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Endothelial cells (EC) form a semi-permeable barrier between the interior space of blood 

vessels and the underlying tissues. In acute lung injury (ALI) the EC barrier is weakened 

leading to increased vascular permeability. It is widely accepted that EC barrier integrity is 

critically dependent upon intact cytoskeletal structure and cell junctions. Edemagenic 

agonists, like thrombin or endotoxin lipopolysaccharide (LPS), induced cytoskeletal 

rearrangement, and EC contractile responses leading to disruption of intercellular contacts and 

D
ow

nl
oa

de
d 

by
 [

G
eo

rg
ia

 R
eg

en
ts

 U
ni

ve
rs

ity
 G

re
en

bl
at

t L
ib

ra
ry

],
 [

A
le

xa
nd

er
 V

er
in

] 
at

 0
8:

39
 3

1 
Ja

nu
ar

y 
20

15
 



Acc
ep

ted
 M

an
us

cri
pt

2 
 

EC permeability increase. The highly clinically-relevant cytoskeletal mechanisms of EC 

barrier dysfunction are currently under intense investigation and will be described and 

discussed in the current review. 

Introduction. Lung endothelium forms a semi-permeable barrier between the blood and 

the interstitial space.
1
 Disruption of endothelial barrier results in the movement of fluid and 

macromolecules into the interstitium and pulmonary air spaces causing pulmonary edema 

which is a common feature of Acute Lung Injury (ALI) and its more severe form Acute 

Respiratory Distress Syndrome (ARDS). The integrity of pulmonary EC monolayer is a 

critical requirement for tissue and organ homeostasis. EC barrier is heavily dependent upon 

the EC cytoskeleton network primarily microfilaments and microtubules which tightly linked 

to cell junction proteins.
1-4

 This review will describe the cytoskeletal mechanisms of EC 

permeability increase, induced by various inflammatory conditions focusing on edemagenic 

agonists, like LPS and thrombin.  

Clinical and physiological importance of the lung vascular barrier. The alveolar-

capillary barrier is formed by the microvascular endothelium, the alveolar epithelium and the 

basement membrane. Direct or indirect injuries of the lung caused by inflammatory or toxic 

mediators can lead to pathophysiological syndromes such as severe pneumonia and 

ALI/ARDS. Despite recent therapeutic advances, these conditions still have high (30-40%) 

rates of patient mortality.
5
 The acute phase of lung injury is characterized by a massive and 

rapid flood of protein rich edema fluid into the alveolar spaces as a consequence of increased 

endothelial permeability
5
 (Fig. 1). Neutrophils are adhering to the injured endothelium and 

migrating through the interstitium into the alveoli,
6, 7

 whereas the macrophages are secreting 

cytokines (IL-1, 6, 8 and 10) and TNFα.
8
 ALI/ARDS leads to impaired gas exchange and may 

cause respiratory failure.
9
 It is widely accepted that EC barrier dysfunction, a prominent 

feature of these clinical syndromes is tightly linked to agonist-induced cytoskeletal 
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remodeling resulting in the disruption of cell-cell contacts, paracellular gap formation and EC 

barrier compromise.
3, 4

 Apart from ventilation strategies there is no standard treatment for 

pulmonary edema, making the investigation of regulatory mechanisms of endothelial barrier 

dysfunction highly clinically important.
5
  

Endothelial barrier properties. The vascular endothelium serves as a semi-selective 

barrier lining in the vessel walls (Fig. 1). It dynamically regulates the liquid and 

macromolecule transport between the blood and the interstitial space.
10

 The vasculature is 

lined by heterogeneous population of endothelial cells. This heterogeneity is derived from the 

origin of endothelial cells in the vascular tree. The barrier function, surface biochemistry, and 

morphology of confluent monolayers of microvascular and macrovascular endothelial cells 

are different for these two cell types.
11

  In general, microvascular EC form a tighter barrier, 

compared to macrovascular one. It was found that permeability is ~16-fold less for sucrose 

