximum at 100 mM, 3463% constriction, P,0.001 vs. id,

Fig. 1A, Table 1), whereas higher concentrations (3–10 mM) of

H2O2 resulted in vasodilation (maximum at 10 mM, 80611%

dilation, P,0.001 vs. id). In contrast, H2O2 evoked only

vasodilation in the coronary arterioles (maximum at 10 mM,

9663% dilation, P = 0.01). The kinetics of the H2O2-evoked

changes in the diameter of the skeletal muscle arterioles was also

Figure 4. H2O2-induced vasoconstriction is mediated by COX-1.
Arteriolar constrictions (control, as given in Fig. 1A, closed symbols)
were prevented in the presence of the non-specific COX inhibitor
indomethacin (10 mM, n = 5 arterioles from 4 different animals,
preincubation for 30 min, id: 11163 mm, open symbols; panel A).
Panel B: The roles of COX isoforms in H2O2-evoked responses were
studied by comparing vascular diameters in the absence of COX
inhibitors (dotted line) with those in the presence of COX-1 inhibitor SC-
560 (1 mM, n = 5 arterioles from 3 different animals, id: 113614 mm;
open squares) or with COX-2 inhibitor celecoxib (3 mM, n = 4 arterioles
from 4 different animals, id: 146613 mm; open triangles). Asterisks
denote significant differences from the control.
doi:10.1371/journal.pone.0103858.g004
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tested. Although the H2O2-evoked vasoconstrictions were mostly

transient, vasoconstrictions at lower H2O2 concentrations (10 mM

and 30 mM) were not followed by significant vasodilations

(Fig. 1B). In contrast, 100 mM or 300 mM H2O2 caused time-

dependent biphasic changes: after the initial vasoconstriction, a

substantial vasodilation developed. Application of 3 mM H2O2

resulted in substantial vasodilation without initial vasoconstriction.

Role of the endothelium in H2O2-induced
vasoconstriction

The H2O2-induced constriction was abolished in the endothe-

lium-denuded skeletal muscle arterioles (068% constriction at

100 mM H2O2, P = 0.03 vs. control; Fig. 2A), but the dilations

were not affected (69610% dilation at 10 mM H2O2).

H2O2 stimulated endothelial signalling processes,
leading to the activation of COX

The H2O2-evoked vasoconstriction was inhibited by the

application of the PLA antagonist (7,7-dimethyl-(5Z,8Z)-eicosa-

dienoic acid, 762% constriction, P,0.005 vs. control; Fig. 3A),

the PKC antagonist (chelerythrine, 964% constriction at 100 mM

H2O2, P,0.005 vs. control; Fig. 3B), the PLC inhibitor (U-73122,

15618% dilation, P,0.05 vs. control, Fig. 3C) or the Src kinase

antagonist (Src inhibitor-1, 863% vasoconstriction, P,0.005 vs.
control; Fig. 3D).

Effects of non-selective and selective COX inhibition on
H2O2-induced arteriolar responses

The H2O2-induced constrictions were converted to dilations in

the presence of a non-selective COX inhibitor (indomethacin,

41617% dilation at 100 mM H2O2, P,0.005 vs. control;

Fig. 4A). In separate experiments, we investigated the specific

roles of COX-1 and COX-2 in the mediation of the H2O2-evoked

vascular responses. It emerged that the selective COX-1 inhibitor

SC-560 abolished the constriction induced by H2O2 (2369%

dilation at 100 mM H2O2, P,0.05 vs. control; Fig. 4B) and

converted it to dilation, whereas the inhibitory effect of the COX-

2 antagonist celecoxib was not significant (1364% constriction at

100 mM H2O2, P.0.05 vs. control). Moreover, another COX-2

specific antagonist, NS-398 (10 mM, n = 3 arterioles from 3

different animals), did not prevent the H2O2-evoked vasoconstric-

tions either (861% constriction at 100 mM H2O2, P.0.05 vs.
control; Figure S1).