and to 2-fold less for albumin in microvascular EC compared to macrovascular EC 

monolayers. 
12

 Conversely, primary cultures of microvascular EC produced 10 times higher 

transmonolayer electrical resistance (TER) compared to macrovascular one.
13

 Although the 

precise mechanisms that regulate this variability are still under investigation, microarray 

analysis showed a significant variation in microvascular and macrovascular gene expression 

patterns.
14

 Extracellular matrix proteins, collagen 4α1, collagen 4α2, and laminin were 

associated with microvessel endothelia, while fibronectin, collagen 5α1, and collagen 5α2 

were seen with the large vessel endothelia.
14

 Furthermore, electron microscopy revealed that 

microvascular EC have more developed intercellular junctions with more focal membrane 

adhesion sites per junction than the macrovascular cells.
12

 Pulmonary artery endothelial cells 

(macrovascular EC) participate in blood homeostasis, blood-tissue exchange regulation under 

various conditions.
15

 They share similarities in cell characteristics and in physiological 

properties with pulmonary microvascular EC. However, in vivo models of pulmonary edema 
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suggest that most fluid filtration occurs in the microcirculation.
16

   

Endothelial permeability pathways. A variety of physical, inflammatory and bioactive 

stimuli alter the EC barrier leading to gap formation, increasing vessel permeability and 

compromising organ function. Permeability across endothelial and epithelial cell monolayers 

can involve transcellular, paracellular or the combination of both pathways (Fig. 2). The 

transcellular transport involves membrane-attached cytosolic caveolae that migrate through 

the endothelial cells and transfer macromolecules from the blood to the interstitium.
10

 The 

main player in this process is the Src kinase, which can phosphorylate caveolin-1 on tyrosine 

residues inducing the migration of the vesicles across the endothelium.
17

 Recent studies 

demonstrated that transcellular permeability increase precedes and may trigger paracellular 

permeability increase via signaling involved Src-mediated phosphorylation of caveolin-1.
18

 

However, majority of trafficking occurs through the paracellular route,
19

 which will be 

described in this review in more details.  

External stimuli leading to EC barrier compromise. The capillary endothelium is 

impermeable to macromolecules under basal conditions. This is due to the network of 

cytoskeletal and cell-junction elements which protect the endothelial barrier integrity. In state 

of acute or chronic inflammation, sepsis, diabetes, angiogenesis, or excessive level of 

mechanical alterations (stretch or shear stress), the EC barrier integrity is compromised. 

Inflammatory mediators such as LPS, thrombin, pro-inflammatory cytokines, or reactive 

oxygen species induce the loss of endothelial barrier function leading to permeability increase 

to solute and plasma proteins.
20-23

 

LPS, a pro-inflammatory mediator and constituent of Gram-negative bacterial cell wall, 

directly disrupts macro- and microvascular EC barrier function in vitro and in vivo.
20, 24, 25

 

LPS primarily acts through the activation of toll-like receptor 4 (TLR4).
26

 LPS-induced EC 

barrier dysfunction is correlated with actin reorganization and caspase-mediated cleavage of 
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cytoskeletal proteins that participate in cell-cell and cell-matrix adhesion.
25

 Signal 

transduction mechanisms for LPS-induced EC permeability are not completely clear yet, but 

likely involve Tyr kinase(s), protein kinase C (PKC) as well as Rho signaling.
27-30

 Murine 

lung injury induced by LPS is a model that has been shown to be largely consistent with 

sepsis-induced ALI.
31

 Specifically, the injury elicited is characterized by neutrophil 

infiltration into the lung in association with increased inflammatory mediators including 

TNFα and NF-kB.
31

  

Thrombin is a serine protease generated by injured endothelial cells by the cleavage of 

circulating prothrombin, participating in the prothrombinase complex which also contains 

factors X and V, Ca
2+

 and membrane phospholipids.
32

 Thrombin not only induces 

coagulation, but also affects endothelial barrier function by releasing of inflammatory 

mediators and growth factors  as well as inducing leukocyte adhesion on EC surface.
33

 The 

cellular responses of EC to thrombin are mainly mediated through a thrombin-specific 

protease-activated receptor, PAR1. 
34, 35

 
36

 In vitro, thrombin produces rapid, reversible, 

concentration-dependent increases in EC permeability as measured by the clearance rate of 

Evans blue dye-labeled albumin across EC monolayers
37, 38

 or by changes in transendothelial 

electrical resistance.
21, 39, 40

 Thrombin infusion in animals resembles that seen after LPS 

administration in several respects, including pulmonary hypertension and increased 

pulmonary vascular permeability.
41, 42

 Interestingly, thrombin inhibitor, anti-thrombin III (AT 

III) prevents LPS-induced pulmonary vascular injury suggesting the involvement of thrombin 

in LPS-induced permeability response.
43

 

Contractile mechanisms of EC permeability. Endothelial barrier integrity is maintained 

by the precisely regulated balance between  actomyosin contractile forces and adhesive cell-

cell, cell-matrix tethering forces.
4
 Both competing forces are generated by the cytoskeleton 

comprising actin microfilaments, microtubules and intermediate filaments.
3, 4

 Therefore, the 
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complex network of cytoskeleton is critical in the EC barrier regulation. Disruption of either 

intact actin or microtubule network leads to formation of paracellular gaps and permeability 

increase.
44, 45

 Under quiescent conditions, when the balance is tilted towards tethering forces, 

a thick cortical actin ring can be observed, where endothelial cells can maintain tight 

connections with each other and the underlying matrix.
3, 4

 Due to the effect of barrier-

compromising agents like thrombin or LPS, the balance is shifted towards contractile forces 

(Fig. 3).  

Thrombin cleaves and activates its G-protein-coupled receptor (PAR-1). Engagement of 

Gq protein leads to activation of phospholipase C resulting in intracellular [Ca
2+

] increase.
46

 

Ca
2+

 elevation activates the Ca
2+

/calmodulin (CaM) dependent myosin light chain (MLC) 

kinase (MLCK) that phosphorylates MLC and, consequently, actomyosin interaction and cell 

contraction will be evoked.
47, 48

 Beside the Ca
2+

/CaM-induced activation, endothelial (non-

muscle) MLCK can be activated by Src-mediated Tyr phosphorylation on its unique N-

terminal fragment, which is absent in smooth muscle (SM) MLCK.
49

 Thrombin was shown to 

increase EC permeability in a Src/MLCK-dependent manner via MLC-mediated contractile 

mechanism.
37, 50

  

Additionally, thrombin and LPS induced MLC-mediated EC contractile response and 

permeability via activation of Rho signaling pathway.
21, 29

 The Ras homologous small GTPase 

Rho acts as molecular switch, cycling between an active GTP-bound and inactive GDP-bound 

state.
51

 Rho activity is positively regulated by guanosine nucleotide exchange factors (GEFs) 

and inhibited by GTPase-activating proteins (GAPs), and GDP-dissociation inhibitors 

(GDIs).
52

 Thrombin induced Rho activation involved G12/13-mediated activation of 

p115RhoGEF, GEF-H1 activation, as well as PKC-mediated inhibition of GDI-1.
21, 53, 54

 LPS-

induced Rho activation dependent upon the activity of Src family kinases and direct nitration 

of RhoA at a Tyr side chain.
34

 
29, 55

 GTP-bound Rho activates its downstream effector, Rho-
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kinase, which increases MLC phosphorylation by two mechanisms: directly, via 

phosphorylation of MLC at Ser
19

 and indirectly, via phosphorylation of the targeting subunit 

(MYPT1) of the myosin phosphatase (MLCP). Phosphorylation of MYPT1 at the inhibitory 

Thr
686

 and Thr
850

 sites leads to the inhibition of MLCP, accumulation of phospho-MLC 

resulting in cell contraction.
56, 57

 
21

 