H2O2-evoked effector mechanisms leading to
vasconstrictive responses

The H2O2-evoked vasoconstriction in the skeletal muscle

arterioles was abolished and converted to dilation (36611%

dilation at 100 mM H2O2, P,0.005 vs. control; Fig. 5A) by TXA2

receptor inhibition (SQ-29548). In contrast, the same treatment

did not affect the H2O2-evoked dilation in the coronary arterioles

(9662% dilation at 10 mM H2O2; Fig. 5B). Activation of the

TXA2 receptors with the stable analogue of TXA2, U46619,

resulted in constriction of both the skeletal muscle (6962%, n = 5,

Figure 5. H2O2-induced vasoconstriction is mediated by TXA2.
The role of TXA2 receptors was tested by comparing H2O2-induced
vascular responses under control conditions (closed symbols) with
those in the presence of TXA2 receptor antagonist SQ-29548 (1 mM,
n = 10 arterioles from 10 different animals, 15-min preincubation) in
skeletal muscle arterioles (panel A, open symbols; id: 13367 mm,
asterisks denote significant differences from the control) and in

coronary arterioles (panel B, open symbols; id: 108612 mm). Panel C:
The presence of functional TXA2 receptors was verified by the
application of TXA2 receptor agonist U46619 (0.1 nM–10 mM) in
skeletal muscle (closed symbols; id: 18967 mm, n = 5 arterioles from 5
different animals) and coronary arterioles (open symbols; id:
119612 mm, n = 5 arterioles from 5 different animals). Asterisks denote
significant differences from the initial diameter.
doi:10.1371/journal.pone.0103858.g005
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P,0.002 vs. id; Fig. 5C) and the coronary arterioles (4266%,

P = 0.002 vs. id; Fig. 5C).

Characterization of H2O2-evoked changes in intracellular
Ca2+ concentrations of vascular smooth muscle cells

The H2O2-evoked vasoconstriction was not accompanied by

significant changes in the F340/380 ratio signal in the range of

H2O2 concentrations between 1 mM and 100 mM (Fig. 6A).

However the norepinephrine (10 mM)-induced vasoconstriction

was accompanied by a significant increase in F340/380 (from

0.9660.04 to 1.3660.07, P = 0.001; Fig. 6B). Moreover, the

U46619-evoked peak in F340/380 was significantly smaller than that

evoked by norepinephrine (0.9360.04 vs. 1.3660.07, respectively,

P,0.05) despite their largely comparable vasoconstrictive re-

sponses (to 4465% vs. 5766%, respectively, P.0.05; Fig. 6C). In

another set of experiments, the H2O2-evoked changes in vascular

diameter and Ca2+ concentration were measured in the presence

of an Src kinase inhibitor (Src inhibitor-1), where vasoconstriction

was inhibited by this inhibitor, and F340/380 did not change

(Fig. 6D). In arterioles with intact endothelium the acetylcholine-

induced vasodilation was accompanied by a significant decrease in

F340/380 (from 1.0560.05 to 0.8960.04, P,0.05, n = 5).

Discussion

As far as we are aware this is the first study that has revealed the

signalling mechanisms of H2O2-induced vasoconstriction in the

skeletal muscle arterioles of the rat. Besides confirming some steps

identified earlier in different vascular preparations, we have now

supplemented the signalling cascade with additional molecular

interactions. Thus, we have shown that H2O2 promotes endothe-

lial Src activation and that it leads ultimately to an increased Ca2+

sensitivity of force production in vascular smooth muscle cells.

A number of attempts have been made to investigate the

mechanism of H2O2-evoked vasodilation [8,36,39,40], but much

less is known as regards the mechanism of H2O2-evoked

vasoconstriction. H2O2 can modulate the vascular diameter in

the rat renal artery [31], the canine basilar artery [50], the porcine

coronary arterioles [38] and the rabbit aorta [37] in an

endothelium-dependent manner. It may also display endotheli-

um-independent effects in human coronary arterioles [26], canine

coronary arterioles [51] and the rat aorta [29]. In the present

study, H2O2-induced vasoconstriction was completely inhibited by

endothelium denudation or by inhibition of the TXA2 receptor.

Our observations suggest that H2O2 causes the generation of

TXA2 in the endothelium, leading to vasoconstriction [31–33],

Figure 6. H2O2 increases the Ca2+ sensitivity of force production in vascular smooth muscle cells. The changes in intracellular Ca2+ levels
and arteriolar diameters were studied in skeletal muscle arterioles under control conditions (panel A; n = 5 arterioles from 3 different animals), or after
treatment with norepinephrine (panel B; n = 5 arterioles from 3 different animals), or by addition of the TXA2 receptor agonist U46619 (0.1 nM–10 mM;
panel C; n = 5 arterioles from 4 different animals). Experiments were also performed in the presence of H2O2 together with Src kinase inhibitor, (Src
inhibitor-1, 5 mM n = 4 arterioles from 3 different animals, 20-min preincubation; panel D). Asterisks denote significant differences from the initial
values.
doi:10.1371/journal.pone.0103858.g006
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and also that H2O2 may elicit endothelium-dependent dilation in

skeletal muscle arterioles when the TXA2-mediated vasoconstric-

tion is blocked. In contrast, H2O2-evoked vasodilation in the

coronary arterioles was not influenced by a TXA2 inhibitor,

although the activation of TXA2 receptors with U46619 resulted

in vasoconstriction in both the coronary and the skeletal muscle

arterioles. These results suggest that TXA2 receptors are present

in both types of vessel, but H2O2 activates different signalling

pathways. It evokes TXA2 synthesis and release from endothelial

cells in the skeletal muscle arterioles, but has no such effect in the

coronary arterioles.

PLA is responsible for the generation of AA (the substrate of

COX) in various vascular preparations [52]. In our study, H2O2-

evoked vasoconstriction was inhibited in the presence of the PLA

antagonist (7,7-dimethyl-(5Z,8Z)-eicosadienoic acid, 100 mM),

suggesting a role for PLA in the H2O2-induced vasomotor

response. This observation is in accordance with the findings

reported by Gao et al. on rat mesenteric arterioles [35]. The

activation of PLA can be a consequence of PKC-mediated

phosphorylation [53]. Indeed, preincubation of skeletal muscle

arterioles with the PKC antagonist chelerythrine (10 mM) resulted

in a significantly reduced H2O2-evoked constriction. PKC can be

activated by the diacylglycerols released by PLC [54], and

inhibition of PLC by U73122 (10 mM) resulted in a significantly

decreased H2O2-mediated vasoconstriction. It might be argued

that inhibition of the PKC pathway (e.g. PLC and PKC inhibition)

can affect TXA2 receptor stimulation-evoked constrictions inde-

pendently of the endothelial effects of H2O2. However, PLC

inhibition was without effects on the constrictions evoked by the

TXA2 receptor agonist U46619 (Figure S2), suggesting an

upstream (endothelial) target in H2O2-mediated constriction.

The H2O2-evoked activation of PLC was earlier shown to be

mediated by Src kinase in mouse embryonic fibroblasts [55].

Indeed, the constrictor effects of H2O2 in skeletal muscle arterioles

were inhibited in the presence of an Src kinase antagonist.

Moreover, H2O2-evoked vasoconstriction was completely inhibit-

ed by the non-specific COX antagonist indomethacin. These

results are in line with previous findings [8,29,31,35,56,57].

Furthermore, the H2O2-induced vasoconstriction was also fully

inhibited in the presence of a specific COX-1 antagonist, while it

was not influenced significantly by a specific COX-2 antagonist,

suggesting a prominent role of COX-1 in H2O2-evoked vasocon-

striction.