Inhibition of MLCP also can be achieved through activation of CPI-17 (PKC potentiated 

inhibitory protein of 17 kDa). This soluble globular protein was first identified in SM cells, 

and later was found in several non-muscle cells including microvascular EC.
58, 59

 

Phosphorylation of CPI-17 at Thr
38

 by PKC increases its inhibitory potency toward MLCP 

~1000-fold.
60,61

 Histamine and thrombin (to a lesser extent) activate CPI-17 in PKC-

dependent manner in ECs.
58

 CPI-17 depletion significantly attenuates histamine-induced 

microvascular permeability increase implicating CPI-17-mediated mechanism of MLCP 

inhibition in EC barrier regulation
58

 (Fig. 3).   

EC barrier dysfunction and cytoskeletal rearrangement are not always associated with 

triggering contraction by an increase in MLC phosphorylation. Some agonists, like direct 

PKC activators induced EC permeability without increasing MLC phosphorylation at 

Ser
19

/Thr
18

. 
62, 63

 Phorbol ester-induced EC barrier dysfunction is accompanied by increased 

phosphorylation of a cytoskeletal protein, caldesmon (CaD).
63-65

 CaD contains distinct 

binding sites for actin and myosin, thereby potentially regulating actomyosin interactions and 

promoting actin filament formation in the absence of MLC phosphorylation.
66-68

 Phorbol 

ester-induced phosphorylation of CaD correlates with contraction and has been postulated as 

an on/off switch regulating actomyosin interactions in smooth muscle.
67

 It is clear that CaD is 

directly involved in EC cytoskeletal arrangement and migration,
69

 however, the functional 

significance of CaD phosphorylation in the regulation of EC barrier function have not been 

fully investigated.  
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Interestingly, PKC does not directly phosphorylate CaD. Phorbol ester-induced EC 

barrier dysfunction includes complex signaling involving sequential activation of Ras, Raf-1 

and MEK resulting in activation of ERK1/2 MAP kinases,
70

 which phosphorylate CaD and 

are responsible for CaD-mediated contractile response in smooth muscle.
67

 Aside of ERK 1/2, 

another MAPK family member, p38 kinase is also directly involved in EC cytoskeletal 

remodeling and permeability.
71-73

 p38, but not ERKs, is involved in thrombin-induced EC 

barrier compromise
73

 and p38 signaling is involved in several in vivo models of lung injury 

including the LPS model of ALI.
74-76

 p38 MAPK downstream targets contain several 

cytoskeletal proteins such as CaD and HSP-27.
77, 78

  

Small heat shock actin-capping protein, HSP-27, is phosphorylated by MAP kinase-

activated protein kinase 2 (MAPKAP kinase 2), that is in turn phosphorylated by p38 

MAPK.
77, 79

 Phosphorylation of HSP-27 promotes F-actin formation, membrane blebbing and 

mediates actin reorganization and cell migration in human endothelium.
89,

 
80-82

 However, the 

role of HSP-27 in the regulation of EC permeability remains controversial. For example, 

pertussis toxin-induced EC permeability is temporally linked to p38 MAPK activation and 

phosphorylation of HSP-27 in EC
72; and LPS-induced endothelial barrier dysfunction 

correlates with HSP-27 phosphorylation in vivo.
76

 In contrary, depletion of HSP-27 did not 

prevent p38-mediated TGFβ-induced EC barrier dysfunction.
83

  Therefore, the exact 

cytoskeletal targets of p38 MAPK in endothelium remain undetermined. The putative targets 

include ezrin/radixin/moesin (ERM) proteins, which may be phosphorylated through p38-

dependent mechanisms,
84

 but apparently, the role of ERM phosphorylation in EC barrier 

regulation is agonist-specific.
84-87

 A few studies implicated the involvement of p38 activity in 

the activation of Rho/Rho kinase pathway and EC barrier dysfunction induced by TGFβ and 

Staphylococcus aureus-derived toxins.
83, 88

 In contrast, inhibition of p38 has no effect on 

thrombin-induced MLC phosphorylation, which involves Rho activation.
21, 73

 Finally, recent 
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study supports the cross-talk between p38 and Rho pathways in the regulation of 

microvascular permeability.
88

 

Crosstalk between microtubules and microfilaments in EC permeability regulation. 