Taken together, the H2O2-induced constriction component was

largely abolished by inhibitors of PLA, PKC, PLC and Src kinases,

indicating a complex network of intracellular signalling in the

Figure 7. Proposed molecular mechanisms of H2O2-evoked vasoconstriction, based on the present study. H2O2 may induce both
vasodilation and vasoconstriction, depending on the applied H2O2 concentration, vessel type, species and experimental protocol (e.g. exposure time).
Our data imply that H2O2 elicits vasoconstriction by activating Src kinase, which activates the phospholipase C (PLC), protein kinase (PKC),
phospholipase A (PLA) and cyclooxygenase (COX) pathway, leading to the production of thromboxane A2 (TXA2), which increases the Ca2+ sensitivity
of the vascular smooth muscle in skeletal muscle arterioles of the rat (DAG: diacylglycerol).
doi:10.1371/journal.pone.0103858.g007
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H2O2 response. Interestingly, H2O2-evoked vasoconstriction was

also prevented in the absence of endothelium. These findings,

together with concordant previous observations by others [31-33],

implicate a sequence of signalling events in the endothelial layer

during H2O2-evoked vasoconstrictions. Nevertheless, alternative

mechanisms cannot be excluded.

TXA2 receptors are expressed in numerous cell types, including

vascular smooth muscle cells [58]. TXA2 receptors can couple

with Gq protein, thereby activating the PLC pathway, giving rise

to Ca2+ release and PKC activation (a Ca2+-dependent pathway)

[59,60]. However, TXA2 also binds to G12 proteins [60], leading

to the activation of Rho-kinase-mediated signalling (a Ca2+

-independent pathway), and hence to Ca2+ sensitization of the

contractile protein machinery [59]. Nevertheless, G12 proteins

may also evoke vasoconstriction by promoting Ca2+ entry through

another Ca2+-dependent mechanism, as has been demonstrated in

the rat caudal arterial smooth muscle [61]. Our experimental

results indicated that H2O2-evoked vasoconstrictions were not

accompanied by significant increases in intracellular Ca2+

concentration. In contrast, the treatment with norepinephrine

increased the intracellular Ca2+ concentration in parallel with a

significant decrease in arteriolar diameter. In comparison, the

TXA2 receptor agonist U46619-evoked vasoconstriction was

accompanied by a significantly lower increase in intracellular

Ca2+ concentration than that evoked by norepinephrine, support-

ing our hypothesis that H2O2 increases the Ca2+ sensitivity of the

vascular smooth muscle, rather than stimulating Ca2+ entry into

smooth muscle cells. Similar conclusions were reached in previous

studies, where the H2O2-induced constriction of isolated rabbit

[32,46] or porcine (36) pulmonary arterioles was not influenced by

extracellular Ca2+ removal. Although the explanation of the

apparent increase in vascular Ca2+ sensitivity is beyond the scope

of this study, we speculate that the potential mechanism may

involve the inhibition of myosin light chain phosphatase via Rho-

associated kinase (ROCK) or PKC, leading to increased

phosphorylation of LC20 (myosin regulatory light chain) [62].

Alternatively, vascular Ca2+ sensitization of constriction could be

elicited by dynamic regulation of the actin cytoskeleton by PKC

and ROCK [63].

It is rather difficult to estimate the real concentration of H2O2 in

vascular beds in vivo. Nevertheless, it has been shown that in

certain pathological conditions it may reach relatively high levels

(up to about 0.3 mM) [8,17,18]. In this study, the use of even

higher concentrations of H2O2 (up to 10 mM) allowed us to

characterize the biphasic vascular effects of H2O2. Lower

concentrations of H2O2 evoked vasodilation in coronary arterioles,

but elicited the constriction of skeletal muscle arterioles. This is

consistent with the previous finding an important regulatory role

of H2O2 as an EDHF in the coronary microcirculation [20,21,26],

and the conclusion that, H2O2 cannot be regarded as an EDHF in

skeletal muscle arterioles under physiological conditions [8]. It is

unclear whether H2O2 concentrations reach levels high enough to

evoke vasodilation and hence to increase the skeletal muscle blood

flow under pathological conditions (e.g. inflammation).

The findings of the present study suggest that H2O2 activates an

endothelial signalling pathway, leading to the synthesis of TXA2,

which then activates its receptors of smooth muscle cells, leading to

an increase in the Ca2+ sensitivity of their contractile protein

machinery. Figure 7 summarizes the detailed mechanisms iden-

tified or confirmed in the present study that lead to H2O2-evoked

constrictions of the skeletal muscle arterioles. Elucidation of these

details of this H2O2-induced signalling not only adds to our

knowledge of H2O2-induced vasomotor responses, but may also

furnish novel molecular targets for the treatment of H2O2-driven

vascular dysfunctions.

Supporting Information

Figure S1 Effects of different COX-2 specific inhibitors
on H2O2-induced vasoconstriction. The lack of the effects of

COX-2 in the vasoconstriction evoked by H2O2 was confirmed by

using another COX-2-specific inhibitor, NS-398 (10 mM, n = 3

arterioles from 3 different animals, id: 15568 mm; closed

triangles). The effects of celecoxib are indicated by open triangles

(3 mM celecoxib, n = 4 arterioles from 4 different animals, id:

146613 mm); the dotted line denotes the control.

(TIF)

Figure S2 PLC inhibition had no effects on the constric-
tions evoked by the TXA2 receptor agonist. PLC inhibition

(10 mM U73122) significantly decreased the constriction evoked by

norepinephrine (n = 4 arterioles from 2 different animals, id:

170610 mm and 15468 mm; panel A), but did not influence the

constrictions evoked by increasing concentrations of the TXA2

receptor agonist U46619 in skeletal muscle arterioles (n = 5

arterioles from 4 different animals, id: 171610 mm and

15468 mm; panel B). Means6SEM are plotted. Asterisks denote

significant differences from the control.

(TIF)

File S1 Data in supporting information file.
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Performed the experiments: VC AP AT. Analyzed the data: VC AP AT

ÁK. Contributed reagents/materials/analysis tools: VC AT ÁK. Wrote
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References

1. Montezano AC, Touyz RM (2012) Molecular mechanisms of hypertension—

reactive oxygen species and antioxidants: a basic science update for the clinician.

Can J Cardiol 28: 288–295.

2. Lacy F, Kailasam MT, O9Connor DT, Schmid-Schonbein GW, Parmer RJ

(2000) Plasma hydrogen peroxide production in human essential hypertension:

role of heredity, gender, and ethnicity. Hypertension 36: 878–884.

3. Erdei N, Bagi Z, Edes I, Kaley G, Koller A (2007) H2O2 increases production of

constrictor prostaglandins in smooth muscle leading to enhanced arteriolar tone

in Type 2 diabetic mice. Am J Physiol Heart Circ Physiol 292: H649–656.

4. Shi Y, So KF, Man RY, Vanhoutte PM (2007) Oxygen-derived free radicals

mediate endothelium-dependent contractions in femoral arteries of rats with

streptozotocin-induced diabetes. Br J Pharmacol 152: 1033–1041.

5. Hulsmans M, Van Dooren E, Holvoet P (2012) Mitochondrial reactive oxygen

species and risk of atherosclerosis. Curr Atheroscler Rep 14: 264–276.

6. Brandes RP, Kreuzer J (2005) Vascular NADPH oxidases: molecular

mechanisms of activation. Cardiovasc Res 65: 16–27.

7. Cai H (2005) Hydrogen peroxide regulation of endothelial function: origins,

mechanisms, and consequences. Cardiovasc Res 68: 26–36.

8. Cseko C, Bagi Z, Koller A (2004) Biphasic effect of hydrogen peroxide on

skeletal muscle arteriolar tone via activation of endothelial and smooth muscle

signaling pathways. J Appl Physiol 97: 1130–1137.

9. Cai H, Griendling KK, Harrison DG (2003) The vascular NAD(P)H oxidases as

therapeutic targets in cardiovascular diseases. Trends Pharmacol Sci 24: 471–

478.

10. Nedeljkovic ZS, Gokce N, Loscalzo J (2003) Mechanisms of oxidative stress and

vascular dysfunction. Postgrad Med J 79: 195–199; quiz 198–200.

11. Mueller CF, Laude K, McNally JS, Harrison DG (2005) ATVB in focus: redox

mechanisms in blood vessels. Arterioscler Thromb Vasc Biol 25: 274–278.

12. Zhang DX, Gutterman DD (2007) Mitochondrial reactive oxygen species-

mediated signaling in endothelial cells. Am J Physiol Heart Circ Physiol 292:

H2023–2031.