Paracellular gap formation evoked by barrier-disruptive agents resulting in increased 

endothelial permeability is governed by the coordinated communication among cytoskeletal 

elements. Disruption of microtubule (MT) structure leads to an increase in transendothelial 

permeability associated with a characteristic loss of the peripheral actin band as well as an 

increase in the density of actin stress fibers, increased levels of MLC phosphorylation, 

consistent with actomyosin contraction, and paracellular gap formation.
45, 89

 Further, 

microtubule dissolution increased vascular permeability in murine model.
75

 Vice versa, 

stabilization of microtubules protects EC monolayer in vitro and in vivo.
75, 90, 91

 Edemagenic 

agonists like thrombin, LPS, TNFα and TGFβ induce partial microtubule dissolution 

accompanied by activation of EC contraction and permeability increase.
91-94

 The effect of 

microtubule dissolution on actin reorganization is attributed to stimulation of Rho and p38 

MAPK pathways, but not to an increase in [Ca
2+

], neither to MLCK or ERK1/2 activation.
45, 

93, 95
  

In the thrombin model of EC permeability microtubule disassembly precedes actin stress 

fiber formation.
96

 Thrombin may induce microtubule dissolution via stimulation of 

G12/13/p115RhoGEF cascade, followed by Rho/Rho kinase activation, resulting in 

phosphorylation of the microtubule-associated protein, tau.
93

 In its unphosphorylated form, 

tau promotes assembly of microtubules and inhibits the rate of depolymerization.
97-99

 

Phosphorylation of tau decreases its capacity to bind microtubules and promotes MT 

assembly. 
99, 100

 Interestingly, p38 MAPK is also able to phosphorylate tau in vitro.
101

 

Inhibition of p38 attenuates microtubule dissolution and permeability increase induced by 

various agonists
94, 102

 suggesting that thrombin-induced p38 activation may also be involved 
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in MT destabilization via tau phosphorylation.  

Thrombin may also destabilize microtubules via Rho kinase-mediated phosphorylation 

and activation of LIM kinase (LIMK).
103

 In quiescent conditions, LIM kinase is associated 

with microtubules. Thrombin treatment or ectopic expression of Rho kinase leads to 

dissociation of LIM kinase from microtubules accompanied by MT destabilization, 

phosphorylation/inhibition of cofilin, an actin depolymerization factor, resulting in F-actin 

assembly.
103

   

It was also recently reported that thrombin may destabilize microtubules via 

dephosphorylation of stathmin, a MT-associated protein, which in its phosphorylated form 

stabilizes the microtubules.
104

 However, the thrombin-induced phosphatase, which is able to 

dephosphorylate stathmin and is involved in thrombin-induced permeability increase, is not 

known yet.  

Thrombin-induced microtubule dissolution may further activate Rho pathway via GEF-

H1, which has been recently characterized as a Rho-specific GEF localizing on microtubules. 

105
 In its MT-bound state, GEF-H1 is inactive, whereas GEF-H1 release caused by MT 

disassembly stimulates its activity towards Rho.
106

 Importantly, GEF-H1 is directly involved 

in thrombin-induced permeability increase.
53

 

Microtubule dissolution may also affect cellular localization and activity of cytoskeletal 

regulatory proteins like CaD, which can be involved in EC barrier regulation. CaD co-purifies 

with microtubules from brain and potentiates tubulin polymerization.
107, 108

 Phosphorylation 

of CaD by cell cycle-dependent cdc2 kinase (Pro-directed kinase, similar to MAPK) 

eliminates MT-binding activity of CaD, and also decreases CaD-mediated inhibition of 

actomyosin ATPase, consistent with contraction.
107, 108

 Ectopic expression of CaD in 

fibroblasts eliminates the increase in focal adhesions and microfilament bundles induced by 

MT dissolution and Rho activation.
109
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Current findings describing the role of microtubule/microfilament crosstalk in thrombin 

permeability model are summarized on Fig. 4. Thrombin may induce cytoskeletal 

reorganization leading to permeability increase in two phases. In the initial phase thrombin-

induced engagement of heterotrimeric G-proteins activates Rho (via p115RhoGEF) and p38 

MAPK pools associated with microtubules, resulting in phosphorylation/activation of MT-

associated proteins, like LIMK, tau and CaD. In addition, thrombin destabilizes microtubules 

by dephosphorylation of stathmin. In the final stage MT dissolution releases MT-associated 

protein complexes, further activating Rho (via GEF-H1) and p38 MAPK pathways, leading to 

increased phosphorylation of cytoskeletal targets, stress fiber formation, and barrier 

compromise.  

Endothelial cell junctions and barrier regulation. The vascular endothelium is 

constantly exposed to hemodynamic stimuli, such as shear stress, contraction or dilation of the 

vessels. The continuous reorganization of cell junctions and the cytoskeleton have key 

importance in the maintenance of the endothelial barrier integrity. Reshaping of the cells 

allows the endothelial monolayer to adapt to the dynamic conditions to which it is exposed.
110

 

Inter-endothelial communicating structures mainly comprise of adherens junctions (AJ), tight 

junctions (TJ) and gap junctions (GJ) (Fig. 5).  

AJs are critical in the maintenance of endothelial integrity providing connection between 

neighboring ECs, thus regulating endothelial barrier function. AJs represent the majority of 

cell junctions comprising the endothelial barrier, in contrast with epithelial cells where tight 

junctions dominate.
10

 AJs are composed of VE-cadherin and its cytoplasmic binding partners: 

α-, β- γ-, p120 catenins, which link AJs to the actin cytoskeleton. The assembly of the VE-

cadherin-catenin complex is regulated by phosphorylation, and their dissociation leads to EC 

barrier dysfunction.
111

 

VE-cadherin is a transmembrane protein that mediates hemophilic binding of adjacent 
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cells in a Ca
2+

-dependent manner.
111

 The extracellular region contains five repeating domains 

which coordinate with calcium ions and form a rod-like structure. The intracellular tail of VE-

cadherin has two domains, the juxtamembrane domain (JMD) and the C-terminal domain 

(CTD). JMD binds p120 catenin, while CTD binds -catenin or plakoglobin (γ-catenin) which 

attach α-catenin to link the cadherin-catenin complex to the actin cytoskeleton. α-catenin also 

interacts with other actin-binding proteins, specifically, α-actinin, vinculin, TJ zonula 

occludin proteins: ZO-1, ZO-2, ZO-3 and possibly spectrin. VE-cadherin is critical for the 

proper assembly of AJs, and for normal endothelial barrier function.
112

 VE-cadherin impairing 

results in interstitial edema and inflammation in lung and heart microvasculature.
113

 

Catenins also play an important role in the regulation of AJ assembly. -catenin has a 

dual role in cells. First it was identified as a component of AJs in the late ‘80s. Kemler and 

colleagues were able to isolate -catenin together with α-catenin and plakoglobin.
114

 Later 

genetic and embryogenic studies revealed -catenin as a component of the Wnt signaling 

pathway playing an important role in embryonic development and tumorogenesis.
115

 Recent 

study implicates the involvement of Wnt signaling in EC barrier regulation.
116

 

Plakoglobin plays an important role in cadherin/catenin complex assembly, as a linker 

between this complex and F-actin cytoskeleton.
117

 Plakoglobin is an intracellular binding 

partner for VE-cadherin in ECs and its main function is to stabilize the AJ complex.
117, 118

 