Mechanism of H2O2-Evoked Arteriolar Constrictions

PLOS ONE | www.plosone.org 9 August 2014 | Volume 9 | Issue 8 | e103858



13. Briones AM, Touyz RM (2010) Oxidative stress and hypertension: current

concepts. Curr Hypertens Rep 12: 135–142.

14. Touyz RM (2004) Reactive oxygen species, vascular oxidative stress, and redox

signaling in hypertension: what is the clinical significance? Hypertension 44:

248–252.

15. Halliwell B, Gutteridge JM (1984) Oxygen toxicity, oxygen radicals, transition

metals and disease. Biochem J 219: 1–14.

16. Taniyama Y, Griendling KK (2003) Reactive oxygen species in the vasculature:

molecular and cellular mechanisms. Hypertension 42: 1075–1081.

17. Root RK, Metcalf JA (1977) H2O2 release from human granulocytes during

phagocytosis. Relationship to superoxide anion formation and cellular

catabolism of H2O2: studies with normal and cytochalasin B-treated cells.

J Clin Invest 60: 1266–1279.

18. Liu X, Zweier JL (2001) A real-time electrochemical technique for measurement

of cellular hydrogen peroxide generation and consumption: evaluation in human

polymorphonuclear leukocytes. Free Radic Biol Med 31: 894–901.

19. Matoba T, Shimokawa H, Nakashima M, Hirakawa Y, Mukai Y, et al. (2000)

Hydrogen peroxide is an endothelium-derived hyperpolarizing factor in mice.

J Clin Invest 106: 1521–1530.

20. Yada T, Shimokawa H, Hiramatsu O, Kajita T, Shigeto F, et al. (2003)

Hydrogen peroxide, an endogenous endothelium-derived hyperpolarizing

factor, plays an important role in coronary autoregulation in vivo. Circulation

107: 1040–1045.

21. Matoba T, Shimokawa H, Morikawa K, Kubota H, Kunihiro I, et al. (2003)

Electron spin resonance detection of hydrogen peroxide as an endothelium-

derived hyperpolarizing factor in porcine coronary microvessels. Arterioscler

Thromb Vasc Biol 23: 1224–1230.

22. Koller A, Bagi Z (2004) Nitric oxide and H2O2 contribute to reactive dilation of

isolated coronary arterioles. Am J Physiol Heart Circ Physiol 287: H2461–2467.

23. Wagenfeld L, von Domarus F, Weiss S, Klemm M, Richard G, et al. (2013) The

effect of reactive oxygen species on the myogenic tone of rat ophthalmic arteries

with and without endothelium. Graefes Arch Clin Exp Ophthalmol 251: 2339–

2344.

24. Liu Y, Bubolz AH, Mendoza S, Zhang DX, Gutterman DD (2011) H2O2 is the

transferrable factor mediating flow-induced dilation in human coronary

arterioles. Circ Res 108: 566–573.

25. Matoba T, Shimokawa H, Kubota H, Morikawa K, Fujiki T, et al. (2002)

Hydrogen peroxide is an endothelium-derived hyperpolarizing factor in human

mesenteric arteries. Biochem Biophys Res Commun 290: 909–913.

26. Miura H, Bosnjak JJ, Ning G, Saito T, Miura M, et al. (2003) Role for hydrogen

peroxide in flow-induced dilation of human coronary arterioles. Circ Res 92:

e31–40.

27. Liu Y, Zhao H, Li H, Kalyanaraman B, Nicolosi AC, et al. (2003) Mitochondrial

sources of H2O2 generation play a key role in flow-mediated dilation in human

coronary resistance arteries. Circ Res 93: 573–580.

28. Cai H (2005) NAD(P)H oxidase-dependent self-propagation of hydrogen

peroxide and vascular disease. Circ Res 96: 818–822.

29. Yang ZW, Zheng T, Zhang A, Altura BT, Altura BM (1998) Mechanisms of

hydrogen peroxide-induced contraction of rat aorta. Eur J Pharmacol 344: 169–

181.