Through α-catenin, plakoglobin is in connection with actin-binding proteins, like α-actinin 

and ZO-1.
119

 Plakoglobin is closely related to β-catenin, sharing 80% sequence identity
120

 and 

can bind the cytoplasmic domains of the classical cadherins. Both -catenin and plakoglobin 

were shown to stabilize the linkage between VE-cadherin and the actin cytoskeleton, thus 

regulating endothelial barrier function.
10

 Thrombin-induced release of β-catenin and p120 

catenin from the cell membrane has been described recently in human endothelium.
121

 

Interestingly, recent studies implicated the involvement of p120 catenin in inhibition of Rho 
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signaling in ECs.
122

  

Regulation of AJs assembly and junctional permeability by reversible 

phosphorylation.  The dynamic assembly and disassembly of AJs depends on protein-protein 

interactions regulated by reversible phosphorylation. Histamine, tumor necrosis factor (TNF) 

and vascular endothelial growth factor induced tyrosine phosphorylation of VE-cadherin, -

catenin and p120 thus increasing endothelial barrier permeability.
123

 For instance, tyrosine 

phosphorylation on Tyr
860

 of VE-cadherin and Tyr
654

 on -catenin leads to disassembly of the 

catenin-cadherin complex.
124

 G12 binding to VE cadherin stimulates Src-mediated VE-

cadherin phosphorylation at Tyr
658

 leading to AJ disassembly.
125

 Recent studies revealed the 

possibility of AJ regulation by Ser/Thr phosphorylation as well. For example, activation of 

PKCα leads to phosphorylation of p120 catenin at Ser
879

 resulting in AJs disassembly.
126

 The 

cytoplasmic domain of VE-cadherin is phosphorylated at Ser
684,-686,-692

 creating more 

interaction sites for -catenin binding.
111

 Huber and Weis identified two residues in cadherin 

(Ser
684

 and Ser
699

) which are phosphorylated by casein kinase 2 (CK-2) and glycogen 

synthase kinase 3 (GSK-3). This phosphorylation of cadherin could stabilize and strengthen 

the catenin-cadherin complex by several hundred folds.
111, 127, 128

 However, there are some 

reports indicating that cadherin phosphorylation can be a negative factor for binding to -

catenin.
129

 E-cadherin phosphorylation mediated by CK-2 leads to the disruption of AJs in 

keratinocytes.
130, 131

  

Multiple kinases are involved in β-catenin phosphorylation such as casein kinase I (CK-I) 

and GSK-3β.
132, 133

 These kinases induce the phosphorylation of β-catenin on Ser
33/37 

and 

Thr
41

, respectively, leading to its ubiquitination and proteosomal degradation.
132, 133

  Wnt and 

other stimuli lead to the inactivation of GSK-3, thus decreasing -catenin phosphorylation, 

translocation into the nucleus and binding to transcription factors.
115

  In contrary, Ser
552

 

phosphorylation of -catenin is not implicated in the Wnt signaling. In quiescent cells the 
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phosphorylation level of this serine residue is very low and phospho--catenin Ser
552

 could be 

detected at the cell periphery of adjacent ECs. Phosphorylation of -catenin at Ser
552

 by AKT 

leads to its dissociation from cell contacts.
134, 135

 Finally, the inhibition of Ser/Thr 

phosphatases caused hyperphosphorylation of β-catenin on Ser/Thr residues and resulted in 

the loss of cell-cell contacts
131

 implicating the involvement Ser/Thr phosphatases in AJ 

assembly. 