30. Rodriguez-Martinez MA, Garcia-Cohen EC, Baena AB, Gonzalez R, Salaices

M, et al. (1998) Contractile responses elicited by hydrogen peroxide in aorta

from normotensive and hypertensive rats. Endothelial modulation and

mechanism involved. Br J Pharmacol 125: 1329–1335.

31. Gao YJ, Lee RM (2005) Hydrogen peroxide is an endothelium-dependent

contracting factor in rat renal artery. Br J Pharmacol 146: 1061–1068.

32. Sheehan DW, Giese EC, Gugino SF, Russell JA (1993) Characterization and

mechanisms of H2O2-induced contractions of pulmonary arteries. Am J Physiol

264: H1542–1547.

33. Katusic ZS, Schugel J, Cosentino F, Vanhoutte PM (1993) Endothelium-

dependent contractions to oxygen-derived free radicals in the canine basilar

artery. Am J Physiol 264: H859–864.

34. Yang ZW, Zheng T, Wang J, Zhang A, Altura BT, et al. (1999) Hydrogen

peroxide induces contraction and raises [Ca2+]i in canine cerebral arterial

smooth muscle: participation of cellular signaling pathways. Naunyn Schmiede-

bergs Arch Pharmacol 360: 646–653.

35. Gao YJ, Hirota S, Zhang DW, Janssen LJ, Lee RM (2003) Mechanisms of

hydrogen-peroxide-induced biphasic response in rat mesenteric artery.

Br J Pharmacol 138: 1085–1092.

36. Iida Y, Katusic ZS (2000) Mechanisms of cerebral arterial relaxations to

hydrogen peroxide. Stroke 31: 2224–2230.

37. Zembowicz A, Hatchett RJ, Jakubowski AM, Gryglewski RJ (1993) Involvement

of nitric oxide in the endothelium-dependent relaxation induced by hydrogen

peroxide in the rabbit aorta. Br J Pharmacol 110: 151–158.

38. Thengchaisri N, Kuo L (2003) Hydrogen peroxide induces endothelium-

dependent and -independent coronary arteriolar dilation: role of cyclooxygenase
and potassium channels. Am J Physiol Heart Circ Physiol 285: H2255–2263.

39. Barlow RS, White RE (1998) Hydrogen peroxide relaxes porcine coronary

arteries by stimulating BKCa channel activity. Am J Physiol 275: H1283–1289.
40. Hayabuchi Y, Nakaya Y, Matsuoka S, Kuroda Y (1998) Hydrogen peroxide-

induced vascular relaxation in porcine coronary arteries is mediated by Ca2+-
activated K+ channels. Heart Vessels 13: 9–17.

41. Rogers PA, Chilian WM, Bratz IN, Bryan RM Jr, Dick GM (2007) H2O2

activates redox- and 4-aminopyridine-sensitive Kv channels in coronary vascular
smooth muscle. Am J Physiol Heart Circ Physiol 292: H1404–1411.

42. Zhang DX, Borbouse L, Gebremedhin D, Mendoza SA, Zinkevich NS, et al.
(2012) H2O2-induced dilation in human coronary arterioles: role of protein

kinase G dimerization and large-conductance Ca2+-activated K+ channel
activation. Circ Res 110: 471–480.

43. Gao YJ, Lee RM (2001) Hydrogen peroxide induces a greater contraction in

mesenteric arteries of spontaneously hypertensive rats through thromboxane
A(2) production. Br J Pharmacol 134: 1639–1646.

44. Oeckler RA, Kaminski PM, Wolin MS (2003) Stretch enhances contraction of
bovine coronary arteries via an NAD(P)H oxidase-mediated activation of the

extracellular signal-regulated kinase mitogen-activated protein kinase cascade.

Circ Res 92: 23-31.
45. Ardanaz N, Beierwaltes WH, Pagano PJ (2007) Comparison of H2O2-induced

vasoconstriction in the abdominal aorta and mesenteric artery of the mouse.
Vascul Pharmacol 47: 288–294.