TJs regulate the transport of ions and solutes through the paracellular pathway.
136

 They 

comprise of two families of transmembrane proteins, occludins and claudins as well as their 

cytoplasmic partners, zonula occludens (ZO) proteins, which connect TJs to actin 

cytoskeleton.
137

 Compared to AJs, mechanisms regulating TJs are far less understood. AJs 

assembly precedes tight junction formation and in some in vivo cases cadherin is required for 

the formation of TJs, as it controls the recruitment of ZO-1 to TJ complexes.
138

 Up-regulation 

of EC-specific claudin-5 isoform is involved in EC barrier enhancement in some, but not all 

models.
139, 140

 Conversely, edemagenic agonists decreased claudin-5 and ZO-1 expression 

accompanied by translocation of ZO-1 from the cytoskeleton to the membrane/nuclear 

fractions.
141, 142

 Recent study implicated the involvement of PKCε/Erk1/2 MAPK axis in 

phosphorylation of ZO-1 at Thr
770/772

.
143

 This phosphorylation is accompanied by dissociation 

of ZO-1 from occludin resulting in EC barrier dysfunction.
143

 In contrary, cyclic-strain-

induced enhancement of EC barrier function involved increased PKC-dependent ZO-1-

occludin association.
144

 In addition, Tyr phosphorylation of ZO-2 is involved in its 

dissociation from TJs and barrier dysfunction.
145

   

Gap junctions (GJ) form intercellular channels involving in the passages of ions and 

macromolecules between neighboring cells. They also present in ECs and play an important 

role in endothelial functions; however, information regarding the involvement of GJ in EC 

permeability regulation is limited and somewhat controversial. Recent studies on pulmonary 
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EC demonstrated that the expression of TJ protein, connexin 43, is involved in LPS-induced 

permeability increase.
146

 Consistent with these observations, connexin 43 inhibition blocked 

thrombin-induced permeability increase in lung capillaries.
147

 In contrary, other report 

demonstrated that thrombin-induced permeability is accompanied by internalization 

(inhibition) of TJ communications in vascular endothelium.
148

 Further studies are needed to 

define the involvement of TJ in the EC permeability regulation. 

Conclusion. Molecular basis of ALI and ARDS is still poorly understood. Based on the 

existing literature we proposed complex mechanisms involving crosstalk between microtubule 

and microfilaments accompanied by activation/phosphorylation cytoskeletal proteins 

following by re-arrangement of cell junctions. Further studies are needed to define 

cytoskeletal-specific structure/function relationships and enhance our understanding of the 

lung vascular barrier regulation. 
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Figure Legends. 

 

Figure 1. Endothelial activation in ALI. Edemagenic agents like bacterial toxins (LPS) or 

inflammatory mediators (thrombin) disrupt endothelial barrier leading to EC permeability 

increase accompanying by inflammatory response  

 

Figure 2. EC permeability pathways. Edemagenic agonists can increase endothelial 

permeability via caveolae-mediated transcellular route or (and) via increased intercellular 

gaps (paracellular route). 
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Figure 3.  EC cytoskeletal rearrangement in response to edemagenic agonists. Thrombin 

or LPS activates their receptors (PAR-1 and TLR4, respectively) leading to activation of pro-

inflammatory intracellular cascades (intracellular Ca
2+ 

increase, activation of Rho, PKC and 

Src signaling) following by microtubule dissolution, increased MLC phosphorylation (MLCK 

activation, MLCP inhibition) and phosphorylation of regulatory cytoskeletal proteins, CaD 

and HSP-27 (via p38 MAPK activation). These events result in actomyosin contraction, actin 

rearrangement and disruption of intercellular contacts, following by EC permeability increase. 
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Figure 4.  Hypothetic mechanism of thrombin-induced microtubule-mediated EC 

barrier compromise.  Thrombin activates its receptor (PAR-1) leading to activation of 

trimeric G-proteins (G12/13 and Gq), following by initial activation (phase 1) of Rho and p38 

MAPK signaling and resulting in disruption of microtubule structure via activation of MT-

binding proteins (phosphorylation of tau, CaD and LIMK and dephosphorylation of stathmin).  

At phase 2 MT dissolution leads to further activation of Rho (via release and activation of 

GEF-H1) and p38 MAPK followed by additional phosphorylation of cytoskeletal targets and 

their relocation to actin cytoskeleton resulting in actin rearrangement and permeability 

increase. MT stab: MT stabilization, MT inh: microtubule inhibition.  

 

Figure 5. Schematic representation of major intercellular contacts.          
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