46. Pelaez NJ, Braun TR, Paul RJ, Meiss RA, Packer CS (2000) H2O2 mediates
Ca2+- and MLC20 phosphorylation-independent contraction in intact and

permeabilized vascular muscle. Am J Physiol Heart Circ Physiol 279: H1185–

1193.
47. Feher A, Rutkai I, Beleznai T, Ungvari Z, Csiszar A, et al. (2010) Caveolin-1

limits the contribution of BK(Ca) channel to EDHF-mediated arteriolar dilation:
implications in diet-induced obesity. Cardiovasc Res 87: 732–739.

48. Czikora A, Lizanecz E, Bako P, Rutkai I, Ruzsnavszky F, et al. (2012) Structure-

activity relationships of vanilloid receptor agonists for arteriolar TRPV1.
Br J Pharmacol 165: 1801–1812.

49. Kandasamy K, Bezavada L, Escue RB, Parthasarathi K (2013) Lipopolysac-
charide induces endoplasmic store Ca2+-dependent inflammatory responses in

lung microvessels. PLoS One 8: e63465.
50. Yang ZW, Zhang A, Altura BT, Altura BM (1998) Endothelium-dependent

relaxation to hydrogen peroxide in canine basilar artery: a potential new

cerebral dilator mechanism. Brain Res Bull 47: 257–263.
51. Rogers PA, Dick GM, Knudson JD, Focardi M, Bratz IN, et al. (2006) H2O2-

induced redox-sensitive coronary vasodilation is mediated by 4-aminopyridine-
sensitive K+ channels. Am J Physiol Heart Circ Physiol 291: H2473–2482.

52. Wong MS, Vanhoutte PM (2010) COX-mediated endothelium-dependent

contractions: from the past to recent discoveries. Acta Pharmacol Sin 31: 1095–
1102.

53. Akiba S, Sato T (2004) Cellular function of calcium-independent phospholipase
A2. Biol Pharm Bull 27: 1174–1178.

54. Meier M, King GL (2000) Protein kinase C activation and its pharmacological
inhibition in vascular disease. Vasc Med 5: 173–185.

55. Wang XT, McCullough KD, Wang XJ, Carpenter G, Holbrook NJ (2001)

Oxidative stress-induced phospholipase C-gamma 1 activation enhances cell
survival. J Biol Chem 276: 28364–28371.

56. Gao Y, Vanhoutte PM (1993) Products of cyclooxygenase mediate the responses
of the guinea pig trachea to hydrogen peroxide. J Appl Physiol 74: 2105–2111.

57. Gil-Longo J, Gonzalez-Vazquez C (2005) Characterization of four different

effects elicited by H2O2 in rat aorta. Vascul Pharmacol 43: 128–138.
58. Sellers MM, Stallone JN (2008) Sympathy for the devil: the role of thromboxane

in the regulation of vascular tone and blood pressure. Am J Physiol Heart Circ
Physiol 294: H1978–1986.

59. Nakahata N (2008) Thromboxane A2: physiology/pathophysiology, cellular

signal transduction and pharmacology. Pharmacol Ther 118: 18–35.
60. Offermanns S, Laugwitz KL, Spicher K, Schultz G (1994) G proteins of the G12

family are activated via thromboxane A2 and thrombin receptors in human
platelets. Proc Natl Acad Sci U S A 91: 504–508.

61. Wilson DP, Susnjar M, Kiss E, Sutherland C, Walsh MP (2005) Thromboxane
A2-induced contraction of rat caudal arterial smooth muscle involves activation

of Ca2+ entry and Ca2+ sensitization: Rho-associated kinase-mediated phos-

phorylation of MYPT1 at Thr-855, but not Thr-697. Biochem J 389: 763–774.
62. Somlyo AP, Somlyo AV (2003) Ca2+ sensitivity of smooth muscle and nonmuscle

myosin II: modulated by G proteins, kinases, and myosin phosphatase. Physiol
Rev 83: 1325–1358.

63. Walsh MP, Cole WC (2013) The role of actin filament dynamics in the

myogenic response of cerebral resistance arteries. J Cereb Blood Flow Metab 33:
1–12.

Mechanism of H2O2-Evoked Arteriolar Constrictions

PLOS ONE | www.plosone.org 10 August 2014 | Volume 9 | Issue 8 | e103858


